Uniwersytet Warszawski

Wydział Fizyki Obserwatorium Astronomiczne

> Piotr Wielgórski Nr albumu: 294546

Analiza wielobarwnych zależności okres-jasność dla wybranych gwiazd pulsujących w Obłokach Magellana

Praca magisterska na kierunku Astronomia

Praca wykonana pod kierunkiem **prof. dra hab. Grzegorza Pietrzyńskiego** (Obserwatorium Astronomiczne UW)

Warszawa, lipiec 2014

Oświadczenie kierującego pracą

Potwierdzam, że niniejsza praca została przygotowana pod moim kierunkiem i kwalifikuje się do przedstawienia jej w postępowaniu o nadanie tytułu zawodowego.

Data:

Podpis kierującego pracą:

Oświadczenie autora pracy

Świadom odpowiedzialności prawnej oświadczam, że niniejsza praca dyplomowa została napisana przeze mnie samodzielnie i nie zawiera treści uzyskanych w sposób niezgodny z obowiązującymi przepisami.

Oświadczam również, że przedstawiona praca nie była wcześniej przedmiotem procedur związanych z uzyskaniem tytułu zawodowego w wyższej uczelni.

Oświadczam ponadto, że niniejsza wersja pracy jest identyczna z załączoną wersją elektroniczną.

Data:

Podpis autora pracy:

Streszczenie

Korzystając z danych fotometrycznych z przeglądów OGLE (filtry V, I) oraz IRSF (J, H, K), oraz okresów pulsacji, wyznaczonych przez zespół OGLE, po odczerwienieniu danych, wyprowadzono zależności okres-jasność w pięciu filtrach oraz dwóch indeksach wesenheit dla cefeid klasycznych, cefeid anomalnych, cefeid II typu, OSARGów, mir oraz zmiennych półregularnych z Wielkiego i Małego Obłoku Magellana. Zależności okres-jasność dla gwiazd z Wielkiego Obłoku Magellana są zależnościami wzorcowymi i służą do pomiarów odległości do innych galaktyk, wykorzystano zatem wyprowadzone dla tej galaktyki zależności do wyznaczenia różnic modułów odległości Małego i Wielkiego Obłoku Magellana. Następnie utworzono prosty model obydwu galaktyk. W tym celu podzielono gwiazdy ze względu na przynależność do pól wydzielonych w Wielkim i Małym Obłoku Magellana w III fazie przeglądu OGLE i wykorzystując zależność okres-jasność wyznaczoną dla całej galaktyki zmierzono różnice modułów odlegóści środka danego pola i centrum galaktyki.

Słowa kluczowe

cefeida, gwiazda pulsująca, zależność okres-jasność, Wielki Obłok Magellana, Mały Obłok Magellana

Dziedzina pracy (kody wg programu Socrates-Erasmus)

13.7 Astronomia i Astrofizyka.

Tytuł pracy w języku angielskim

Analysis of multicolour period-luminosity relations for pulsating stars in Magellanic Clouds

Spis treści

1.	Wst	pep	5
	1.1.	Pomiary odległości we Wszechświecie	5
	1.2.	Gwiazdy pulsujące. Zależność okres-jasność dla gwiazd pulsujących	
		jako świeca standardowa	7
2.	Zale	eżności okres-jasność w Wielkim i Małym Obłoku Magellana .	11
	2.1.	Dane	11
	2.2.	Wyznaczanie poprawek jasności	11
		2.2.1. Ekstynkcja	11
		2.2.2. Geometria Wielkiego Obłoku Magellana	12
	2.3.	Dopasowywanie zależności	15
	2.4.	Wyniki	20
		2.4.1. Cefeidy klasyczne	20
		2.4.2. Cefeidy anomalne	26
		2.4.3. Cefeidy II typu	28
		2.4.4. OSARG	38
		2.4.5. Miry	43
		2.4.6. Zmienne półregularne	47
3.	Wza	ajemna odległość Obłoków Magellana	55
4.	Geo	ometria Obłoków Magellana	61
	4.1.	Wielki Obłok Magellana	61
	4.2.	Mały Obłok Magellana	67

5.	Dyskusja wyników			
	5.1.	Zależności okres-jasność	71	
	5.2.	Wzajemna odległość Obłoków Magellana	72	
	5.3.	Geometria Obłoków Magellana	73	
6.	Pod	sumowanie	75	

1. Wstęp

Precyzyjna kalibracja skali odległości we Wszechświecie jest jednym z najważniejszych zadań współczesnej astronomii. Bez znajomości odległości niemożliwe jest stworzenie prawidłowego modelu Wszechświata czy też poznanie natury obiektów w nim istniejących. Wyznaczenie jej, jest niestety również zadaniem tak skomplikowanym, że pomimo istnienia wielu metod, wciąż poszukiwane są nowe. Pierwszy wiarygodny pomiar odległości do gwiazdy został wykonany w 1838 roku przez niemieckiego astronoma i matematyka Friedricha Bessela (1784-1846). Wykorzystał on fakt, że w wyniku ruchu orbitalnego Ziemi gwiazdy bliższe zmieniają swoje położenie na tle odleglejszych, czyli zjawisko paralaksy (Bessel, 1838). Niestety liczba gwiazd, dla których można było zastosować tą metodę była mocno ograniczona, ze względu na dokładność wymaganą do pomiarów zmian położenia gwiazd. Bezpośrednimi informacjami, jakie można było uzyskać o ciałach niebieskich były jasności obserwowane, prędkości radialne, skład chemiczny, zatem ewentualne nowe metody musiały ograniczać się tylko do tych parametrów. Na szczęście okazało się, że istnieją we Wszechświecie obiekty, które maja dość dokładnie określone jasności absolutne, czyli tzw. świece standardowe. Poprzez porównanie ich jasności obserwowanej z jasnością absolutną możliwe jest wyznaczenie odległości. Obecnie znanych jest wiele świec standardowych, a jednymi z najważniejszych są omawiane w niniejszej pracy zależności okres-jasność dla gwiazd pulsujących. Kalibracja tych zależności, jak również jasności absolutnych pozostałych świec standardowych, jest więc podstawą precyzyjnego wyznaczania odległości we Wszechświecie.

1.1. Pomiary odległości we Wszechświecie

Pomiary odległości do galaktyk odbywają się w sposób hierarchiczny (tzw. drabina odległości) i mogą być prowadzone dwiema drogami. Pierwsza z nich zaczyna się na pomiarach paralaks pobliskich gwiazd. Odległość do gwiazdy (w parsekach), której kąt paralaksy (wyrażony w sekundach łuku) wynosi π wyraża się wzorem:

$$D = \frac{1}{\pi}.\tag{1.1}$$

Jeżeli gwiazdy o zmierzonych paralaksach są jednocześnie świecami standardowymi, można skalibrować ich jasności absolutne. Następnie za pomocą tych świec mierzymy odległości do pobliskich galaktyk i obserwując w nich gwiazdy supernowe, kalibrujemy ich jasności absolutne, dzięki czemu możemy mierzyć odległości do dalszych galaktyk. Przykładami świec standardowych są gwiazdy pulsujące typu δ Cephei i RR Lyrae, obszar diagramu Hertzsprunga-Russela zwany punktem odgięcia gałęzi czerwonych olbrzymów (TRGB, ang. Tip of the Red Giant Branch), gwiazdy supernowe. Jansność absolutna świecy standardowej M, jasność obserwowana m oraz odległość Dwyrażona w parsekach są ze sobą związane formułą:

$$m - M = 5\log D - 5 + a, \tag{1.2}$$

gdzie *a* oznacza ekstynkcję. Często zamiast odległości *D* podawana jest wielkość m - M, zwana modułem odległości. Problem na tej ścieżce pojawia się niestety już na samym początku. Liczba gwiazd, dla których obecnie możliwy jest wystarczająco dokładny pomiar paralaksy jest rzędu kilkuset, zatem nawet jeśli znajdzie się wśród tych gwiazd świeca standardowa, próbka będzie niewystarczająca do dokładnej kalibracji jasności absolutnej świecy. Dlatego praktyczne zastosowanie częściej znajduje druga ścieżka choć możliwe jest, że w niedalekiej przyszłości, dzięki pomiarom wystrzelonej w 2013 roku sondy *GAIA*, uda się zmierzyć z dużą dokładnością paralaksy ponad stu milionów gwiazd w Drodze Mlecznej (Turon et al., 2012).

Druga ścieżka rozpoczyna się na pobliskiej galaktyce- Wielkim Obłoku Magellana. Jest to jedna z najbliższych Drodze Mlecznej galaktyk, stanowiąca doskonałe laboratorium do badania różnego typu gwiazd, znajdujących się od nas w bardzo podobnej odległości. Jeśli uda się jakąś metodą zmierzyć dokładną odległość Obłoku, obserwując w nim gwiazdy będące świecami standardowymi można kalibrować ich jasności absolutne i mierzyć za ich pomocą odległości do odległejszych galaktyk, w których obserwowane są supernowe. Dzięki temu kalibrowane są jasności absolutne supernowych, co pozwala mierzyć odległości do jeszcze odleglejszych galaktyk. Kluczem do dokładnej kalibracji skali odległości jest więc precyzyjne wyznaczenie odległości do Wielkiego Obłoku Magellana. Na temat odległości tej galaktyki opublikowano setki prac (Schaefer, 2008). Najdokładniejszy jak dotąd pomiar uzyskali Pietrzyński et al. (2013), wykorzystując do pomiaru układy podwójne czerwonych olbrzymów. Mierząc fizyczne oraz kątowe średnice gwiazd, wyznaczyli odległość do Wielkiego Obłoku Magellana z dokładnością sięgającą 2% na 49,97kpc (m - M = 18,493).

1.2. Gwiazdy pulsujące. Zależność okres-jasność dla gwiazd pulsujących jako świeca standardowa

Holenderski astronom David Fabricius (1564-1617) w 1596 roku zaobserwował, że jedna z gwiazd w gwiazdozbiorze Wieloryba, Mira Ceti, regularnie zmienia swoją jasność pojawiając się i znikając co kilka miesięcy. W późniejszych wiekach podobną zmienność odnotowywano u innych gwiazd m.in. δ Cephei. Początkowo sądzono, że gwiazdy te są układami podwójnymi zaćmieniowymi lecz pod koniec XIX wieku August Ritter (1826-1908) zasugerował, że za zmiany jasności odpowiedzialne są zmiany powierzchni gwiazd, czyli pulsacje (Ritter, 1898), co w 1914 roku udowodnił Harlow Shapley (1885-1972) (Shapley, 1914). Przyczyną pulsacji jest istnienie wewnątrz gwiazdy na odpowiednio małej głebokości strefy, która jest bardziej nieprzezroczysta dla promieniowania niż warstwy sąsiednie. Warstwę taką może stanowić hel, w którym elektrony obsadzają wysokie stany energetyczne. Ciśnienie promieniowania pod tą warstwą sprawia, że jest ona unoszona do góry. W wyniku spadku temperatury w warstwie elektrony rekombinują i obsadzają niższe stany i staje się ona coraz bardziej przezroczysta tak, że promieniowanie pochodzące z wnętrza gwiazdy łatwiej wydobywa się na zewnatrz. Ciśnienie promieniowania spada i warstwa ponownie opada ku środkowi gwiazdy. Sytuacja taka zachodzi w sposób cykliczny, do momentu, aż w wyniku ewolucji zaniknie nieprzezroczysta warstwa, lub znajdzie się ona na głebokości uniemożliwiającej zachodzenie pulsacji.

W analogii do drgającej struny, pulsacje radialne gwiazd mogą zachodzić w sposób wielomodalny. Jeżeli cała gwiazda jednocześnie kurczy się albo rozszerza mówimy o pulsacjach w modzie podstawowym (odpowiada to drganiom struny, gdy istnieją tylko dwa węzły na końcach). Jeśli wewnątrz gwiazdy jest warstwa nie biorąca udziału w pulsacjach tzn. poniżej warstwy gwiazda kurczy się, powyżej rozszerza lub odwrotnie, to gwiazda pulsuje w pierwszym modzie wzbudzonym (pierwszym owertonie) i odpowiada to drganiom struny, gdy pojawia się na niej dodatkowy węzeł zlokalizowany na środku. Gdy istnieje więcej nieruchomych warstw mówimy kolejno o drugim, trzecim itd. modzie wzbudzonym. Może się zdarzyć, że gwiazda pulsuje w kilku modach jednocześnie.

Wyróżnianych jest wiele typów gwiazd pulsujących, gdyż w zależności od parametrów fizycznych gwiazd oraz statusu ewolucyjnego pulsacje zachodzą w różny sposób. Najbardziej znane gwiazdy puslujące- cefeidy klasyczne- są gwiazdami pierwszej populacji kończącymi syntezę wodoru w jądrze, czyli znajdującymi się na granicy ciągu głównego i tuż po nim. Ich masy wynoszą średnio kilkanaście mas Słońca a typy widmowe pomiędzy F5 i G5. Wspomniane wcześniej gwiazdy typu Mira Ceti są małomasywne (średnio około 2 mas Słońca) i znajdują się na gałęzi asymptotycznej diagramu Hertzsprunga-Russela. Są one gwiazdami zarówno pierwszej, jak i drugiej populacji o typach widmowych M i C. Innymi gwiazdami, omawianymi w niniejszej pracy są cefeidy anomalne, cefeidy II typu, OSARG-i (ang. OGLE Small Amplitude Red Giants) oraz zmienne półregularne.

W 1908 roku, amerykańska astronom Henrietta Swan Leavitt (1868-1921) po wykreśleniu zależności średniej jasności cefeid obserwowanych w Wielkim Obłoku Magellana od logarytmu okresu ich pulsacji zauważyła, że dłuższym okresom pulsacji gwiazd odpowiadają większe jasności i zależność pomiędzy tymi parametrami ma charakter liniowy (Leavitt, 1908). Analogiczna zależność dla cefeid z Małego Obłoku Magellana również była linią o zbliżonym nachyleniu jednak nieco przesuniętą w kierunku mniejszych jasności. Wynikało z tego, że zależność ta może być uniwersalna dla cefeid. Późniejsze badania potwierdziły te przypuszczenia więc cefeidy, a właściwie ich zależność okres-jasność, były dobrymi kandydatami na świece standardowe. Obserwacje innych gwiazd pulsujących również wykazały istnienie tego typu zależności.

