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All models were computed with the Warsaw nonlinear, convective pul-

sation codes (Smolec & Moskalik 2008a). Radiation is treated in the

diffusion approximation and turbulent convection is treated with the

model of Kuhfuß (1986).

Each of the Lagrangian models comprise 150 mass shells extending

down to 2×106 K. Each pulsation cycle is covered by at least 600 time-

steps.

All models adopt OPAL opacities (Iglesias & Rogers 1996) and As-

plund et al. (2009) solar mixture. Colors are computed using Kurucz

(2005) model atmospheres.

The basic grid of physical parameters for non-linear models is the fol-

lowing:

parameter values

[Fe/H] −2.5, −2.0, −1.5, −1.0, −0.5, 0.0
M/M⊙ 0.50, 0.55, 0.60, 0.65, 0.70
L/L⊙ 40.0, . . . , 60.0, step 2.5
Teff step 50K (within instability strip)

Linear stability analysis is conducted in a much wider parameter range.

Several sets of convective parameters that enter the turbulent convec-

tion model are considered.

The full grid of models, with more than 10 000 light curves, will be

published as an on-line database at the end of 2014. Exemplary content

of the database is illustrated in the figures.

Hydrodynamic models

Model grid, light curves, Fourier decomposition parameters

The HR diagram
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Light and radial velocity curves
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Light curves are available in U, B, V, R and I bands together with radial velocity curves, and radius variation curve.
The presented model has M = 0.6M⊙, L = 50L⊙, [Fe/H] = −1.0 and Teff = 6900K.
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Light curves are available in U, B, V, R and I bands together with radial velocity curves, and radius variation curve.
The presented model has M = 0.6M⊙, L = 50L⊙, [Fe/H] = −1.0 and Teff = 6900K.

Fourier decomposition parameters
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Fourier decomposition parameters are the most reliable tool
to compare model data with observations. Here we present
comparison with the OGLE Galactic Bulge RR Lyr data
(Soszyński et al. 2011). Models have 0.60M⊙, metallic-
ities are [Fe/H] ∈ [−0.5,−1.0,−1.5] and luminosities are
L/L⊙ ∈ [40, 45, 50, 55, 60] (left to right).
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to compare model data with observations. Here we present
comparison with the OGLE Galactic Bulge RR Lyr data
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ities are [Fe/H] ∈ [−0.5,−1.0,−1.5] and luminosities are
L/L⊙ ∈ [40, 45, 50, 55, 60] (left to right).

With radiative calculations stable double-mode pulsation cannot be

found (eg. Buchler 2009). Inclusion of the turbulent convection in

the Florida-Budapest code led to success for both Cepheid and RR Lyr

models (Kolláth et al. 1998, 2002). In Smolec & Moskalik (2008b)

we showed however, that the double-mode Cepheid pulsation in these

models is caused by unphysical neglect of negative buoyancy in con-

vectively stable regions. Once buoyancy is properly treated, stable,

non-resonant double-mode Cepheid pulsation cannot be found.

In this study we analyse the problem for RR Lyr models. Mode selec-

tion analysis is illustrated in the figures. Each model is integrated with

different initial conditions and growth of the F and 1O mode ampli-

tudes is followed (1). Next, we fit the hydrodynamic trajectories with

amplitude equations (AEs) to get saturation coefficients (2). Then, AEs

can be solved yielding all possible fixed points and their stability (3).

The procedure is repeated along a model sequence and derived sat-

uration coefficients allow to deduce the mode selection for arbitrary

effective temperature (4) and finally in the full HR diagram (5).

So far, our search for stable double-mode pulsation yielded negative

result. The HR diagram to the right (5) illustrates the typical mode

selection scenario. We find either-or domain, in which the model pul-

sates either in the F mode or in the 1O mode, depending on initial con-

ditions (direction of evolution). Since double-mode pulsators exist and

are numerous, we conclude that the modelling of double-mode RR Lyr

pulsation remains an open issue (just as in case of classical Cepheids).

