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xn+1 = k · xn · (1− xn)

where k is a parameter.

Figure to the right shows the bifur-

cation diagram – possible values of

xn as a function of k (initial transient

omitted).

Governing equation
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Periodic points and chaos. There is infinite num-

ber of stable period-l cycles, for any integer l. Top:

Period-5 cycle and its first return map, i.e. a plot of xn+1
vs. xn. Bottom: Chaotic behaviour and its first return

map.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

x
n
+

1

x
n

k=3.739

k=3.888

period-5 cycle

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

x
n
+

1

x
n

chaos

 0

 0.2

 0.4

 0.6

 0.8

 1

 2160  2180  2200  2220

x
n

n

 0

 0.2

 0.4

 0.6

 0.8

 1

 2160  2180  2200  2220

x
n

n

Periodic points and chaos. There is infinite num-

ber of stable period-l cycles, for any integer l. Top:

Period-5 cycle and its first return map, i.e. a plot of xn+1
vs. xn. Bottom: Chaotic behaviour and its first return

map.
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Intermittency. Evolution of the system is characterized by long phases

of almost periodic behaviour interrupted with shorter bursts of chaos (bot-

tom; see Pomeau & Manneville 1980). As control parameter is increased

the almost periodic phases become longer up to a critical value of k for

which stable period-3 cycle is born through the tangent bifurcation (top,

illustrated with third return map). A set of three unstable fixed points ap-

pears as well that will soon cause crises.
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Intermittency. Evolution of the system is characterized by long phases

of almost periodic behaviour interrupted with shorter bursts of chaos (bot-

tom; see Pomeau & Manneville 1980). As control parameter is increased

the almost periodic phases become longer up to a critical value of k for

which stable period-3 cycle is born through the tangent bifurcation (top,

illustrated with third return map). A set of three unstable fixed points ap-

pears as well that will soon cause crises.
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Crises. The bifurcation in which the volume occupied by chaotic at-

tractor suddenly changes is called crises (bottom; see Grebogi, Ott &

Yorke 1982). We demonstrate the interior crises – three chaotic bands

born through the period doubling cascade of period-3 cycle merge as they

collide with the unstable period-3 fixed points (top; +) to form one large

chaotic band.
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Crises. The bifurcation in which the volume occupied by chaotic at-

tractor suddenly changes is called crises (bottom; see Grebogi, Ott &

Yorke 1982). We demonstrate the interior crises – three chaotic bands

born through the period doubling cascade of period-3 cycle merge as they

collide with the unstable period-3 fixed points (top; +) to form one large

chaotic band.
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Deterministic chaos. Many dynamical systems of different complexity, e.g. 1D logistic map discussed here,

the Lorentz system of three differential equations, or real phenomena, like turbulent convection, show chaotic behaviour.

Despite huge differences, the dynamical scenarios for these systems are strikingly similar: chaotic bands are born through

the series of period doubling bifurcations and merge through interior crises. Within chaotic bands periodic windows are

born through the tangent bifurcations, preceded by the intermittent behaviour. We talk about universal behaviour of

dynamical systems (Feigenbaum 1983). For the first time we demonstrate such behaviour in models of pulsating stars.

Universality in action. Qualitatively the same types of be-

haviour as computed for simple 1D map are apparent in hydrodynamic

models of BL Her stars.

dU

dt
= −

1

ρ
∇(P + Pt + Pν)−∇φ

de

dt
+ P

dV

dt
= −

1

ρ
∇(Fr + Fc)− (S −D)

det

dt
+ (Pt + Pν)

dV

dt
= −

1

ρ
∇Ft + (S −D)

solved in 180 zones of stellar BL Her-type model speci-

fied by constant mass, M = 0.55M⊙, constant luminosity,

L = 136L⊙, and varying effective temperature, Teff, with

the pulsation codes of Smolec & Moskalik (2008).

Figure to the right shows the bifurcation diagram – possi-

ble values of maximum radii as a function of model’s effec-

tive temperature.

Governing equations
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Chaos in the BL Her hydrodynamic models

Period doubling cascades – en route

to chaos; both from cool and hot side.
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Periodic points and chaos. We find stable period-

2, 3, 5, 7 (top) and 9 cycles, most of them undergo a pe-

riod doubling bifurcation. Bottom: Example of chaotic

model.
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Periodic points and chaos. We find stable period-

2, 3, 5, 7 (top) and 9 cycles, most of them undergo a pe-

riod doubling bifurcation. Bottom: Example of chaotic

model.
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Intermittency. Stable period-3 cycle is born through the tangent bifur-

cation. Before the bifurcation, intermittent behaviour is apparent.
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Intermittency. Stable period-3 cycle is born through the tangent bifur-

cation. Before the bifurcation, intermittent behaviour is apparent.
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Crises. The three chaotic bands merge as they collide with the unstable

period-3 cycle fixed points (located on the diagonal).
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Crises. The three chaotic bands merge as they collide with the unstable

period-3 cycle fixed points (located on the diagonal).
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Summary. Except of period doubling effect (Smolec et al. 2012), the behaviour

computed in our models is not observed in any BL Her star. Nevertheless the described

chaotic dynamics may be crucial in pulsation of luminous semi-regular and irregular

pulsators. We also stress, contrary to recent claims (Plachy et al. 2013), that stable

periodic cycles are not necessarily caused by the resonances among pulsation modes,

but may be an intrinsic property of the chaotic systems.