Aby wyznaczyć odległość korzystając z zależności okres-jasność należy znaleźć zależność wzorcową. Obserwując gwiazdy pulsujące w Wielkim Obłoku Magellana, możemy wykreślić dla nich obserwowaną zależność okres jasność. Ze względu na bliskość tej galaktyki, stosunkowo niewielką ekstynkcję i mnogość gwiazd pulsujących w niej występujących, zależności okres-jasność w niej obserwowane uznawane są za wzorcowe, czyli że dla danego typu gwiazd pulsujących w innych galaktykach nachylenie zależności jest identyczne jak w Wielkim Obłoku Magellana. Następnie do danych z badanej galaktyki dopasowujemy punkt zerowy zależności o nachyleniu takim jak w zależności wzorcowej. Różnica pomiędzy punktami zerowymi zależności dopasowanej dla badanej galaktyki i zależności wzorcowej jest różnicą modułów odległości galaktyki i Wielkiego Obłoku Magellana. Proces ten został zilustrowany na rysunku

1.1. Aby otrzymać moduł odległości galaktyki, do tej różnicy należy dodać moduł odległości Wielkiego Obłoku Magellana.

logarytm okresu pulsacji

Rysunek 1.1: Schemat przedstawiający metodę wyznaczania różnicy modułów odległości pomiędzy galaktykami z wykorzystaniem zależności okres jasność.

Zależności okres-jasność w Wielkim i Małym Obłoku Magellana

2.1. Dane

Badanymi w niniejszej pracy gwiazdami pulsującymi są cefeidy klasyczne, anomalne oraz drugiego typu (BL Her, RV Tau, W Vir), miry, OSARG-i oraz zmienne półregularne. Do wyprowadzenia zależności okres-jasność dla tych gwiazd w Obłokach Magellana wykorzystano dane z dwóch przeglądów nieba. Zespół OGLE (Optical Gravitational Lensing Experiment) (Udalski et al., 1997) za pomocą znajdującego się w obserwatorium Las Campanas w Chile teleskopu warszawskiego o średnicy 1, 3mprowadził obserwacje w pasmach V $(0, 543 \mu m)$ oraz I $(0, 809 \mu m)$. Katalog OGLE zawiera również okresy pulsacji gwiazd. Użyte dane zbierane były w ramach trzeciej fazy projektu OGLE (Udalski et al., 2008). Dane te zostały wzbogacone o 28 cefeid klasycznych puslujących w modzie podstawowym o długich okresach pulsacji, obserwowanych w ramach głębokiego przeglądu Wielkiego Obłoku Magellana również prowadzonego przez zespół OGLE (Ulaczyk et al., 2013). Drugim projektem jest IRSF (Infrared Survey Facility) (Glass & Nagata, 2000), którego teleskop o średnicy zwierciadła 1, 4m znajduje się w Południowoafrykańskim Obserwatorium Astronomicznym (ang. South African Astronomical Observatory). Observacje w ramach tego projektu prowadzone są w filtrach podczerwonych J $(1, 25\mu m)$, H $(1, 63\mu m)$ oraz K $(2, 14\mu m)$. Dane z projektu IRSF zostały dowiazane do danych z katalogu OGLE.

2.2. Wyznaczanie poprawek jasności

2.2.1. Ekstynkcja

W celu wyznaczenia ekstynkcji skorzystano z map poczerwienienia w Obłokach Magellana, opisanych w pracy Haschke et al. (2011). Na podstawie współrzędnych gwiazd, z map otrzymano dla nich różnicę ekstynkcji w filtrach V oraz I E(V - I). W celu otrzymania E(B - V) wartość E(V - I) pomnożono, jak sugerują twórcy map, przez wynikającą z prawa poczerwienienia wartość 1.38. Do otrzymanego w ten

sposób poczerwienienia dodano wartość ekstynkcji powodowanej przez Galaktykę, która jak podaje Schlegel et al. (1997) w kierunku LMC wynosi średnio 0.075mag, natomiast w kierunku SMC 0.037mag.

Do obliczenia wartości poczerwienienia dla poszczególnych filtrów skorzystano z formuł opisanych w pracy Cardelli et al. (1989), przyjmując $\frac{A(V)}{E(B-V)} = 3.1$. Współczynniki $\frac{A_{\lambda}}{A(V)}$, pozwalające obliczyć ekstynkcję selektywną, przedstawia tabela 2.1.

$\frac{A_V}{A(V)}$	1.014
$\frac{A_I}{A(V)}$	0.585
$\frac{A_J}{A(V)}$	0.282
$\frac{A_H}{A(V)}$	0.180
$\frac{A_K}{A(V)}$	0.118

Tablica 2.1: Współczynniki pozwalające obliczyć ekstynkcję selektywną.

2.2.2. Geometria Wielkiego Obłoku Magellana

Niedokładność wyznaczenia zależności okres-jasność wynika również z różnych odległości do poszczególnych gwiazd. W przypadku Małego Obłoku Magellana, wyznaczenie wartości poprawek zmniejszających wpływ tego efektu jest obecnie niemożliwe, ze względu na zbyt słabą znajomość skomplikowanej geometrii tej galaktyki. Z kolei budowa Wielkiego Obłoku Magellana jest poznana dość dobrze, aby możliwe było wyznaczenie takich poprawek. Korzystając z modelu opisanego przez van der Marel & Cioni (2001) wyznaczono różnicę modułów odległości poszczególnych gwiazd, względem centrum LMC ($\alpha = 5^h 25^m 06^s$, $\delta = -69^o 47' 00''$, (za Pietrzyński et al. (2013)).

Wielki Obłok Magellana modelowany jest jako płaszczyzna, co przedstawione jest na rysunku 2.1. Z płaszczyzną tą związany jest układ współrzędnych x'y'z', którego początek znajduje się w centrum Wielkiego Obłoku Magellana. Drugi układ współrzędnych, xyz, również ma początek w centrum Obłoku i wiąże się z wyróżnionymi kierunkami na sferze niebieskiej. Oś y skierowana jest na północ, natomiast oś x w kierunku zachodnim. Oś x' leży w płaszczyźnie xy i pokrywa się z "linią węzłów" płaszczyzny Wielkiego Obłoku Magellana. Za kąt θ , będący kątem pomiędzy osiami xi x' przyjęto wartość 128°, natomiast za kąt nachylenia płaszczyzny do kierunku widzenia i, czyli inklinację, 28° (Pietrzyński et al., 2013).

Rysunek 2.1: Model Wielkiego Obłoku Magellana z zaznaczonymi stosowanymi układami współrzędnych oraz kątami θ i *i*, definującymi położenie galaktyki względem kierunku widzenia (van der Marel & Cioni, 2001).

Na podstawie współrzednych gwiazd wyznaczona została kątowa odległość gwiazdy ρ od centrum galaktyki oraz kąt ϕ pomiędzy osią x i promieniem ρ (por. rysunek 2.2). Po przetransformowaniu współrzędnych ρ i ϕ na x', y', (z' = 0) okazuje się, że odleglość do gwiazdy D można obliczyć ze wzoru:

$$D = \frac{D_0 \cos i}{\cos i \cos \rho - \sin i \sin \rho \sin(\phi - \theta)}.$$
(2.1)

gdzie D_0 jest odległością centrum Wielkiego Obłoku Magellana. Poprawka jasności μ , wynikająca z różnicy odległości gwiazdy i centrum Wielkiego Obłoku Magellana wyraża się wzorem:

$$\mu = 5 \log \frac{D}{D_0}.\tag{2.2}$$

Otrzymaną w ten sposób poprawkę, należało odjąć od jasności gwiazd.

Rysunek 2.2: Schemat przedstawiający współrzędne ρ
i ϕ gwiazdy o rektascensji α i deklinacj
i δ (van der Marel & Cioni, 2001).

2.3. Dopasowywanie zależności

Oprócz zależności okres-jasność w pięciu wymienionych wcześniej filtrach, wyprowadzono również zależności dla indeksów wesenheit dla filtrów V i I oraz J i K. Współczynnik Wesenheit dla dwóch filtrów X oraz Y wyraża się wzorem:

$$W_{XY} = M_X - R_{XY}(M_Y - M_X), (2.3)$$

gdzie M_X i M_Y oznaczają jasności w filtrach X i Y, natomiast R_{XY} jest wynikającym z prawa poczerwienienia stosunkiem poczerwienienia w filtrze X do różnicy poczerwienienia w filtrach Y i X $\left(\frac{A(X)}{E(Y-X)}\right)$. Dla filtrów V oraz I $R_{VI} = 1,55$ natomiast dla J i K $R_{JK} = 0,686$ (Soszynski et al., 2007). Można udowodnić, że indeks wesenheit jest wielkością niezależną od poczerwienienia.

Rysunki 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9 (kolory na wszystkich wykresach odpowiadają tym samym typom gwiazd) pokazują zależności okres-jasność wszystkich badanych gwiazd z Wielkiego Obłoku Magellana dla wszystkich filtrów oraz użytych indeksów wesenheit. Widać, że w większości zależności mają charakter liniowy, jednak w niektórych przypadkach zależność przypomina kwadratową. W sytuacji, gdy nie było pewne, jaki jest charakter danej zależności dopasowano zarówno zależność liniową jak i kwadratową, a następnie wybierano tą, dla której mniejszy był rozrzut punktów.

Dla zależności liniowych należało więc dopasować prostą o równaniu:

$$M = \alpha log(P) + \beta, \tag{2.4}$$

do kwadratowych natomiast parabolę

$$M = \alpha \left(log(P) \right)^2 + \beta log(P) + \gamma.$$
(2.5)

Dopasowania zależności dokonano wykorzystując standardową metodę najmniejszych kwadratów, czyli szukano takich współczynników α , β i γ , które minimalizowały wyrażenie:

$$\sigma^{2} = \frac{1}{N} \sum_{i=1}^{N} \left(m_{i} - M(\log P_{i}) \right)^{2}, \qquad (2.6)$$

gdzie N jest liczbą gwiazd, m_i jasnością *i*-tej gwiazdy w danym filtrze, $M(\log P_i)$ jasnością gwiazdy, wynikającą z dopasowywanej zależności.

W celu precyzyjnego dopasowania dane odstające od otrzymanej zależności o więcej niż 3σ były usuwane i zależność dopasowywano na nowo. Taki schemat wykonano dwukrotnie. W przypadku gwiazd z LMC, dla każdego pasma dopasowano trzy zależności- dla danych oryginalnych, odczerwienionych oraz odczerwienionych i poprawionych ze względu na różnice odległości gwiazd, natomiast dla Małego Obłoku Magellana po dwie: dla danych nieodczerwienionych oraz odczerwienionych.

Rysunek 2.3: Jasność w filtrze V vs logarytm okresu pulsacji dla wszystkich badanych typów gwiazd pulsujących z Wielkiego Obłoku Magellana.

Rysunek 2.4: Jasność w filtrze I v
s logarytm okresu pulsacji dla wszystkich badanych typów gwiazd pulsujących z Wielkiego Obłoku Magellana.

Rysunek 2.5: Jasność w filtrze J v
s logarytm okresu pulsacji dla wszystkich badanych typów gwiazd pulsujących z Wielkiego Obłoku Magellana.

Rysunek 2.6: Jasność w filtrze ${\cal H}$ v
s logarytm okresu pulsacji dla wszystkich badanych typów gwiazd pulsujących z Wielkiego Obłoku Magellana.

Rysunek 2.7: Jasność w filtrze K vs
 logarytm okresu pulsacji dla wszystkich badanych typów gwiazd pulsujących z Wielkiego Obłoku Magellana.

Rysunek 2.8: Indeks wesenheit W_I v
s logarytm okresu pulsacji dla wszystkich badanych typów gwiazd pulsujących z Wielkiego Obłoku Magellana.

Rysunek 2.9: Indeks wesenheit W_{JK} v
s logarytm okresu pulsacji dla wszystkich badanych typów gwiazd pulsujących z Wielkiego Obłoku Magellana.

2.4. Wyniki

2.4.1. Cefeidy klasyczne

W tabelach 2.2 i 2.3 zamieszczone zostały współczynniki zależności okres-jasność, otrzymane dla cefeid klasycznych pulsujących w modzie podstawowym w Wielkim i Małym Obłoku Magellana, odpowiadające dopasowaniu rozrzuty punktów σ oraz liczby gwiazd, które posłużyły do wyprowadzenia zależności N. Wszystkie zależności są zależnościami liniowymi.

Filtr	α	β	σ	N			
	LMC						
V	-2.769 ± 0.021	17.537 ± 0.014	0.230	1796			
	-2.755 ± 0.018	17.087 ± 0.012	0.199	1793			
	-2.753 ± 0.018	17.089 ± 0.012	0.202	1796			
Ι	-2.966 ± 0.015	16.886 ± 0.010	0.155	1773			
	-2.960 ± 0.014	16.628 ± 0.009	0.142	1781			
	-2.958 ± 0.014	16.630 ± 0.009	0.145	1783			
J	-3.112 ± 0.011	16.431 ± 0.007	0.119	1752			
	-3.108 ± 0.010	16.304 ± 0.007	0.114	1752			
	-3.108 ± 0.011	16.307 ± 0.007	0.118	1756			
Η	-3.214 ± 0.009	16.176 ± 0.006	0.098	1749			
	-3.213 ± 0.009	16.096 ± 0.006	0.095	1751			
	-3.205 ± 0.009	16.094 ± 0.006	0.099	1752			
K	-3.244 ± 0.009	16.112 ± 0.006	0.089	1752			
	-3.242 ± 0.008	16.059 ± 0.006	0.088	1752			
	-3.238 ± 0.009	16.058 ± 0.006	0.093	1755			
W_I	-3.329 ± 0.008	15.903 ± 0.005	0.083	1779			
	-3.327 ± 0.009	15.904 ± 0.006	0.087	1776			
W_{JK}	-3.329 ± 0.008	15.884 ± 0.005	0.083	1746			
	-3.330 ± 0.009	15.887 ± 0.006	0.089	1750			

Tablica 2.2: Zależności okres-jasność dla cefeid klasycznych w modzie podstawowym w Wielkim Obłoku Magellana.

