COSMIC MAGNETIC FIELDS

KRZYSZTOF NALEWAJKO, CAMK PAN

KNALEW@CAMK.EDU.PL

MHD waves

UNIFORM MAGNETIC FIELD: EULER EQUATION

•
$$\frac{\partial \overrightarrow{\mathbf{v}}}{\partial t} + \left(\overrightarrow{\mathbf{v}} \cdot \overrightarrow{\nabla}\right) \overrightarrow{\mathbf{v}} = \frac{\overrightarrow{f}}{\rho}$$

 $\overrightarrow{f} = -\overrightarrow{\nabla}P + \frac{\overrightarrow{j} \times \overrightarrow{B}}{c}$

• Consider a static background $\vec{v}_0 = 0$ with uniform magnetic field \vec{B}_0 . Since $\vec{j}_0 = 0$, there is no background Lorentz force density $\vec{f}_{L,0}$, and with uniform background pressure P_0 we have $\vec{f}_0 = 0$.

•
$$\frac{\partial \overrightarrow{\mathbf{v}}_1}{\partial t} + \left(\overrightarrow{\mathbf{v}}_1 \cdot \overrightarrow{\nabla}\right) \overrightarrow{\mathbf{v}}_0 + \left(\overrightarrow{\mathbf{v}}_0 \cdot \overrightarrow{\nabla}\right) \overrightarrow{\mathbf{v}}_1 = \frac{\overrightarrow{f}_1}{\rho_0} - \frac{\overrightarrow{f}_0}{\rho_0^2} \rho_1$$

 $\rho_0 \frac{\partial \overrightarrow{\mathbf{v}}_1}{\partial t} = \overrightarrow{f}_1 = -\overrightarrow{\nabla} P_1 + \overrightarrow{f}_{\mathrm{L},1}$

•
$$\vec{f}_{\rm L} = \frac{\vec{j} \times \vec{B}}{c}$$

 $\vec{f}_{\rm L,1} = \frac{\vec{j}_1 \times \vec{B}_0}{c}$

• $\vec{j}_1 = \frac{c}{4\pi} \left(\vec{\nabla} \times \vec{B}_1 \right)$

• induction equation:

$$\frac{\partial \vec{B}}{\partial t} = \vec{\nabla} \times \left(\vec{v} \times \vec{B}\right) = \left(\vec{B} \cdot \vec{\nabla}\right) \vec{v} - \left(\vec{v} \cdot \vec{\nabla}\right) \vec{B} - \vec{B} \left(\vec{\nabla} \cdot \vec{v}\right)$$
$$\frac{\partial \vec{B}_1}{\partial t} = \vec{\nabla} \times \left(\vec{v}_1 \times \vec{B}_0\right) = \left(\vec{B}_0 \cdot \vec{\nabla}\right) \vec{v}_1 - \vec{B}_0 \left(\vec{\nabla} \cdot \vec{v}_1\right)$$

• Adopt oscillatory velocity perturbation $\vec{v}_1 \propto \exp\left(i\omega t + i\vec{k}\cdot\vec{r}\right)$

•
$$\frac{\partial \vec{B}_{1}}{\partial t} = \vec{\nabla} \times \left(\vec{v}_{1} \times \vec{B}_{0}\right)$$
$$i\omega \vec{B}_{1} = i \vec{k} \times \left(\vec{v}_{1} \times \vec{B}_{0}\right)$$
$$\vec{B}_{1} = \frac{1}{\omega} \left[\vec{k} \times \left(\vec{v}_{1} \times \vec{B}_{0}\right)\right] = \frac{1}{\omega} \left[\left(\vec{k} \cdot \vec{B}_{0}\right) \vec{v}_{1} - \left(\vec{k} \cdot \vec{v}_{1}\right) \vec{B}_{0}\right]$$

•
$$\vec{j}_1 = \frac{c}{4\pi} \left(\vec{\nabla} \times \vec{B}_1 \right)$$

 $\vec{j}_1 = \frac{c}{4\pi\omega} \left\{ i\vec{k} \times \left[\vec{k} \times \left(\vec{v}_1 \times \vec{B}_0 \right) \right] \right\}$

•
$$\vec{f}_{L,1} = \frac{\vec{j}_1 \times \vec{B}_0}{c}$$

 $\vec{j}_1 = \frac{c}{4\pi\omega} \left\{ i \vec{k} \times \left[\vec{k} \times \left(\vec{v}_1 \times \vec{B}_0 \right) \right] \right\}$
 $\vec{f}_{L,1} = \frac{i}{4\pi\omega} \left\{ \vec{k} \times \left[\vec{k} \times \left(\vec{v}_1 \times \vec{B}_0 \right) \right] \right\} \times \vec{B}_0 \quad \text{a qu}$

a quadrupole cross product!