The long-standing problem of double-mode pulsators

Mode selection in RR Lyrae models

1. Hydrodynamic models
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conditions. Hydrodynamic trajectories are extracted
with the analytic signal method.
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2. Amplitude equations
The long-term evolution of mode amplitudes may
be described with AEs. In the simplest case, non-
resonant, cubic AEs are:

Ȧ0 = (κ0 + q00A
2

0 + q01A
2

1)A0,

Ȧ1 = (κ1 + q10A
2

0 + q11A
2

1)A1

Having (A0, A1) and (Ȧ0, Ȧ1) from hydrodynamic
trajectories, and linear growth rates from linear sta-
bility analysis, we may determine the saturation co-
efficients, qij through simple linear fit.
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3. Fixed points and
their stability
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Solution of AEs allows to find the fixed points (Ȧ0 =
Ȧ1 = 0, red symbols) and determine their stability
(filled circle – stable, open circle – unstable). The
resulting flow field is visualised with short blue line
segments.

3. Fixed points and
their stability

0.000

0.005

0.010

0.015

0.020

0.025

0.030

 0  0.02  0.04  0.06  0.08

A
1

A
0

Solution of AEs allows to find the fixed points (Ȧ0 =
Ȧ1 = 0, red symbols) and determine their stability
(filled circle – stable, open circle – unstable). The
resulting flow field is visualised with short blue line
segments.

4. Mode selection

-80

-70

-60

-50

-40

-30

-20

-10

 0

 6700 6800 6900 7000 7100
Teff [K]

1O E/O F

q00
q01
q11
q10

The above outlined procedure is repeated along a se-
quence of models which allows to find the edges of
mode selection domains through interpolation.
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5. Mode selection
– HR diagram
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On the hot side of the HR diagram 1O-only domain
extends, while on the cool side F-only domain is
present. In between there is a narrow either-or do-
main, in which pulsation mode depends on the di-
rection of evolution. No double-mode domain is
present.

5. Mode selection
– HR diagram

L
/L

⊙

Teff [K]

0.40 0.60

0.80

 40

 45

 50

 55

 60

 6000 6500 7000 7500

[Fe/H]=-1.0

0.60M
⊙

1
O

 o
n
ly

ei
th

er
-o

r,
 F

/1
O

F
 o

n
ly

On the hot side of the HR diagram 1O-only domain
extends, while on the cool side F-only domain is
present. In between there is a narrow either-or do-
main, in which pulsation mode depends on the di-
rection of evolution. No double-mode domain is
present.

The Blazhko Effect is a quasi-periodic modulation of pulsation ampli-

tude and phase which affects nearly 50% of stars pulsating in the fun-

damental mode. Despite being discovered more than 100 years ago,

its physical origin remains unclear. Among many models proposed

to explain the phenomenon, the model of Buchler & Kolláth (2011),

in which modulation is caused by half-integer resonance between the

radial modes (likely PF/P9O = 9 : 2) is the most promising one. It

is supported by the analysis of amplitude equations and recent Kepler

observations, but lacks confirmation from hydrodynamic modelling.

We searched for Blazhko-like modulation in our RR Lyr models, un-

fortunately, it was not found so far. In the models with decreased

eddy-viscous dissipation, we find period doubling effect, which is also

caused by half-integer resonance, but not modulation akin to Blazhko.

This interesting dynamical behaviour is illustrated in the figures.

The Blazhko Effect Mystery

Search for pulsation modulation (Blazhko Effect) in RR Lyrae models

Period doubling in the
HR diagram
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Red dots mark the location of period-doubled models.
Larger the dot, larger the amplitude of alternations. The
period doubling domain clearly coincide with the loci of
the PF/P9O = 9:2 resonance.
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The lack of pulsation modulation in hydrodynamic models does

not invalidate the radial resonance model. Likely our pulsation

codes are too simple and more involved treatment of the turbulent

convection and/or 3D modelling is needed.

The on-line database will be released by the end of 2014.

The problem of modelling the double-mode

RR Lyrae pulsation is not solved yet!