W przypadku Wielkiego Obłoku Magellana dla każdego filtru podane są trzy zestawy współczynników: pierwszy dla danych nieodczerwienionych, drugi dla danych odczerwienionych oraz trzeci dla danych odczerwienionych i poprawionych ze względu na geometrię Obłoku, dla indeksów wesenheit dwa zestawy: dla danych nieodczerwienionych, oraz poprawionych ze względu na geometrię. Dla Małego Obłoku Magellana dla filtrów podane są po dwie zależności: dla danych nieodczerwienionych i odczerwienionych, natomiast dla indeksów wesenheit jedna, dla danych nieodczerwienionych.

Filtr	α	eta	σ	N
		SMC		
V	-2.901 ± 0.019	17.994 ± 0.009	0.271	2563
	-2.905 ± 0.018	17.776 ± 0.009	0.267	2569
Ι	-3.129 ± 0.015	17.411 ± 0.007	0.218	2581
	-3.132 ± 0.014	17.284 ± 0.007	0.214	2581
J	-3.280 ± 0.013	17.019 ± 0.007	0.193	2381
	-3.281 ± 0.013	16.957 ± 0.006	0.191	2378
H	-3.365 ± 0.012	16.755 ± 0.006	0.177	2374
	-3.366 ± 0.012	16.715 ± 0.006	0.175	2372
K	-3.400 ± 0.013	16.705 ± 0.006	0.176	2362
	-3.400 ± 0.012	16.678 ± 0.006	0.176	2362
W_I	-3.474 ± 0.010	16.499 ± 0.005	0.149	2532
W_{JK}	-3.484 ± 0.013	16.491 ± 0.006	0.177	2342

Tablica 2.3: Zależności okres-jasność dla cefeid klasycznych w modzie podstawowym w Małym Obłoku Magellana.

Przy porównaniu wyprowadzonych zależności w Wielkim i Małym Obłoku Magellana widoczne są dosyć spore różnice pomiędzy współczynnikami. Przyczyną tych różnic może być obecność załamania w zależnościach okres-jasność dla cefeid z Małego Obłoku Magellana w okolicy logarytmu okresu pulsacji wynoszącego 0,4 (EROS Collaboration et al., 1999). W celu sprawdzenia słuszności tej hipotezy, dane z tej galaktyki podzielono na te o logarytmach okresu mniejszych i większych niż 0,4 oraz dopasowano do nich zależności okres-jasność. Wyniki przedstawione są w tabelach 2.4 i 2.5.

Filtr	α	β	σ	N
		SMC		
V	-3.033 ± 0.066	18.038 ± 0.015	0.260	1615
	-3.096 ± 0.064	17.831 ± 0.014	0.252	1612
Ι	-3.257 ± 0.053	17.451 ± 0.012	0.210	1621
	-3.297 ± 0.053	17.331 ± 0.012	0.207	1621
J	-3.437 ± 0.051	17.066 ± 0.012	0.190	1472
	-3.463 ± 0.051	17.009 ± 0.012	0.188	1470
H	-3.530 ± 0.047	16.802 ± 0.011	0.175	1467
	-3.542 ± 0.047	16.765 ± 0.011	0.175	1468
K	-3.571 ± 0.048	16.754 ± 0.011	0.176	1457
	-3.561 ± 0.048	16.725 ± 0.011	0.176	1457
W_I	-3.606 ± 0.038	16.535 ± 0.009	0.147	1591
W_{JK}	-3.670 ± 0.051	16.542 ± 0.012	0.189	1452

Tablica 2.4: Zależności okres-jasność dla cefeid klasycznych pulsujących w modzie podstawowym o logarytmie okresu pulsacji mniejszym od 0,4 w Małym Obłoku Magellana.

Tabele 2.6 oraz 2.7 zawierają wspólczynniki zależności okres-jasność dla cefeid klasycznych w pierwszym owertonie. Wszystkie zależności mają charakter liniowy.

Filtr	α	β	σ	N
		SMC		
V	-2.645 ± 0.036	17.792 ± 0.026	0.281	949
	-2.661 ± 0.035	17.584 ± 0.026	0.275	951
Ι	-2.937 ± 0.027	17.258 ± 0.020	0.222	959
	-2.945 ± 0.026	17.135 ± 0.019	0.218	959
J	-3.096 ± 0.023	16.868 ± 0.017	0.185	905
	-3.097 ± 0.023	16.806 ± 0.017	0.183	904
H	-3.187 ± 0.021	16.608 ± 0.015	0.166	902
	-3.189 ± 0.021	16.570 ± 0.015	0.165	902
K	-3.205 ± 0.021	16.548 ± 0.015	0.161	898
	-3.206 ± 0.021	16.523 ± 0.015	0.160	898
W_I	-3.331 ± 0.019	16.386 ± 0.014	0.146	941
W_{JK}	-3.307 ± 0.020	16.350 ± 0.015	0.150	891

Tablica 2.5: Zależności okres-jasność dla cefeid klasycznych pulsujących w modzie podstawowym o logarytmie okresu pulsacji większym od 0,4 w Małym Obłoku Magellana.

Filtr	α	β	σ	N		
	LMC					
V	-3.196 ± 0.026	17.051 ± 0.009	0.237	1194		
	-3.211 ± 0.021	16.611 ± 0.008	0.198	1188		
	-3.209 ± 0.022	16.612 ± 0.008	0.199	1188		
Ι	-3.285 ± 0.017	16.404 ± 0.006	0.162	1200		
	-3.296 ± 0.016	16.152 ± 0.006	0.144	1201		
	-3.290 ± 0.016	16.151 ± 0.006	0.147	1202		
J	-3.391 ± 0.015	15.956 ± 0.005	0.126	1140		
	-3.395 ± 0.014	15.834 ± 0.005	0.120	1140		
	-3.391 ± 0.014	15.834 ± 0.005	0.123	1140		
H	-3.444 ± 0.012	15.703 ± 0.004	0.100	1128		
	-3.444 ± 0.012	15.624 ± 0.004	0.097	1130		
	-3.436 ± 0.012	15.623 ± 0.004	0.102	1131		
K	-3.434 ± 0.013	15.627 ± 0.004	0.097	1115		
	-3.433 ± 0.012	15.574 ± 0.004	0.096	1114		
	-3.426 ± 0.013	15.574 ± 0.005	0.101	1116		
W_I	-3.451 ± 0.009	15.399 ± 0.003	0.081	1186		
	-3.446 ± 0.010	15.398 ± 0.004	0.088	1190		
W_{JK}	-3.463 ± 0.014	15.398 ± 0.005	0.104	1112		
	-3.462 ± 0.014	15.400 ± 0.005	0.109	1113		

Tablica 2.6: Zależności okres-jasność dla cefeid klasycznych w pierwszym owertonie dla Wielkiego Obłoku Magellana.

Filtr	α	eta	σ	N
		SMC		
V	-3.174 ± 0.034	17.373 ± 0.008	0.282	1606
	-3.176 ± 0.033	17.153 ± 0.008	0.277	1606
Ι	-3.353 ± 0.027	16.828 ± 0.007	0.231	1623
	-3.348 ± 0.027	16.701 ± 0.007	0.228	1624
J	-3.458 ± 0.025	16.460 ± 0.006	0.204	1507
	-3.457 ± 0.025	16.399 ± 0.006	0.203	1508
H	-3.548 ± 0.023	16.225 ± 0.006	0.185	1504
	-3.547 ± 0.023	16.185 ± 0.006	0.185	1504
K	-3.565 ± 0.024	16.173 ± 0.006	0.185	1487
	-3.565 ± 0.024	16.147 ± 0.006	0.185	1487
W_I	-3.625 ± 0.020	15.971 ± 0.005	0.163	1600
W_{JK}	-3.624 ± 0.024	15.974 ± 0.006	0.182	1470

Tablica 2.7: Zależności okres-jasność dla cefeid klasycznych w pierwszym owertonie dla Małego Obłoku Magellana.

2.4.2. Cefeidy anomalne

Cefeidy anomalne są znacznie mniej liczne niż cefeidy klasyczne. W Małym Obłoku Magellana są one praktycznie nieobserwowane dlatego zależność okres-jasność dla tych gwiazd wyprowadzono tylko dla Wielkiego Obłoku Magellana. W tabelach 2.8 oraz 2.9 przedstawione są współczynniki zależności odpowiednio dla cefeid anomalnych w modzie podstawowym i cefeid anomalnych w pierwszym owertonie. Podobnie jak w przypadku cefeid klasycznych wszystkie zależności mają charakter liniowy.

Filtr	α	β	σ	N
]	LMC		
V	-2.944 ± 0.236	18.149 ± 0.035	0.256	61
	-2.852 ± 0.209	17.718 ± 0.031	0.227	61
	-2.838 ± 0.215	17.716 ± 0.032	0.233	61
Ι	-3.006 ± 0.181	17.543 ± 0.027	0.196	61
	-2.953 ± 0.168	17.294 ± 0.025	0.182	61
	-2.940 ± 0.174	17.292 ± 0.026	0.189	61
J	-3.320 ± 0.200	17.149 ± 0.030	0.195	47
	-3.286 ± 0.197	17.026 ± 0.030	0.192	47
	-3.276 ± 0.197	17.027 ± 0.030	0.192	47
H	-3.118 ± 0.192	16.886 ± 0.030	0.197	50
	-3.097 ± 0.191	16.808 ± 0.029	0.196	50
	-3.085 ± 0.193	16.811 ± 0.030	0.198	50
K	-2.923 ± 0.190	16.781 ± 0.030	0.184	45
	-2.905 ± 0.191	16.729 ± 0.030	0.185	45
	-2.891 ± 0.194	16.731 ± 0.031	0.188	45
W_I	-3.093 ± 0.142	16.602 ± 0.021	0.156	62
	-3.076 ± 0.149	16.599 ± 0.022	0.163	62
W_{JK}	-2.889 ± 0.231	16.534 ± 0.035	0.214	44
	-2.880 ± 0.234	16.535 ± 0.036	0.217	44

Tablica 2.8: Zależności okres-jasność dla cefeid anomalnych w modzie podstawowym.

Filtr	α	β	σ	N			
	LMC						
V	-2.991 ± 0.376	17.437 ± 0.088	0.226	21			
	-3.037 ± 0.378	17.018 ± 0.088	0.227	21			
	-3.063 ± 0.383	17.016 ± 0.090	0.230	21			
Ι	-3.044 ± 0.247	16.911 ± 0.0578	0.148	21			
	-3.070 ± 0.251	16.670 ± 0.059	0.151	21			
	-3.096 ± 0.255	16.667 ± 0.060	0.153	21			
J	-3.351 ± 0.323	16.497 ± 0.079	0.183	18			
	-3.365 ± 0.327	16.379 ± 0.079	0.185	18			
	-3.389 ± 0.329	16.381 ± 0.080	0.186	18			
Н	-3.525 ± 0.340	16.245 ± 0.083	0.193	18			
	-3.534 ± 0.342	16.169 ± 0.083	0.194	18			
	-3.558 ± 0.341	16.171 ± 0.083	0.193	18			
K	-2.898 ± 0.500	16.255 ± 0.106	0.238	15			
	-2.913 ± 0.501	16.204 ± 0.106	0.238	15			
	-2.929 ± 0.508	16.207 ± 0.107	0.241	15			
W_I	-3.126 ± 0.328	16.097 ± 0.077	0.197	21			
	-3.151 ± 0.325	16.094 ± 0.076	0.195	21			
W_{JK}	-2.758 ± 0.620	16.075 ± 0.131	0.294	15			
	-2.774 ± 0.627	16.078 ± 0.132	0.298	15			

Tablica 2.9: Zależności okres-jasność dla cefeid anomalnych w pierwszym owertonie.

2.4.3. Cefeidy II typu

Zależności okres-jasność dla cefeid II typu (BL Her, RV Tau, W Vir) przedstawione są w tabelach 2.10, 2.11, 2.12, 2.13, 2.14, 2.15. Jak widać na rysunkach 2.3-2.9 w każdym filtrze trzy zależności dla cefeid II typu łączą się, zatem można dopasować wspólne zależności okres jasność dla tych trzech typów gwiazd. Tabele 2.16, 2.17 przedstawiają zależności wspólne dla gwiazd BL Her i W Vir, natomiast tabele 2.18 oraz 2.19 dla RV Tau i W Vir.

Filtr	α	β	σ	N			
	LMC						
V	-1.685 ± 0.263	18.739 ± 0.071	0.304	61			
	-1.816 ± 0.262	18.340 ± 0.071	0.304	62			
	-1.811 ± 0.261	18.337 ± 0.070	0.303	62			
Ι	-1.997 ± 0.168	18.179 ± 0.046	0.194	61			
	-1.967 ± 0.142	17.928 ± 0.038	0.163	60			
	-1.964 ± 0.143	17.926 ± 0.039	0.165	60			
J	-1.986 ± 0.316	17.689 ± 0.085	0.360	59			
	-1.933 ± 0.294	17.534 ± 0.079	0.334	58			
	-1.936 ± 0.296	17.532 ± 0.080	0.337	58			
H	-2.036 ± 0.313	17.431 ± 0.084	0.356	57			
	-2.039 ± 0.313	17.352 ± 0.084	0.356	57			
	-2.040 ± 0.315	17.351 ± 0.084	0.358	57			
K	-1.708 ± 0.313	17.211 ± 0.089	0.328	50			
	-1.715 ± 0.313	17.161 ± 0.090	0.329	50			
	-1.718 ± 0.316	17.159 ± 0.090	0.332	50			
W_I	-2.610 ± 0.119	17.378 ± 0.032	0.135	60			
	-2.607 ± 0.125	17.376 ± 0.034	0.142	60			
W_{JK}	-1.715 ± 0.349	16.961 ± 0.100	0.367	50			
	-1.717 ± 0.352	16.959 ± 0.101	0.370	50			

Tablica 2.10: Zależności okres-jasność dla gwiazd typu BL Her w Wielkim Obłoku Magellana.