• reducing the inner two cross products:

$$\vec{k} \times \left(\vec{v}_1 \times \vec{B}_0\right) = \left(\vec{k} \cdot \vec{B}_0\right) \vec{v}_1 - \left(\vec{k} \cdot \vec{v}_1\right) \vec{B}_0$$
$$\vec{f}_{L,1} = \frac{i}{4\pi\omega} \left\{ \left(\vec{k} \cdot \vec{B}_0\right) \left[\left(\vec{k} \times \vec{v}_1\right) \times \vec{B}_0 \right] - \left(\vec{k} \cdot \vec{v}_1\right) \left[\left(\vec{k} \times \vec{B}_0\right) \times \vec{B}_0 \right] \right\}$$

• reducing the remaining double cross products:

$$\left(\vec{k} \times \vec{v}_{1} \right) \times \vec{B}_{0} = \left(\vec{B}_{0} \cdot \vec{k} \right) \vec{v}_{1} - \left(\vec{B}_{0} \cdot \vec{v}_{1} \right) \vec{k}$$

$$\left(\vec{k} \times \vec{B}_{0} \right) \times \vec{B}_{0} = \left(\vec{B}_{0} \cdot \vec{k} \right) \vec{B}_{0} - \left(\vec{B}_{0}^{2} \right) \vec{k}$$

$$\vec{f}_{L,1} = \frac{i}{4\pi\omega} \left\{ \left(\vec{k} \cdot \vec{B}_{0} \right)^{2} \vec{v}_{1} - \left(\vec{k} \cdot \vec{B}_{0} \right) \left(\vec{k} \cdot \vec{v}_{1} \right) \vec{B}_{0} + \left[\vec{B}_{0}^{2} \left(\vec{k} \cdot \vec{v}_{1} \right) - \left(\vec{k} \cdot \vec{B}_{0} \right) \left(\vec{B}_{0} \cdot \vec{v}_{1} \right) \right] \vec{k} \right\}$$

$$\vec{f}_{\mathrm{L},1} = \frac{i}{4\pi\omega} \left\{ \left(\vec{k} \cdot \vec{B}_0 \right)^2 \vec{v}_1 - \left(\vec{k} \cdot \vec{B}_0 \right) \left(\vec{k} \cdot \vec{v}_1 \right) \vec{B}_0 + \left[B_0^2 \left(\vec{k} \cdot \vec{v}_1 \right) - \left(\vec{k} \cdot \vec{B}_0 \right) \left(\vec{B}_0 \cdot \vec{v}_1 \right) \right] \vec{k} \right\}$$

• dot products with
$$\overrightarrow{B}_{0}$$
, \overrightarrow{k} and $\overrightarrow{k} \times \overrightarrow{B}_{0}$:
 $\overrightarrow{f}_{L,1} \cdot \overrightarrow{B}_{0} = 0$
 $\overrightarrow{f}_{L,1} \cdot \overrightarrow{k} = \frac{ik^{2}}{4\pi\omega} \left[B_{0}^{2} \left(\overrightarrow{k} \cdot \overrightarrow{v}_{1} \right) - \left(\overrightarrow{k} \cdot \overrightarrow{B}_{0} \right) \left(\overrightarrow{B}_{0} \cdot \overrightarrow{v}_{1} \right) \right]$
 $\overrightarrow{f}_{L,1} \cdot \left(\overrightarrow{k} \times \overrightarrow{B}_{0} \right) = \frac{i}{4\pi\omega} \left(\overrightarrow{k} \cdot \overrightarrow{B}_{0} \right)^{2} \left[\overrightarrow{v}_{1} \cdot \left(\overrightarrow{k} \times \overrightarrow{B}_{0} \right) \right]$

LINEARIZED EULER EQUATION ALONG $\vec{k} \times \vec{B}_0$

•
$$i\omega\rho_0 \overrightarrow{\mathbf{v}}_1 = -i\overrightarrow{k}P_1 + \overrightarrow{f}_{\mathrm{L},1}$$

 $\overrightarrow{f}_{\mathrm{L},1} \cdot \left(\overrightarrow{k} \times \overrightarrow{B}_0\right) = \frac{i}{4\pi\omega} \left(\overrightarrow{k} \cdot \overrightarrow{B}_0\right)^2 \left[\overrightarrow{\mathbf{v}}_1 \cdot \left(\overrightarrow{k} \times \overrightarrow{B}_0\right)\right]$

•
$$i\omega\rho_0 \left[\vec{\mathbf{v}}_1 \cdot \left(\vec{k} \times \vec{B}_0 \right) \right] = \frac{i}{4\pi\omega} \left(\vec{k} \cdot \vec{B}_0 \right)^2 \left[\vec{\mathbf{v}}_1 \cdot \left(\vec{k} \times \vec{B}_0 \right) \right]$$

note the lack of P_1 term since $\vec{k} \cdot \left(\vec{k} \times \vec{B}_0 \right) = 0$.