Filtr	α	eta	σ	N	
SMC					
V	-2.655 ± 0.875	19.219 ± 0.244	0.464	17	
	-2.700 ± 0.896	19.006 ± 0.250	0.476	17	
I	-2.566 ± 0.692	18.567 ± 0.193	0.367	17	
	-2.592 ± 0.706	18.445 ± 0.197	0.375	17	
J	-2.676 ± 0.775	18.198 ± 0.224	0.403	15	
	-2.683 ± 0.781	18.136 ± 0.226	0.407	15	
H	-2.896 ± 0.700	17.951 ± 0.202	0.364	15	
	-2.901 ± 0.706	17.912 ± 0.204	0.367	15	
K	-2.232 ± 0.636	17.599 ± 0.194	0.307	13	
	-2.232 ± 0.638	17.572 ± 0.195	0.307	13	
W_I	-2.429 ± 0.480	17.558 ± 0.134	0.255	17	
W_{JK}	-2.232 ± 0.675	17.323 ± 0.206	0.325	13	

Tablica 2.11: Zależności okres-jasność dla gwiazd typu BL Her w Małym Obłoku Magellana.

Filtr	α	β	σ	N	
LMC					
V	-3.120 ± 0.734	20.341 ± 1.157	0.561	42	
	-3.094 ± 0.739	19.876 ± 1.165	0.565	42	
	-3.079 ± 0.749	19.853 ± 1.180	0.572	42	
Ι	-3.266 ± 0.504	19.685 ± 0.794	0.385	42	
	-3.251 ± 0.509	19.417 ± 0.802	0.387	42	
	-3.235 ± 0.520	19.394 ± 0.819	0.397	42	
J	-3.336 ± 0.383	19.190 ± 0.604	0.292	40	
	-3.328 ± 0.389	19.059 ± 0.614	0.297	40	
	-3.313 ± 0.401	19.036 ± 0.631	0.306	40	
H	-3.249 ± 0.384	18.674 ± 0.605	0.293	40	
	-3.244 ± 0.388	18.590 ± 0.611	0.296	40	
	-3.230 ± 0.398	18.568 ± 0.628	0.304	40	
K	-3.347 ± 0.527	18.630 ± 0.831	0.402	40	
	-3.344 ± 0.529	18.575 ± 0.834	0.404	40	
	-3.329 ± 0.539	18.552 ± 0.850	0.411	40	
W_I	-3.492 ± 0.359	18.669 ± 0.566	0.275	42	
	-3.476 ± 0.368	18.646 ± 0.580	0.281	42	
W_{JK}	-3.355 ± 0.676	18.246 ± 1.066	0.516	40	
	-3.340 ± 0.685	18.223 ± 1.080	0.523	40	

Tablica 2.12: Zależności okres-jasność dla gwiazd typu RV Tau w Wielkim Obłoku Magellana.

Filtr	α	eta	σ	N	
SMC					
V	-1.867 ± 2.529	18.397 ± 3.908	0.805	9	
	-1.686 ± 2.453	17.882 ± 3.790	0.781	9	
I	-1.670 ± 2.463	17.251 ± 3.807	0.784	9	
	-1.565 ± 2.410	16.954 ± 3.723	0.767	9	
J	-0.251 ± 2.960	14.413 ± 4.633	0.765	8	
	-0.125 ± 2.907	14.148 ± 4.550	0.751	8	
H	-0.015 ± 3.004	13.673 ± 4.702	0.776	8	
	0.066 ± 2.966	13.504 ± 4.642	0.766	8	
K	-0.439 ± 3.142	14.180 ± 4.918	0.812	8	
	-0.386 ± 3.116	14.069 ± 4.877	0.805	8	
W_I	-1.365 ± 2.536	15.475 ± 3.919	0.807	9	
W_{JK}	-0.568 ± 3.572	14.020 ± 5.591	0.923	8	

Tablica 2.13: Zależności okres-jasność dla gwiazd typu RV Tau w Małym Obłoku Magellana.

Filtr	α	β	σ	N
LMC				
V	-2.241 ± 0.203	19.506 ± 0.209	0.282	75
	-2.233 ± 0.173	19.054 ± 0.178	0.240	75
	-2.248 ± 0.174	19.067 ± 0.179	0.241	75
Ι	-2.404 ± 0.138	18.720 ± 0.142	0.192	76
	-2.392 ± 0.122	18.450 ± 0.126	0.170	76
	-2.404 ± 0.124	18.460 ± 0.127	0.172	76
J	-2.325 ± 0.169	17.968 ± 0.171	0.252	77
	-2.319 ± 0.167	17.838 ± 0.168	0.248	77
	-2.332 ± 0.166	17.849 ± 0.168	0.248	77
Н	-2.364 ± 0.140	17.618 ± 0.141	0.208	76
	-2.361 ± 0.139	17.536 ± 0.141	0.207	76
	-2.373 ± 0.139	17.546 ± 0.141	0.207	76
K	-2.452 ± 0.150	17.604 ± 0.152	0.224	76
	-2.450 ± 0.150	17.550 ± 0.152	0.224	76
	-2.462 ± 0.150	17.560 ± 0.152	0.224	76
W_I	-2.580 ± 0.063	17.421 ± 0.065	0.096	77
	-2.592 ± 0.066	17.432 ± 0.068	0.101	77
W_{JK}	-2.466 ± 0.146	17.287 ± 0.148	0.217	75
	-2.479 ± 0.147	17.297 ± 0.148	0.217	75

Tablica 2.14: Zależności okres-jasność dla gwiazd typu W Vir w Wielkim Obłoku Magellana.

Filtr	α	eta	σ	N	
SMC					
V	-2.522 ± 0.316	20.042 ± 0.336	0.192	10	
	-2.535 ± 0.277	19.863 ± 0.295	0.168	10	
I	-2.713 ± 0.201	19.370 ± 0.214	0.122	10	
	-2.720 ± 0.182	19.267 ± 0.193	0.110	10	
J	-3.078 ± 0.459	19.076 ± 0.496	0.270	9	
	-3.083 ± 0.455	19.028 ± 0.491	0.268	9	
H	-3.059 ± 0.445	18.702 ± 0.481	0.262	9	
	-3.062 ± 0.443	18.672 ± 0.479	0.261	9	
K	-3.269 ± 0.517	18.855 ± 0.559	0.305	9	
	-3.271 ± 0.516	18.835 ± 0.557	0.304	9	
W_I	-3.009 ± 0.158	18.329 ± 0.168	0.096	10	
W_{JK}	-3.400 ± 0.580	18.704 ± 0.627	0.342	9	

Tablica 2.15: Zależności okres-jasność dla gwiazd typu W Vir w Małym Obłoku Magellana.

Filtr	α	β	σ	N	
LMC					
V	-1.519 ± 0.061	18.725 ± 0.048	0.304	136	
	-1.536 ± 0.060	18.308 ± 0.047	0.295	138	
	-1.536 ± 0.060	18.306 ± 0.047	0.295	138	
Ι	-1.891 ± 0.043	18.175 ± 0.034	0.210	138	
	-1.908 ± 0.036	17.930 ± 0.029	0.177	136	
	-1.923 ± 0.038	17.943 ± 0.030	0.186	137	
J	-2.086 ± 0.058	17.722 ± 0.046	0.279	134	
	-2.099 ± 0.056	17.611 ± 0.044	0.268	133	
	-2.098 ± 0.056	17.610 ± 0.044	0.269	133	
H	-2.261 ± 0.056	17.509 ± 0.044	0.267	132	
	-2.241 ± 0.058	17.410 ± 0.045	0.276	133	
	-2.243 ± 0.058	17.409 ± 0.045	0.277	133	
K	-2.184 ± 0.062	17.327 ± 0.050	0.281	127	
	-2.200 ± 0.060	17.293 ± 0.049	0.272	126	
	-2.201 ± 0.061	17.293 ± 0.049	0.273	126	
W_I	-2.537 ± 0.022	17.374 ± 0.017	0.106	136	
	-2.538 ± 0.023	17.374 ± 0.018	0.111	136	
W_{JK}	-2.293 ± 0.068	17.097 ± 0.055	0.306	127	
	-2.294 ± 0.068	17.096 ± 0.055	0.307	127	

Tablica 2.16: Zależności okres-jasność dla gwiazd typu BL Her i W Vir w Wielkim Obłoku Magellana.
Filtr	α	β	σ	N		
SMC						
V	-1.622 ± 0.196	19.016 ± 0.134	0.419	27		
	-1.593 ± 0.200	18.789 ± 0.137	0.427	27		
Ι	-1.900 ± 0.153	18.442 ± 0.105	0.327	27		
	-1.873 ± 0.156	18.311 ± 0.107	0.333	27		
J	-2.241 ± 0.184	18.126 ± 0.129	0.376	24		
	-2.231 ± 0.186	18.061 ± 0.130	0.379	24		
H	-2.306 ± 0.171	17.841 ± 0.120	0.349	24		
	-2.300 ± 0.172	17.799 ± 0.120	0.351	24		
K	-2.169 ± 0.175	17.626 ± 0.128	0.339	22		
	-2.164 ± 0.175	17.598 ± 0.128	0.340	22		
W_I	-2.305 ± 0.107	17.552 ± 0.073	0.229	27		
W_{JK}	-2.198 ± 0.190	17.362 ± 0.139	0.368	22		

Tablica 2.17: Zależności okres-jasność dla gwiazd typu BL Her i W Vir w Małym Obłoku Magellana.

Filtr	α	β	γ	σ	N		
	LMC						
V	-1.198 ± 0.071	0.054 ± 0.090	18.407 ± 0.123	0.395	117		
	-1.192 ± 0.065	0.020 ± 0.050	17.989 ± 0.113	0.361	116		
	-1.162 ± 0.066	-0.052 ± 0.092	18.030 ± 0.114	0.366	116		
Ι	-1.248 ± 0.052	0.235 ± 0.073	17.328 ± 0.090	0.288	119		
	-1.220 ± 0.051	0.182 ± 0.071	17.096 ± 0.087	0.280	119		
	-1.192 ± 0.052	0.114 ± 0.072	17.134 ± 0.089	0.284	119		
J	-0.857 ± 0.049	-0.752 ± 0.068	17.270 ± 0.084	0.269	117		
	-0.855 ± 0.049	-0.748 ± 0.068	17.139 ± 0.084	0.269	117		
	-0.832 ± 0.050	-0.801 ± 0.069	17.168 ± 0.085	0.272	117		
H	-0.748 ± 0.046	-0.995 ± 0.064	17.003 ± 0.079	0.252	117		
	-0.747 ± 0.046	-0.992 ± 0.064	16.919 ± 0.079	0.253	117		
	-0.724 ± 0.047	-1.046 ± 0.065	16.948 ± 0.080	0.256	117		
K	-0.614 ± 0.051	-1.383 ± 0.071	17.146 ± 0.086	0.277	115		
	-0.612 ± 0.051	-1.383 ± 0.071	17.092 ± 0.087	0.277	115		
	-0.587 ± 0.052	-1.443 ± 0.071	17.124 ± 0.087	0.280	115		
W_I	-0.839 ± 0.026	-0.897 ± 0.035	16.599 ± 0.043	0.139	116		
	-0.817 ± 0.027	-0.949 ± 0.037	16.628 ± 0.045	0.143	116		
W_{JK}	-0.373 ± 0.056	-1.972 ± 0.076	17.138 ± 0.093	0.297	114		
	-0.372 ± 0.054	-1.943 ± 0.073	17.111 ± 0.089	0.286	113		

Tablica 2.18: Zależności okres-jasność dla gwiazd typu RV Tau i W Vir w Wielkim Obłoku Magellana.

Filtr	α	β	γ	σ	N			
	SMC							
V	-0.764 ± 0.085	-1.539 ± 0.122	19.802 ± 0.160	0.550	19			
	-0.737 ± 0.084	-1.656 ± 0.119	19.694 ± 0.157	0.540	19			
Ι	-0.422 ± 0.081	-2.358 ± 0.116	19.403 ± 0.152	0.524	19			
	-0.407 ± 0.080	-2.426 ± 0.114	19.341 ± 0.150	0.517	19			
J	0.342 ± 0.081	-4.143 ± 0.117	19.736 ± 0.155	0.541	17			
	0.354 ± 0.081	-4.188 ± 0.116	19.714 ± 0.154	0.538	17			
H	0.423 ± 0.083	-4.349 ± 0.119	19.498 ± 0.158	0.551	17			
	0.431 ± 0.082	-4.378 ± 0.118	19.484 ± 0.158	0.549	17			
K	0.511 ± 0.086	-4.750 ± 0.124	19.753 ± 0.165	0.575	17			
	0.515 ± 0.086	-4.769 ± 0.124	19.744 ± 0.164	0.572	17			
W_I	0.107 ± 0.082	-3.627 ± 0.117	18.785 ± 0.154	0.529	19			
W_{JK}	0.626 ± 0.096	-5.167 ± 0.138	19.765 ± 0.184	0.642	17			

Tablica 2.19: Zależności okres-jasność dla gwiazd typu RV Tau i W Vir w Małym Obłoku Magellana.

2.4.4. OSARG

Gwiazdy typu OSARG dzielą się ze względu na położnie na diagramie Hertzsprunga-Russela na położone na gałęzi asyptotycznej (ang. Asymptotic Giant Branch, w skrócie AGB), oraz na należące do gałęzi czerwonych olbrzymów (ang. Red Giant Branch, czyli RGB). Są to gwiazdy pulsujące z nieregularnymi okresami, jednak dla każdej gwiazdy obserwowane są dwa główne okresy pulsacji, dla których istnieją zależności okres jasność, zatem dla OSARG-ów AGB i RGB wyróżniamy po dwie sekwencje: sekwencję A i B (Soszyński et al., 2009). Ze względu na trudności przy oddzieleniu OSARG-ów AGB i RGB w Małym Obłoku Magellana, zależności wyprowadzone zostały tylko dla danych z Wielkiego Obłoku Magellana. Dopasowane do OSARG-ów AGB zależności dla sekwencji A umieszczone są w tabeli 2.20, dla sekwencji B 2.21, dla RGB sekwencji A 2.22, a dla sekwencji B w tabeli 2.23. W tabelach znajdują się współczynniki zarówno zależności liniowych jak i kwadratowych. Gdy zależność jest liniowa, za wartość γ wstawiono 0.

Filtr	α	β	γ	σ	N
LMC					
V	-1.564 ± 0.017	18.843 ± 0.023	0	0.251	8444
	-1.594 ± 0.016	18.459 ± 0.022	0	0.244	8465
	-1.591 ± 0.016	18.457 ± 0.022	0	0.245	8467
Ι	2.846 ± 0.011	18.692 ± 0.016	0	0.174	8465
	-2.861 ± 0.011	18.468 ± 0.015	0	0.169	8483
	-2.862 ± 0.011	18.472 ± 0.016	0	0.171	8489
J	-3.471 ± 0.009	18.247 ± 0.013	0	0.142	8534
	-3.478 ± 0.009	18.139 ± 0.013	0	0.139	8535
	-3.478 ± 0.009	18.139 ± 0.013	0	0.141	8539
H	-3.613 ± 0.009	17.623 ± 0.012	0	0.130	8529
	-3.618 ± 0.008	17.553 ± 0.012	0	0.128	8525
	-3.615 ± 0.009	17.550 ± 0.012	0	0.131	8539
K	-3.788 ± 0.008	17.624 ± 0.011	0	0.125	8552
	-3.792 ± 0.008	17.579 ± 0.011	0	0.124	8550
	-3.790 ± 0.008	17.579 ± 0.012	0	0.127	8557
W_I	-1.536 ± 0.022	-0.632 ± 0.031	15.617 ± 0.043	0.136	8468
	-1.546 ± 0.022	-0.603 ± 0.031	15.598 ± 0.044	0.137	8474
W_{JK}	-4.010 ± 0.008	17.201 ± 0.011	0	0.121	8548
	-4.011 ± 0.008	17.202 ± 0.011	0	0.125	8557

Tablica 2.20: Zależności okres-jasność dla OSARG-ów AGB sekwencja A.

Filtr	α	β	γ	σ	N
LMC					
V	-1.531 ± 0.017	19.012 ± 0.025	0	0.255	8450
	-1.562 ± 0.016	18.634 ± 0.025	0	0.247	8467
	-1.558 ± 0.016	18.629 ± 0.025	0	0.248	8469
I	-2.794 ± 0.012	19.013 ± 0.018	0	0.183	8485
	-2.807 ± 0.012	18.787 ± 0.018	0	0.178	8502
	-2.806 ± 0.012	18.787 ± 0.018	0	0.180	8510
J	-3.394 ± 0.010	18.617 ± 0.015	0	0.156	8566
	-3.401 ± 0.010	18.507 ± 0.015	0	0.154	8578
	-3.402 ± 0.010	18.511 ± 0.015	0	0.156	8584
H	-3.538 ± 0.009	18.015 ± 0.014	0	0.146	8582
	-3.543 ± 0.009	17.945 ± 0.014	0	0.145	8576
	-3.542 ± 0.009	17.945 ± 0.014	0	0.147	8583
K	-3.704 ± 0.009	18.025 ± 0.014	0	0.144	8605
	-3.708 ± 0.009	17.981 ± 0.014	0	0.143	8604
	-3.710 ± 0.009	17.986 ± 0.014	0	0.146	8613
W_I	-1.283 ± 0.021	-0.883 ± 0.033	16.118 ± 0.050	0.158	8504
	-1.278 ± 0.021	-0.898 ± 0.033	16.130 ± 0.050	0.159	8508
W_{JK}	-3.920 ± 0.009	17.623 ± 0.014	0	0.143	8614
	-3.922 ± 0.009	17.627 ± 0.014	0	0.146	8618

Tablica 2.21: Zależności okres-jasność dla OSARG-ów AGB sekwencja B.

Filtr	α	β	γ	σ	N
LMC					
V	-0.874 ± 0.022	18.027 ± 0.029	0	0.236	9680
	-0.875 ± 0.021	17.593 ± 0.027	0	0.220	9688
	-0.869 ± 0.021	17.588 ± 0.027	0	0.220	9687
Ι	-2.210 ± 0.015	17.995 ± 0.020	0	0.163	9721
	-2.205 ± 0.014	17.738 ± 0.019	0	0.154	9726
	-2.206 ± 0.015	17.742 ± 0.019	0	0.155	9731
J	-2.899 ± 0.012	17.650 ± 0.015	0	0.125	9815
	-2.900 ± 0.011	17.530 ± 0.015	0	0.122	9817
	-2.896 ± 0.012	17.528 ± 0.015	0	0.124	9840
H	-3.194 ± 0.010	17.229 ± 0.014	0	0.113	9852
	-3.197 ± 0.010	17.156 ± 0.014	0	0.112	9863
	-3.193 ± 0.011	17.153 ± 0.014	0	0.114	9875
K	-3.407 ± 0.010	17.288 ± 0.013	0	0.110	9890
	-3.407 ± 0.010	17.238 ± 0.013	0	0.109	9878
	-3.406 ± 0.010	17.239 ± 0.014	0	0.112	9895
W_I	-2.384 ± 0.026	1.794 ± 0.034	14.104 ± 0.044	0.140	9888
	-2.391 ± 0.026	1.813 ± 0.034	14.095 ± 0.045	0.142	9891
W_{JK}	-3.759 ± 0.011	17.041 ± 0.014	0	0.115	9913
	-3.759 ± 0.011	17.043 ± 0.014	0	0.119	9924

Tablica 2.22: Zależności okres-jasność dla OSARG-ów RGB sekwencja A.

Filtr	α	β	γ	σ	N
LMC					
V	-0.843 ± 0.022	18.107 ± 0.032	0	0.237	9679
	-0.837 ± 0.020	17.664 ± 0.029	0	0.220	9684
	-0.836 ± 0.020	17.666 ± 0.030	0	0.221	9688
Ι	-2.147 ± 0.015	18.225 ± 0.022	0	0.167	9725
	-2.137 ± 0.015	17.959 ± 0.021	0	0.159	9737
	-2.138 ± 0.015	17.963 ± 0.021	0	0.161	9752
J	-2.813 ± 0.012	17.946 ± 0.018	0	0.134	9854
	-2.811 ± 0.012	17.822 ± 0.017	0	0.131	9850
	-2.811 ± 0.012	17.823 ± 0.018	0	0.133	9855
H	-3.096 ± 0.011	17.551 ± 0.017	0	0.125	9901
	-3.095 ± 0.011	17.472 ± 0.016	0	0.124	9912
	-3.095 ± 0.011	17.473 ± 0.017	0	0.126	9910
K	-3.302 ± 0.011	17.630 ± 0.016	0	0.124	9937
	-3.302 ± 0.011	17.580 ± 0.016	0	0.124	9939
	-3.301 ± 0.011	17.581 ± 0.017	0	0.126	9937
W_I	-1.893 ± 0.024	1.225 ± 0.035	14.587 ± 0.040	0.158	9930
	-1.897 ± 0.024	1.240 ± 0.035	14.576 ± 0.050	0.158	9927
W_{JK}	-3.642 ± 0.012	17.416 ± 0.017	0	0.132	9969
	-3.642 ± 0.012	17.419 ± 0.018	0	0.134	9971

Tablica 2.23: Zależności okres-jasność dla OSARG-ów RGB sekwencja B.

2.4.5. Miry

Wśród mir wyróżnia się dwie grupy: miry o atmosferze bogatej w węgiel, oraz miry o atmosferze bogatej w tlen (Soszyński et al., 2009). W przypadku mir węglowych większość zależności oceniono na kwadratowe, podczas gdy dla tlenowych prawie wszystkie zależności mają charakter liniowy. Wyniki dla tych gwiazd przedstawiono w tabelach 2.24, 2.25, 2.26, 2.27.

Filtr	α	β	γ	σ	N		
LMC							
V	6.512 ± 0.057	-23.160 ± 0.147	35.281 ± 0.378	1.196	961		
	6.440 ± 0.057	-22.744 ± 0.146	34.252 ± 0.375	1.189	961		
	6.480 ± 0.057	-22.942 ± 0.147	34.497 ± 0.376	1.190	961		
Ι	19.194 ± 0.052	-89.155 ± 0.134	118.195 ± 0.346	1.095	1174		
	19.122 ± 0.051	-88.775 ± 0.133	117.438 ± 0.345	1.093	1174		
	19.911 ± 0.052	-92.882 ± 0.134	122.777 ± 0.347	1.097	1175		
J	12.875 ± 0.038	-60.822 ± 0.100	84.726 ± 0.258	0.818	1086		
	12.245 ± 0.039	-57.641 ± 0.100	80.590 ± 0.259	0.821	1087		
	12.841 ± 0.038	-60.635 ± 0.100	84.345 ± 0.259	0.818	1086		
Η	8.779 ± 0.030	-42.567 ± 0.079	63.456 ± 0.205	0.648	1084		
	8.655 ± 0.030	-41.944 ± 0.079	62.598 ± 0.206	0.650	1085		
	8.682 ± 0.031	-42.078 ± 0.080	62.764 ± 0.206	0.652	1085		
K	7.275 ± 0.018	-37.333 ± 0.048	58.849 ± 0.123	0.388	911		
	7.239 ± 0.018	-37.141 ± 0.048	58.545 ± 0.123	0.388	911		
	7.261 ± 0.018	-37.249 ± 0.048	58.682 ± 0.123	0.390	911		
W_I	14.962 ± 0.045	-75.725 ± 0.115	106.679 ± 0.294	0.932	946		
	14.994 ± 0.045	-75.881 ± 0.115	106.870 ± 0.295	0.934	946		
W_{JK}	-3.902 ± 0.086	19.245 ± 0.221	0	0.310	905		
	-3.900 ± 0.086	19.243 ± 0.222	0	0.312	905		

Tablica 2.24: Zależności okres-jasność dla gwiazd typu Mira Ceti węglowych w Wielkim Obłoku Magellana.

Filtr	α	β	γ	σ	N
		SMC			
V	-0.824 ± 0.054	12.340 ± 0.138	-6.721 ± 0.352	1.119	260
	-0.813 ± 0.054	12.221 ± 0.139	-6.701 ± 0.352	1.122	260
Ι	2.920 ± 0.045	-8.333 ± 0.116	18.738 ± 0.299	0.949	304
	2.952 ± 0.045	-8.528 ± 0.117	18.901 ± 0.299	0.951	304
J	7.384 ± 0.031	-34.719 ± 0.081	54.503 ± 0.208	0.660	260
	7.426 ± 0.032	-34.953 ± 0.081	54.762 ± 0.208	0.661	260
Н	7.023 ± 0.027	-35.026 ± 0.069	56.165 ± 0.176	0.558	262
	7.057 ± 0.027	-35.214 ± 0.069	56.382 ± 0.176	0.560	262
K	5.082 ± 0.018	-27.107 ± 0.045	47.409 ± 0.115	0.366	255
	5.099 ± 0.018	-27.205 ± 0.045	47.519 ± 0.115	0.367	255
W_I	17.637 ± 0.040	-88.868 ± 0.102	123.315 ± 0.259	0.823	259
W_{JK}	-3.727 ± 0.188	19.064 ± 0.483	0	0.353	256

Tablica 2.25: Zależności okres-jasność dla gwiazd typu Mira Ceti węglowych w Małym Obłoku Magellana.

Filtr	α	β	γ	σ	N	
	LMC					
V	0.886 ± 0.164	14.996 ± 0.390	0	0.657	446	
	0.922 ± 0.169	14.490 ± 0.400	0	0.675	449	
	0.918 ± 0.168	14.504 ± 0.400	0	0.674	449	
I	-1.491 ± 0.095	17.897 ± 0.227	0	0.402	458	
	-1.502 ± 0.093	17.668 ± 0.222	0	0.393	457	
	-1.504 ± 0.093	17.677 ± 0.222	0	0.393	457	
J	-4.140 ± 0.096	22.103 ± 0.227	0	0.374	412	
	-4.120 ± 0.095	21.938 ± 0.225	0	0.369	411	
	-4.120 ± 0.095	21.941 ± 0.226	0	0.372	411	
H	-3.888 ± 0.069	20.829 ± 0.161	0	0.218	385	
	-3.878 ± 0.067	20.730 ± 0.158	0	0.214	384	
	-3.878 ± 0.068	20.734 ± 0.160	0	0.216	384	
K	-3.830 ± 0.068	20.355 ± 0.158	0	0.167	353	
	-3.831 ± 0.068	20.308 ± 0.157	0	0.166	353	
	-3.829 ± 0.069	20.306 ± 0.160	0	0.169	353	
W_I	-2.511 ± 0.020	6.432 ± 0.048	9.017 ± 0.115	0.363	438	
	-2.531 ± 0.021	6.548 ± 0.049	8.863 ± 0.116	0.369	439	
W_{JK}	-3.854 ± 0.083	19.687 ± 0.193	0	0.213	355	
	-3.852 ± 0.083	19.686 ± 0.194	0	0.214	355	

Tablica 2.26: Zależności okres-jasność dla gwiazd typu Mira Ceti tlenowych w Wielkim Obłoku Magellana.

Filtr	α	β	γ	σ	N
		SMC			
V	-1.378 ± 0.643	19.901 ± 1.674	0	0.812	34
	-1.440 ± 0.630	19.841 ± 1.641	0	0.795	34
Ι	-2.526 ± 0.525	20.254 ± 1.375	0	0.693	36
	-2.563 ± 0.518	20.222 ± 1.358	0	0.684	36
J	-4.989 ± 0.348	24.497 ± 0.910	0	0.426	31
	-5.002 ± 0.345	4.468 ± 0.904	0	0.423	31
H	-4.405 ± 0.383	22.320 ± 0.998	0	0.461	29
	-4.412 ± 0.381	22.300 ± 0.993	0	0.458	29
K	-3.924 ± 0.408	20.911 ± 1.006	0	0.277	17
	-3.933 ± 0.407	20.906 ± 1.002	0	0.276	17
W_I	0.899 ± 0.023	-10.096 ± 0.061	29.625 ± 0.159	0.526	36
W_{JK}	-3.407 ± 0.540	18.971 ± 1.330	0	0.366	17

Tablica 2.27: Zależności okres-jasność dla gwiazd typu Mira Ceti tlenowych w Małym Obłoku Magellana.

2.4.6. Zmienne półregularne

Podobnie jak miry, gwiazdy zmienne półregularne dzielą się ze względu na obfitość w atmosferze węgla i tlenu. Oprócz tego, oba podtypy tych gwiazd dzielą się na dwie sekwencje C oraz C', które mogą są dobrze rozdzielone na wykresie $log(P) - W_{JK}$ (Soszyński et al., 2009). Współczynniki zależności okres-jasność dla tych gwiazd przedstawione są w tabelach 2.28, 2.29, 2.30, 2.31, 2.32, 2.33, 2.34, 2.35.

Filtr	α	β	γ	σ	N		
LMC							
V	3.045 ± 0.026	-13.101 ± 0.064	30.779 ± 0.158	0.499	1841		
	4.030 ± 0.025	-17.879 ± 0.062	36.122 ± 0.152	0.481	1836		
	3.958 ± 0.025	-17.541 ± 0.062	35.728 ± 0.153	0.484	1838		
I	-0.734 ± 0.061	16.041 ± 0.149	0	0.333	1841		
	-0.749 ± 0.060	15.827 ± 0.147	0	0.328	1842		
	-0.754 ± 0.060	15.841 ± 0.148	0	0.330	1843		
J	-1.646 ± 0.059	16.453 ± 0.144	0	0.316	1702		
	-1.646 ± 0.059	16.330 ± 0.144	0	0.315	1703		
	-1.648 ± 0.059	16.339 ± 0.145	0	0.316	1704		
H	-2.291 ± 0.054	16.986 ± 0.133	0	0.290	1690		
	-2.292 ± 0.054	16.911 ± 0.133	0	0.291	1692		
	-2.311 ± 0.054	16.963 ± 0.134	0	0.293	1693		
K	-2.795 ± 0.057	17.664 ± 0.138	0	0.244	1251		
	-2.792 ± 0.057	17.605 ± 0.139	0	0.245	1252		
	-2.799 ± 0.058	17.625 ± 0.139	0	0.246	1252		
W_I	-0.217 ± 0.020	-3.454 ± 0.049	19.730 ± 0.120	0.380	1871		
	-0.191 ± 0.020	-3.576 ± 0.049	9.876 ± 0.120	0.379	1869		
W_{JK}	-3.761 ± 0.059	18.889 ± 0.142	0	0.249	1235		
	-3.777 ± 0.059	18.932 ± 0.143	0	0.251	1235		

Tablica 2.28: Zależności okres-jasność dla gwiazd zmiennych półregularnych węglowych sekwencja C w Wielkim Obłoku Magellana.

Filtr	α	β	γ	σ	N
		SMC			
V	3.914 ± 0.027	-16.436 ± 0.065	33.924 ± 0.156	0.493	623
	3.987 ± 0.027	-16.786 ± 0.064	34.122 ± 0.154	0.487	622
Ι	-0.538 ± 0.102	15.812 ± 0.244	0	0.299	616
	-0.550 ± 0.102	15.719 ± 0.243	0	0.298	616
J	-1.462 ± 0.111	16.384 ± 0.266	0	0.302	540
	-1.464 ± 0.111	16.328 ± 0.266	0	0.302	540
H	-2.087 ± 0.096	16.922 ± 0.230	0	0.259	535
	-2.089 ± 0.096	16.887 ± 0.230	0	0.260	535
K	-2.867 ± 0.085	18.263 ± 0.203	0	0.221	523
	-2.868 ± 0.085	18.240 ± 0.203	0	0.221	523
W_I	0.146 ± 0.018	-5.157 ± 0.043	22.104 ± 0.103	0.328	634
W_{JK}	-4.013 ± 0.086	19.979 ± 0.207	0	0.221	518

Tablica 2.29: Zależności okres-jasność dla gwiazd zmiennych półregularnych węglowych sekwencja C w Małym Obłoku Magellana.

Filtr	α	β	γ	σ	N
		LMC			
V	3.103 ± 0.035	-12.243 ± 0.077	28.711 ± 0.167	0.528	2618
	3.166 ± 0.035	-12.492 ± 0.075	28.512 ± 0.163	0.515	2622
	3.077 ± 0.034	-12.098 ± 0.075	28.083 ± 0.163	0.515	2621
I	-1.347 ± 0.050	17.034 ± 0.109	0	0.341	2614
	-1.325 ± 0.049	16.733 ± 0.107	0	0.333	2616
	-1.314 ± 0.050	16.709 ± 0.108	0	0.335	2618
J	-2.150 ± 0.047	16.960 ± 0.101	0	0.309	2457
	-2.133 ± 0.046	16.797 ± 0.101	0	0.305	2456
	-2.130 ± 0.047	16.791 ± 0.101	0	0.306	2456
H	-2.674 ± 0.042	17.077 ± 0.090	0	0.269	2395
	-2.671 ± 0.041	16.992 ± 0.090	0	0.268	2396
	-2.669 ± 0.041	16.987 ± 0.090	0	0.268	2395
K	-3.044 ± 0.041	17.365 ± 0.087	0	0.220	1747
	-3.045 ± 0.041	17.314 ± 0.086	0	0.219	1747
	-3.045 ± 0.041	17.317 ± 0.088	0	0.223	1751
W_I	-1.698 ± 0.019	2.433 ± 0.041	12.682 ± 0.089	0.280	2623
	-1.715 ± 0.019	2.504 ± 0.041	12.609 ± 0.089	0.281	2622
W_{JK}	-3.847 ± 0.037	18.010 ± 0.078	0	0.197	1713
	-3.834 ± 0.038	17.985 ± 0.080	0	0.202	1717

Tablica 2.30: Zależności okres-jasność dla gwiazd zmiennych półregularnych węglowych sekwencja C' w Wielkim Obłoku Magellana.

Filtr	α	β	γ	σ	N
		SMC			
V	2.967 ± 0.038	-11.042 ± 0.082	26.953 ± 0.175	0.555	716
	2.912 ± 0.038	-10.829 ± 0.082	26.532 ± 0.175	0.556	717
I	-1.166 ± 0.106	16.879 ± 0.226	0	0.339	716
	-1.183 ± 0.106	16.788 ± 0.225	0	0.338	716
J	-2.145 ± 0.096	17.334 ± 0.205	0	0.289	642
	-2.145 ± 0.095	17.274 ± 0.204	0	0.288	641
H	-2.835 ± 0.084	17.851 ± 0.179	0	0.251	637
	-2.839 ± 0.084	17.821 ± 0.179	0	0.252	637
K	-3.521 ± 0.074	18.798 ± 0.157	0	0.212	616
	-3.514 ± 0.074	18.758 ± 0.157	0	0.211	615
W_I	-0.664 ± 0.021	-2.570 ± 0.044	18.970 ± 0.094	0.297	720
W_{JK}	-4.533 ± 0.066	19.941 ± 0.142	0	0.190	607

Tablica 2.31: Zależności okres-jasność dla gwiazd zmiennych półregularnych węglowych sekwencja C' w Małym Obłoku Magellana.

Filtr	α	β	γ	σ	N
		LMC			
V	3.449 ± 0.032	-13.057 ± 0.070	28.966 ± 0.149	0.470	2461
	3.383 ± 0.032	-12.784 ± 0.070	28.249 ± 0.148	0.469	2469
	3.375 ± 0.032	-12.752 ± 0.070	28.219 ± 0.148	0.469	2468
I	-1.442 ± 0.028	17.541 ± 0.059	0	0.250	2434
	-1.434 ± 0.028	17.277 ± 0.059	0	0.251	2447
	-1.441 ± 0.028	17.292 ± 0.059	0	0.251	2446
J	-2.743 ± 0.028	18.785 ± 0.060	0	0.245	2268
	-2.744 ± 0.028	18.664 ± 0.060	0	0.244	2271
	-2.743 ± 0.028	18.664 ± 0.060	0	0.244	2269
H	-2.963 ± 0.030	18.445 ± 0.065	0	0.266	2267
	-2.962 ± 0.030	18.365 ± 0.065	0	0.265	2267
	-2.966 ± 0.030	18.374 ± 0.065	0	0.265	2267
K	-3.207 ± 0.031	18.682 ± 0.066	0	0.267	2250
	-3.207 ± 0.031	18.629 ± 0.066	0	0.267	2250
	-3.210 ± 0.031	18.638 ± 0.066	0	0.268	2250
W_I	-3.341 ± 0.034	8.196 ± 0.074	8.498 ± 0.158	0.500	2494
	-3.349 ± 0.034	8.225 ± 0.074	8.471 ± 0.158	0.500	2494
W_{JK}	-3.561 ± 0.035	18.683 ± 0.074	0	0.301	2248
	-3.564 ± 0.035	18.692 ± 0.075	0	0.302	2248

Tablica 2.32: Zależności okres-jasność dla gwiazd zmiennych półregularnych tlenowych sekwencja C w Wielkim Obłoku Magellana.

Filtr	α	β	γ	σ	N
		SMC			
V	0.250 ± 0.027	-1.597 ± 0.056	18.968 ± 0.113	0.360	287
	0.172 ± 0.027	-1.318 ± 0.055	18.514 ± 0.112	0.355	287
Ι	-2.041 ± 0.098	18.958 ± 0.199	0	0.282	291
	-2.059 ± 0.097	18.871 ± 0.197	0	0.280	291
J	-2.643 ± 0.102	18.897 ± 0.208	0	0.276	250
	-2.650 ± 0.102	18.852 ± 0.208	0	0.276	250
H	-2.994 ± 0.110	18.839 ± 0.223	0	0.295	249
	-3.000 ± 0.110	18.813 ± 0.224	0	0.295	249
K	-3.180 ± 0.112	18.955 ± 0.228	0	0.300	250
	-3.184 ± 0.112	18.938 ± 0.228	0	0.300	250
W_I	-1.370 ± 0.025	0.949 ± 0.052	15.526 ± 0.106	0.335	292
W_{JK}	-3.516 ± 0.127	18.936 ± 0.260	0	0.340	249

Tablica 2.33: Zależności okres-jasność dla gwiazd zmiennych półregularnych tlenowych sekwencja C w Małym Obłoku Magellana.

Filtr	α	β	γ	σ	N
		LMC			
V	6.645 ± 0.035	-23.335 ± 0.068	37.317 ± 0.133	0.419	2909
	6.512 ± 0.035	-22.806 ± 0.068	36.364 ± 0.131	0.414	2911
	6.539 ± 0.035	-22.915 ± 0.068	36.473 ± 0.131	0.414	2911
I	-1.914 ± 0.031	18.104 ± 0.059	0	0.231	2909
	-1.902 ± 0.030	17.832 ± 0.058	0	0.226	2911
	-1.905 ± 0.030	17.840 ± 0.059	0	0.227	2913
J	-3.571 ± 0.023	19.635 ± 0.045	0	0.169	2697
	-3.563 ± 0.023	19.500 ± 0.045	0	0.168	2700
	-3.570 ± 0.023	19.517 ± 0.045	0	0.170	2702
H	-3.712 ± 0.022	19.053 ± 0.043	0	0.161	2690
	-3.704 ± 0.022	18.962 ± 0.043	0	0.160	2690
	-3.707 ± 0.022	18.970 ± 0.043	0	0.163	2693
K	-3.987 ± 0.022	19.282 ± 0.043	0	0.157	2648
	-3.981 ± 0.022	19.220 ± 0.042	0	0.156	2645
	-3.989 ± 0.022	19.238 ± 0.043	0	0.158	2647
W_I	-3.697 ± 0.029	6.389 ± 0.057	11.673 ± 0.111	0.350	2957
	-3.695 ± 0.029	6.377 ± 0.057	11.690 ± 0.111	0.351	2957
W_{JK}	-4.268 ± 0.022	19.025 ± 0.043	0	0.157	2629
	-4.266 ± 0.022	19.022 ± 0.043	0	0.159	2629

Tablica 2.34: Zależności okres-jasność dla gwiazd zmiennych półregularnych tlenowych sekwencja C' w Wielkim Obłoku Magellana.

Filtr	α	β	γ	σ	N
		SMC			
V	0.362 ± 0.027	-2.707 ± 0.052	20.527 ± 0.098	0.312	338
	0.259 ± 0.026	-2.398 ± 0.050	20.091 ± 0.095	0.300	337
Ι	-3.152 ± 0.099	20.544 ± 0.187	0	0.206	336
	-3.201 ± 0.097	20.510 ± 0.183	0	0.200	335
J	-4.087 ± 0.088	20.947 ± 0.166	0	0.168	278
	-4.098 ± 0.087	20.907 ± 0.166	0	0.168	278
H	-4.274 ± 0.084	20.477 ± 0.159	0	0.160	277
	-4.281 ± 0.084	20.452 ± 0.159	0	0.160	277
K	-4.253 ± 0.078	20.174 ± 0.147	0	0.133	270
	-4.255 ± 0.078	20.153 ± 0.147	0	0.133	270
W_I	-2.454 ± 0.016	3.276 ± 0.031	13.906 ± 0.059	0.186	339
W_{JK}	-4.579 ± 0.081	20.038 ± 0.152	0	0.139	27

Tablica 2.35: Zależności okres-jasność dla gwiazd zmiennych półregularnych tlenowych sekwencja C' w Małym Obłoku Magellana.

3. Wzajemna odległość Obłoków Magellana

Przyjmując zależności okres-jasność dla gwiazd z Wielkiego Obłoku Magellana za wzorcowe, można wyznaczyć różnice modułów odległości Małego i Wielkiego Obłoku Magellana. Metoda wyznaczania tej różnicy została przedstawiona w rozdziale 1.2. Do danych dla gwiazd z Małego Obłoku Magellana należało dopasować punkt zerowy zależności o nachyleniu identycznym jak w Wielkim Obłoku Magellana, wtedy różnica modułów odległości jest różnicą punktów zerowych zależności z Małego i Wielkiego Obłoku Magellana.

Wiele zależności z Wielkiego Obłoku Magellana jest dopasowane z dużym błedem, wynikającym z rozrzutu danych, dlatego wyznaczenie odległości za ich pomocą byłoby niedokładne. Do pomiarów wybrano więc najlepiej dopasowane zależności, wyznaczone, w przypadku filtrów, na podstawie danych odczerwienionych, natomiast w przypadku indeksów wesenheit na podstawie danych nieodczerwienionych. W przypadku cefeid klasycznych zależności dla wszystkich filtrów i indeksów wesenheit wyznaczone są dość dokładnie więc wykorzystano każdą z nich. Dość dobrze wyznaczone są także zależności dla gwiazd W Vir w indeksie wesenheit W_I , zmiennych półregularnych w filtrze K oraz indeksie wesenheit W_{JK} , OSARG-ów w indeksie wesenheit W_{JK} oraz mir w filtrze K.

Punkty zerowe zależności o nachyleniu identycznym jak w Wielkim Obłoku Magellana do danych (odczerwienionych w przypadku filtrów, nieodczerwienionych w przypadku indeksów wesenheit) dla gwiazd z Małego Obłoku Magellana dopasowano za pomocą metody najmniejszych kwadratów. Po pierwszym dopasowaniu odrzucane były punkty odstające od zależności o więcej niż 3σ i zależność dopasowywano ponownie. Różnice modułów odległości, będące różnicą pomiędzy punktami zerowymi zależności otrzymanej i zależności wzorcowej dla cefeid klasycznych zamieszczone są w tabeli 3.1. Jak wspomniano w rozdziale 2.4.1, w przypadku cefeid klasycznych pulsujących w modzie podstawowym w Małym Obłoku Magellana, dla logarytmu okresu wynoszącego około 0,4 prawdopodobnie występuje załamanie zależności dlatego dla każdego filtru podane są dwa wyniki. Pierwszy wynik jest różnicą modułów odległości po dopasowaniu zależności do cefeid z Małego Obłoku Magellana o logarytmie okresu większym od 0,4, natomiast drugi pochodzi od dopasowania zależności dla wszystkich cefeid fundamentalnych.

Wyznaczanie odległości w przypadku gwiazd W Vir oraz półregularnych przebiegało identycznie jak w przypadku cefeid. Bardziej problematyczne okazało się wyznaczenie odległości za pomocą OSARG-ów. Ze względu na trudności w rozdzieleniu gwiazd leżących na AGB i RGB dla Małego Obłoku Magellana należało dopasować punkty zerowe wszystkich zależności w indeksie wesenheit W_{JK} dla tych gwiazd jednocześnie. Wyniki przedstawione są w tabeli 3.2.

Rysunek 3.1 przedstawia zależność średniego odchylenia danych ($RMS \equiv \sigma$) od dopasowywanych zależności dla OSARG-ów od różnic modułów odległości Małego i Wielkiego Obłoku Magellana. Linia zielona odpowiada dopasowywaniu dwóch zależności (dla gwiazd AGB i RGB) dla sekwencji A, czerwona zależności dla sekwencji B, oraz niebieska wszystkich czterech zależności (AGB sekwencja A i B oraz RGB sekwencja A i B) jednocześnie. Najlepiej pasujące do gwiazd z Małego Obłoku Magellana zależności, przy jednoczesnym dopasowywaniu punktów zerowych wszystkich zależności, przedstawia rysunek 3.2.

Filtr	$\Delta(m-M)$	$\sigma_{\Delta(m-M)}$
Cefeid	ly klasyczne v	v modzie podstawowym
V	0.562	0.277
	0.632	0.274
Ι	0.521	0.222
	0.591	0.226
J	0.512	0.188
	0.584	0.205
H	0.494	0.170
	0.560	0.187
K	0.489	0.162
	0.558	0.189
W_I	0.483	0.147
	0.543	0.165
W_{JK}	0.482	0.154
	0.545	0.194
Cefei	dy klasyczne y	w pierwszym owertonie
\overline{V}	0.550	0.281
Ι	0.543	0.231
J	0.556	0.209
H	0.548	0.192
K	0.555	0.195
W_I	0.552	0.175
W_{JK}	0.553	0.202

Tablica 3.1: Różnica modułów odległości Małego i Wielkiego Obłoku Magellana wyznaczona na podstawie zależności okres-jasność dla cefeid klasycznych.

Filtr	$\Delta(m-M)$	$\sigma_{\Delta(m-M)}$			
	WVi	r			
W _I	0.459	0.126			
półreg	półregularne węglowe sekwencja C				
K	0.447	0.229			
W_{JK}	0.474	0.217			
półreg	gularne węglow	ve sekwencja C'			
K	0.448	0.222			
W_{JK}	0.482	0.236			
półre	gularne tlenov	we sekwencja C			
K	0.357	0.298			
W_{JK}	0.343	0.338			
półreg	gularne tlenov	ve sekwencja C'			
K	0.418	0.138			
W_{JK}	0.429	0.139			
	OSARG sek	wencja A			
W_{JK}	0.472	0.117			
	OSARG sek	wencja B			
W_{JK}	0.478	0.124			
(OSARG sekwe	encja A+B			
W_{JK}	0.481	0.103			
	Miry wę	glowe			
K	0.368	0.402			
	Miry tle	nowe			
K	0.348	0.268			

Tablica 3.2: Różnica modułów odległości Małego i Wielkiego Obłoku Magellana wyznaczona na podstawie zależności okres-jasność gwiazd WVir, półregularnych, OSARG i mir.

Rysunek 3.1: Średnie odchylenie danych z Małego Obłoku Magellana od dopasowanych zależności okres-jasność dla OSARG-ów vs różnica modułów odległości Małego i Wielkiego Obłoku Magellana (linia zielona odpowiada dopasowywaniu dwóch zależności (dla gwiazd AGB i RGB) dla sekwencji A, czerwona zależności dla sekwencji B, oraz niebieska wszystkich czterech zależności (AGB sekwencja A i B oraz RGB sekwencja A i B) jednocześnie).

Rysunek 3.2: Dopasowane do danych dla OSARG-ów z Małego Obłoku Magellana zależności o nachyleniu identycznym jak zależności dla OSARG-ów w Wielkim Obłoku Magellana. Kolorem czerwonym zaznaczono sekwencję A, zielonym sekwencję B dla połączonych danych gwiazd AGB i RGB, linia ciemno-niebieska jest zależnością dla OSARG-ów AGB sekwencji A, jasno-niebieska dla OSARG-ów RGB sekwencji A, różowa dla AGB sekwencji B, żółta dla RGB sekwencji B.

4. Geometria Obłoków Magellana

Zależność okres jasność może służyć również jako dobre narzędzie do badania geometrii galaktyk. Gdy znamy zależność okres jasność dla danego typu gwiazd w galaktyce, zakładając, że rozrzut punktów spowodowany jest różnymi odległościami gwiazd, możemy mierzyć różnicę pomiędzy odległością gwiazdy a odległością centrum galaktyki. Wykorzystując więc wyprowadzone wcześniej zależności okres-jasność dla gwiazd z Wielkiego i Małego Obłoku Magellana, można teraz utworzyć modele tych galaktyk.

Do badania geometrii wykorzystane zostały zależności dla danych odczerwienionych dla filtru K oraz indeksu wesenheit W_I dla cefeid klasycznych pulsujących w modzie podstawowym oraz pierwszym owertonie, ze względu na najmniejsze średnie odchylenie tych gwiazd od dopasowanych zależności. Gwiazdy zostały podzielone ze względu na przynależność do pól wydzielonych w Obłokach Magellana na potrzeby III fazy projektu OGLE (pełną listę pól znaleźć można pod adresem *http* : //ogle.astrouw.edu.pl/). Analogicznie jak przy wyznaczaniu różnic modułów odległości środka danego pola i centrum galaktyki poprzez dopasowanie punktu zerowego zależności okres-jasność o nachyleniu wyznaczonym z wszystkich gwiazd w galaktyce do gwiazd leżących w polu. Różnica punktów zerowych tych dwu zależności jest różnicą modułów odległości środka pola i centrum Obłoku.

4.1. Wielki Obłok Magellana

Na rysunku 4.1 przedstawiony jest rozkład cefeid klasycznych pulsujacych w modzie podstawowym oraz w pierwszym owertonie w Wielkim Obłoku Magellana. Widać, że gwiazdy rozłożone są w galaktyce dosyć równomiernie, można więc przyjąć, że wyznaczone punkty zerowe zależności okres-jasność odnoszą się do centrum Obłoku.

Wielki Obłok Magellana został podzielony przez zespół OGLE na 115 pól o wymiarach $36' \times 36'$. Po podzieleniu gwiazd ze względu na przynależność do poszczególnych pól odrzucono pola, w których znajdowało się mniej niż 5 gwiazd każdego typu. Następnie do danych dopasowano punkty zerowe zależności okres-jasność, której nachylenie było identyczne z nachyleniem zależności wyznaczonej dla wszystkich gwiazd

Rysunek 4.1: Lewy panel: położenie cefeid klasycznych w modzie podstawowym w Wielkim Obłoku Magellana. Prawy panel: to samo dla cefeid klasycznych w pierwszym owertonie.

danego typu w Wielkim Obłoku Magellana. W ten sposób wyznaczono średnią różnicę modułów odległości gwiazd leżących w danym polu i centrum Wielkiego Obłoku Magellana. Ostateczna wartość powstała z uśrednienia wyników otrzymanych dla cefeid pulsujących w modzie podstawowym i w pierwszym owertonie w filtrze K oraz indeksie wesenheit W_I . Numery i współrzędne środków pól oraz otrzymane różnice modułów odległości przedstawione zostały w tabeli 4.1. Wartości ujemne odpowiadają obszarom znajdującym się bliżej niż centrum galaktyki.

Wyniki zilustrowane zostały na rysunku 4.2. Na tle Wielkiego Obłoku Magellana zaznaczone zostały środki pól. Kolory odpowiadają otrzymanym różnicom modułów odległości środków pól i centrum galaktyki.

Rysunek 4.2: Model Wielkiego Obłoku Magellana. Na tle galaktyki naniesione są punkty, pokazujace środki pól, na które podzielony został Obłok przez zespół OGLE. Kolory punktów odpowiadają różnicom modułów odległości środka pola i centrum galaktyki.

Pole	$\alpha[^o]$	$\delta[^o]$	$\Delta(m-M)$
LMC100	79.759167	-69.251944	-0.038
LMC101	79.762917	-68.655278	-0.032
LMC102	79.764167	-68.063333	0.012
LMC103	79.762083	-69.840556	-0.036
LMC104	79.760000	-70.434167	-0.029
LMC105	79.756667	-71.025278	-0.019
LMC106	79.754167	-71.615833	0.015
LMC107	78.256250	-66.882500	0.016
LMC108	78.257917	-67.477778	0.023
LMC109	78.222083	-68.068333	0.042
LMC110	78.181667	-68.661667	-0.017
LMC111	78.136250	-69.250556	-0.027
LMC112	78.089583	-69.839167	-0.009
LMC113	78.045417	-70.430000	0.0022
LMC114	77.995417	-71.022778	0.015
LMC115	76.790417	-66.883056	-0.014
LMC116	76.753750	-67.474722	-0.020
LMC117	76.730417	-68.066111	0.005
LMC118	76.605833	-68.656944	-0.023
LMC119	76.510417	-69.250556	-0.029
LMC120	76.415833	-69.841111	-0.009
LMC121	76.310000	-70.433056	0.015
LMC122	76.220417	-71.023611	0.040
LMC123	75.325000	-66.883333	0.017
LMC124	75.251250	-67.474167	0.006
LMC125	75.150417	-68.065000	0.024
LMC126	75.010000	-68.658611	0.029
LMC127	74.890000	-69.248333	0.011
LMC128	74.765000	-69.840000	-0.012
LMC129	74.602500	-70.435278	-0.006
LMC130	74.461667	-71.022222	0.057
LMC131	73.869167	-66.879444	-0.006

LMC132	73.752500	-67.476667	-0.002
LMC133	73.621667	-68.063056	0.039
LMC134	73.455000	-68.655000	0.025
LMC135	73.271667	-69.247500	0.014
LMC136	73.098750	-69.840278	-0.005
LMC137	72.875833	-70.433611	0.003
LMC138	72.394583	-66.885278	-0.020
LMC139	72.271667	-67.475000	0.022
LMC140	72.075833	-68.068056	0.039
LMC141	71.861250	-68.660000	0.042
LMC142	71.632917	-69.252222	0.015
LMC143	71.429583	-69.838611	0.030
LMC144	71.167500	-70.433611	0.022
LMC146	70.762500	-67.471389	0.038
LMC148	70.278333	-68.657500	0.067
LMC149	70.021250	-69.249167	0.054
LMC159	81.297500	-68.066111	0.019
LMC160	81.337083	-68.656667	0.028
LMC161	81.385417	-69.249722	-0.030
LMC162	81.430417	-69.840000	-0.031
LMC163	81.467500	-70.431944	-0.025
LMC164	81.535000	-71.023056	-0.021
LMC165	81.587083	-71.616944	-0.007
LMC166	82.833750	-68.064167	0.070
LMC167	82.915000	-68.658889	0.043
LMC168	83.005833	-69.250000	-0.003
LMC169	83.095000	-69.840556	-0.040
LMC170	83.200417	-70.431389	-0.046
LMC171	83.294167	-71.025000	-0.023
LMC172	83.393333	-71.615000	-0.019
LMC173	84.372083	-68.063889	-0.086
LMC174	84.499167	-68.657222	-0.009

LMC175	84.634583	-69.250278	0.049
LMC176	84.756667	-69.841667	-0.020
LMC177	84.908333	-70.430278	-0.037
LMC178	85.058750	-71.024167	-0.049
LMC179	85.217917	-71.616111	-0.027
<i>LMC</i> 181	85.898750	-68.066111	-0.022
LMC182	86.066667	-68.658889	-0.031
LMC183	86.261667	-69.249722	-0.062
LMC184	86.430000	-69.842500	-0.044
LMC185	86.628333	-70.430833	-0.030
LMC186	86.838333	-71.023333	-0.028
LMC187	87.052500	-71.614444	0.0025
LMC190	87.888333	-69.248611	-0.022
LMC191	88.083750	-69.840000	-0.045
LMC196	89.227917	-68.658056	-0.047
<i>LMC</i> 197	89.511250	-69.251667	-0.057

Tablica 4.1: Pierwsza kolumna zawiera nazwy pół wydzielonych w ramach III fazy projektu OGLE w Wielkim Obłoku Magellana, druga i trzecia odpowiednio rektascensję i deklinację środków pól, czwarta średnią różnicę pomiędzy modułami odległości cefeid klasycznych znajdujących się w danym polu i centrum galaktyki.

4.2. Mały Obłok Magellana

Rysunek 4.3 przedstawia rozkład cefeid klasycznych w modzie podstawowym i pierwszym owertonie w Małym Obłoku Magellana. Podobnie jak w Wielkim Obłoku Magellana cefeidy rozłożone są dość jednorodnie w galaktyce, więc można przyjąć, że wyprowadzone zależności odnoszą się do centrum Obłoku.

Rysunek 4.3: Górny panel: rozkład cefeid klasycznych pulsujących w modzie podstawowym w Małym Obłoku Magellana. Dolny panel: to samo dla cefeid klasycznych w pierwszym owertonie.

Modelowanie Małego Obłoku Magellana przbiegało w identyczny sposób jak w przypadku Wielkiego Obłoku Magellana. Jedyną różnicą była konieczność stosowania w przypadku cefeid klasycznych w modzie podstawowym dwu zależności- jednej dla gwiazd o logarytmie okresu pulsacji mniejszym od 0,4 oraz drugiej dla pozostałych gwiazd. Otrzymane wyniki przedstawione są w tabeli 4.2 oraz zilustrowane zostały na tle Małego Obłoku Magellana na rysunku 4.4. Tak jak dla Wielkiego Obłoku Magellana ujemne wartości różnic modułów odległości odpowiadają obszarom położonym bliżej Ziemi.

Rysunek 4.4: Model Małego Obłoku Magellana. Na tle galaktyki naniesione są punkty, pokazujace środki pól, na które podzielony został Obłok przez zespół OGLE. Kolory punktów odpowiadają różnicom modułów odległości środka pola i centrum galaktyki.

Pole	$\alpha^{[o]}$	$\delta[^o]$	$\Delta(m-M)$
SMC100	12.512083	-73.144444	0.057
SMC101	12.501667	-72.555000	0.026
SMC102	12.520833	-71.957222	0.001
SMC103	12.520000	-73.733333	0.086
SMC104	12.520833	-74.323056	0.104
SMC105	14.456667	-72.744722	-0.014
SMC106	14.522917	-73.338056	0.023
SMC107	14.591250	-73.931667	0.032
SMC108	14.385417	-72.156667	-0.060
SMC109	14.337083	-71.563333	-0.059
SMC110	16.399167	-72.745833	-0.045
SMC111	16.525000	-73.337222	-0.044
SMC112	16.670417	-73.930000	-0.067
SMC113	16.263333	-72.157778	-0.103
SMC114	16.153333	-71.561667	-0.062
SMC115	18.330833	-72.745000	-0.083
SMC116	18.521667	-73.335556	-0.128
SMC117	18.751667	-73.928889	-0.131
SMC118	18.147083	-72.153333	-0.094
SMC119	17.975417	-71.561111	-0.081
SMC120	20.271667	-72.746111	-0.193
SMC121	20.505000	-73.343056	-0.146
SMC123	20.009583	-72.159444	-0.127
SMC124	19.790000	-71.562222	-0.028
SMC125	10.517500	-73.329167	0.091
SMC126	10.590833	-72.735556	0.055
SMC128	10.442500	-73.923611	0.170
SMC129	10.382917	-74.511667	0.190
SMC130	8.525417	-73.327500	0.161
SMC131	8.641667	-72.736389	0.158
SMC133	8.403750	-73.923333	0.152
SMC134	8.218750	-74.511667	0.127

SMC135	6.515833	-73.329167	0.190
SMC136	6.702917	-72.737222	0.138
SMC138	6.339167	-73.921389	0.182
SMC139	6.068750	-74.513333	0.176

Tablica 4.2: Pierwsza kolumna zawiera nazwy pól wydzielonych w ramach III fazy projektu OGLE w Małym Obłoku Magellana, druga i trzecia odpowiednio rektascensję i deklinację środków pól, czwarta średnią różnicę pomiędzy modułami odległości cefeid klasycznych znajdujących się w danym polu i centrum galaktyki.
5. Dyskusja wyników

5.1. Zależności okres-jasność

Porównując zależności okres-jasność wyznaczone z danych nieodczerwienionych, odczerwienionych, oraz, w przypadku Wielkiego Obłoku Magellana, odczerwienionych i poprawionych ze względu na geometrię tej galaktyki dla niemal wszystkich zależności odczerwienienie danych znacznie zmniejsza ich średnie odchylenie od dopasowanych zależności, natomiast poprawki ze względu na geometrię zmniejszają w niewielkim stopniu bądź też w wielu przypadkach zwiększają rozrzut danych.

Najlepiej dopasowanymi zależnościami okres-jasność spośród zaprezentowanych są zależności dla cefeid klasycznych w modzie podstawowym i pierwszym owertonie. Otrzymane współczynniki są również zgodne z wynikami otrzymanymi przez innych autorów np. Bono et al. (2013), Udalski et al. (1999). Różnice pomiędzy zależnościami dla cefeid klasycznych w modzie podstawowym z Wielkiego i Małego Obłoku Magellana potwierdzają, że w okolicy logarytmu okresu pulsacji 0, 4 w Małym Obłoku Magellana istnieje załamanie zależności.

Zależności okres-jasność dla cefeid anomalnych, ze względu na bardzo małą liczebność tych gwiazd nie posiadają zbyt wielu wyznaczeń. Porównując współczynniki otrzymanych zależności z wyznaczonymi przez Fiorentino & Monelli (2012) widoczne są dosyć duże różnice.

Zależności okres-jasność dla cefeid II typu są zbliżone do zależności otrzymanych przez Matsunaga et al. (2011) (flitry J, H, K, oraz indeks wesenheit W_I). W pracy tej nie zostały jednak uwzględnione gwiazdy typu RV Tau.

W przypadku OSARG-ów otrzymane zależności można porównać z zależnościami otrzymanymi przez Soszynski et al. (2007). Zależności dla OSARG-ów AGB zostały w tej pracy oznaczone dla sekwencji A jako a_3 , dla sekwencji B a_2 , natomiast dla OSARG-ów RGB dla sekwencji A b_3 , a dla sekwencji B b_2 . Większe różnice występują w przypadku zależności w indeksie wesenheit W_I , która dla tych gwiazd ma charakter kwadratowy. W tej samej pracy opisane zostały również zależności okres-jasność dla mir oraz zmiennych półregularnych, jednak te dwa typy gwiazd zostały połączone i wyprowadzono dla nich wspólne zależności, które dość znacznie różnią się od otrzymanych w niniejszej pracy.

5.2. Wzajemna odległość Obłoków Magellana

Otrzymane różnice modułów odległości Obłoków Magellana dla cefeid klasycznych są nieco różne dla gwiazd pulsujących w modzie podstawowym i pierwszym owertonie. Dodatkowo, dla cefeid w modzie podstawowym różnica modułów maleje ze wzrostem długości fali filtru, co może wynikać z błedów systematycznych związanych z wyznaczeniem ekstynkcji (która jest wieksza dla krótszych fal). Dla cefeid klasycznych w modzie podstawowym w indeksach wesenheit, które są niezależne od poczerwienienia oraz dla filtru K, w którym ekstynkcja jest najmniejsza, wyznaczone różnice modułów odległości są bardzo zbliżone. Bardzo bliskie tym wartościom są również te otrzymane za pomoca gwiazd typu OSARG, W Vir, oraz w indeksie wesenheit dla zmiennych półregularnych. Wartości wyznaczone dla mir oraz dla zmiennych półregularnych w filtrze K są natomiast znacznie mniejsze od pozostałych. Porównując otrzymane wyniki z wynikami z innych prac (5.1) widać zgodność pomiarów wykonywanych tymi samymi metodami. Otrzymane wyniki dla cefeid klasycznych w modzie podstawowym (w filtrze K oraz indeksach wesenheit) o logarytmie okresu pulsacji większym od 0,4, dla OSARG-ów, gwiazd typu W Vir oraz zmiennych półregularnych węglowych (w indeksie wesenheit) są również bardzo bliskie wartości otrzymanej za pomocą pomiarów średnic gwiazd w układach podwójnych z pracy Graczyk et al. (2014).

metoda	$\Delta(m-M)$	praca
$PLR \ \delta \ Cep$	0.482 ± 0.008	Matsunaga et al. (2011)
$PLR \ \delta \ Cep \ (F)$	0.48 ± 0.03	Inno et al. (2013)
$PLR \ \delta \ Cep \ (1O)$	0.52 ± 0.03	Inno et al. (2013)
EB	0.472 ± 0.026	Graczyk et al. (2014)
PLR W Vir	0.40 ± 0.07	Matsunaga et al. (2011)
$PLR \; RR \; Lyr$	0.327 ± 0.002	Szewczyk et al. (2009)

Tablica 5.1: Różnice modułów odległości Małego i Wielkiego Obłoku Magellana (PLR- zależność okres-jasność, EB- układy podwójne zaćmieniowe, F- mod podstawowy, 1O- pierwszy owerton).

Duża różnica występuje również pomiędzy wynikami otrzymanymi dla wszystkich

cefeid klasycznych w modzie podstawowym z Małego Obłoku Magellana oraz tymi o logarytmie okresu większym od 0,4. Widać więc, że dokładne sprawdzenie istnienia załamania zależności okres-jasność dla logarytmu okresu 0,4 jest konieczne dla dokładnego wyznaczania odległości za pomocą tych gwiazd.

5.3. Geometria Obłoków Magellana

Zarówno w przypadku Wielkiego jak i Małego Obłoku Magellana widać wyraźne nachylenie tych galaktyk względem płaszczyzny prostopadłej do kierunku widzenia i galaktyki te nachylone są w podobny sposób: wschodnia cześć znajduje się bliżej niż część zachodnia. Nachylenie to jest zgodne z wynikami otrzymanymi w pracach Haschke et al. (2012a),Haschke et al. (2012b). Utworzone modele mogą zostać wykorzystane wprost do wyznaczania poprawek jasności gwiazd, związanych z geometrią Obłoków Magellana.

6. Podsumowanie

Głównym celem pracy było wyprowadzenie zależności okres-jasność dla cefeid klasycznych, cefeid anomalnych, cefeid drugiego typu, OSARG-ów, mir oraz zmniennych półregularnych w Obłokach Magellana na podstawie danych pochodzących z projektów OGLE oraz IRSF. W przypadku Wielkiego Obłoku Magellana, dla każdego typu gwiazd w filtrach V, I, J, H, K dopasowano po trzy zależności: dla danych nieodczerwienionych, odczerwienionych oraz odczerwienionych i poprawionych ze względu na geometrię Obłoku, natomiast dla indeksów wesenheit po dwie zależności: dla danych nieodczerwienionych oraz dla danych poprawionych ze względu na geometrię Wielkiego Obłoku Magellana. Dla Małego Obłoku Magellana nie wyznaczono poprawek geometrycznych, więc dla filtrów wyprowadzono po dwie zależności, dla indeksów wesenheit po jednej. Znaczne różnice w nachyleniu zależności okres-jasność dla cefeid klasycznych pulsujących w modzie podstawowym są dowodem na istnienie załamania zależności w okolicy logarytmu okresu pulsacji wynoszącego 0, 4.

Zależności okres-jasność dla gwiazd z Wielkiego Obłoku Magellana uznawane są za zależności wzorcowe i służą do wyznaczania odległości do innych galaktyk. Wykorzystując wyprowadzone dla gwiazd z Wielkiego Obłoku Magellana zależności okresjasność zmierzono różnicę modułów odległości Małego i Wielkiego Obłoku Magellana. W większości otrzymane wyniki są zgodne z wyznaczeniami otrzymanymi w innych pracach. Zależności okres-jasność dla cefeid klasycznych pozwoliły również na utworzenie prostych modeli Obłoków Magellana, pozwalających obliczać poprawki do jasności gwiazd, związane z geometrią tych galaktyk.

Podziękowania

Dziękuję Fundacji na rzecz Nauki Polskiej, za stypendium (program TEAM), w ramach którego powstała niniejsza praca.

Bibliografia

- Bessel, F. W. 1838, MNRAS, 4, 152
- Bono, G., Inno, L., Matsunaga, N., et al. 2013, in IAU Symposium, Vol. 289, IAU Symposium, ed. R. de Grijs, 116–125
- Cardelli, J. A., Clayton, G. C., & Mathis, J. S. 1989, in IAU Symposium, Vol. 135, Interstellar Dust, ed. L. J. Allamandola & A. G. G. M. Tielens, 5P
- EROS Collaboration, Bauer, F., Afonso, C., et al. 1999, A&A, 348, 175
- Fiorentino, G. & Monelli, M. 2012, A&A, 540, A102
- Glass, I. S. & Nagata, T. 2000, Monthly Notes of the Astronomical Society of South Africa, 59, 110
- Graczyk, D., Pietrzyński, G., Thompson, I. B., et al. 2014, ApJ, 780, 59
- Haschke, R., Grebel, E. K., & Duffau, S. 2011, AJ, 141, 158
- —. 2012a, AJ, 144, 106
- —. 2012b, AJ, 144, 107
- Inno, L., Matsunaga, N., Bono, G., et al. 2013, ApJ, 764, 84
- Leavitt, H. S. 1908, Annals of Harvard College Observatory, 60, 87
- Matsunaga, N., Feast, M. W., & Soszyński, I. 2011, MNRAS, 413, 223
- Pietrzyński, G., Graczyk, D., Gieren, W., et al. 2013, Nature, 495, 76
- Ritter, A. 1898, ApJ, 8, 293

- Schaefer, B. E. 2008, AJ, 135, 112
- Schlegel, D. J., Finkbeiner, D. P., & Davis, M. 1997, in Bulletin of the American Astronomical Society, Vol. 29, American Astronomical Society Meeting Abstracts, 1354
- Shapley, H. 1914, ApJ, 40, 448
- Soszyński, I., Udalski, A., Szymański, M. K., et al. 2009, Acta Astron., 59, 239
- Soszynski, I., Dziembowski, W. A., Udalski, A., et al. 2007, Acta Astron., 57, 201
- Szewczyk, O., Pietrzyński, G., Gieren, W., et al. 2009, AJ, 138, 1661
- Turon, C., Luri, X., & Masana, E. 2012, Ap&SS, 341, 15
- Udalski, A., Kubiak, M., & Szymanski, M. 1997, Acta Astron., 47, 319
- Udalski, A., Szymanski, M., Kubiak, M., et al. 1999, Acta Astron., 49, 201
- Udalski, A., Szymanski, M. K., Soszynski, I., & Poleski, R. 2008, Acta Astron., 58, 69
- Ulaczyk, K., Szymański, M. K., Udalski, A., et al. 2013, Acta Astron., 63, 159
- van der Marel, R. P. & Cioni, M.-R. L. 2001, AJ, 122, 1807