•
$$\left[\omega^2 - \frac{1}{4\pi\rho_0} \left(\overrightarrow{k} \cdot \overrightarrow{B}_0\right)^2\right] \left[\overrightarrow{v}_1 \cdot \left(\overrightarrow{k} \times \overrightarrow{B}_0\right)\right] = 0$$

• if \vec{v}_1 has a component in the (\vec{B}_0, \vec{k}) plane: $\omega^2 = \frac{1}{4\pi\rho_0} \left(\vec{k} \cdot \vec{B}_0\right)^2$ the Alfvén dispersion relation.

• introducing the wave vector inclination angle $\vec{k} \cdot \vec{B}_0 = kB_0 \cos \theta$ and the background magnetization $\sigma_0 = \frac{B_0^2}{4\pi\rho_0 c^2}$, the propagation speed is $v_A^2 \equiv \frac{\omega^2}{k^2} = \sigma_0 c^2 \cos^2 \theta \equiv c_{A,0}^2 \cos^2 \theta$, where $c_{A,0} = c_\sqrt{\sigma_0} = \frac{B_0}{\sqrt{4\pi\rho_0}}$ is the Alfvén speed.

RELATIVISTIC ALFVÉN SPEED

• For relativistic plasmas we would use a momentum equation:

$$\left|\frac{\omega^2}{c^2}(1+\sigma_0)w_0 - \frac{1}{4\pi}\left(\vec{k}\cdot\vec{B}_0\right)^2\right| \left[\vec{v}_1\cdot\left(\vec{k}\times\vec{B}_0\right)\right] = 0$$

with the relativistic enthalpy density $w_0 = \rho_0 c^2 + \frac{\kappa}{\kappa - 1} P_0$ and relativistic magnetization $\sigma_0 = \frac{B_0^2}{4\pi w_0}$.

• This yields
$$v_A^2 \equiv \frac{\omega^2}{k^2} = \frac{\sigma_0}{1 + \sigma_0} c^2 \cos^2 \theta \equiv c_{A,0}^2 \cos^2 \theta$$

with the relativistic Alfvén speed $c_{A,0} \equiv c \sqrt{\frac{\sigma_0}{1 + \sigma_0}}$.

- For ultra-relativistic magnetizations $\sigma_0 \gg 1$, hence $B_0^2/4\pi \gg w_0 > \rho_0 c^2$, we have $c_{A,0} \simeq c$, with the corresponding Alfvén Lorentz factor $\Gamma_{A,0} = \sqrt{1 + \sigma_0}$.
- In the limit of non-relativistic magnetization $\sigma_0 \ll 1$ and pressure $P_0 \ll \rho_0 c^2$, we recover $\sigma_0 \simeq \frac{B_0^2}{4\pi\rho_0 c^2}$ and

$$c_{\rm A,0} \simeq c_{\sqrt{\sigma_0}} \simeq \frac{B_0}{\sqrt{4\pi\rho_0}}$$

LINEARIZED EULER EQUATION ALONG \overline{B}_0

•
$$i\omega\rho_0 \overrightarrow{\mathbf{v}}_1 = -i\overrightarrow{k}P_1 + \overrightarrow{f}_{\mathrm{L},1}$$

 $\overrightarrow{f}_{\mathrm{L},1} \cdot \overrightarrow{B}_0 = 0$

•
$$i\omega\rho_0\left(\overrightarrow{\mathbf{v}}_1\cdot\overrightarrow{B}_0\right) = -i\left(\overrightarrow{k}\cdot\overrightarrow{B}_0\right)P_1$$

• the linearized pressure equation

$$P_{1} = -\frac{\kappa P_{0}}{\omega} \left(\vec{k} \cdot \vec{v}_{1} \right):$$

$$\omega^{2} \left(\vec{B}_{0} \cdot \vec{v}_{1} \right) = \frac{\kappa P_{0}}{\rho_{0}} \left(\vec{k} \cdot \vec{B}_{0} \right) \left(\vec{k} \cdot \vec{v}_{1} \right) = c_{s,0}^{2} \left(\vec{k} \cdot \vec{B}_{0} \right) \left(\vec{k} \cdot \vec{v}_{1} \right)$$

LINEARIZED EULER EQUATION ALONG k

 $\vec{B}_0 \cdot \vec{v}_1$

 $\vec{k} \cdot \vec{f}_{\mathrm{L}1}$

•
$$i\omega\rho_{0}\overrightarrow{\mathbf{v}_{1}} = -i\overrightarrow{k}P_{1} + \overrightarrow{f}_{L,1}$$

 $\overrightarrow{f}_{L,1} \cdot \overrightarrow{k} = \frac{ik^{2}}{4\pi\omega} \left[B_{0}^{2} \left(\overrightarrow{k} \cdot \overrightarrow{\mathbf{v}_{1}} \right) - \left(\overrightarrow{k} \cdot \overrightarrow{B}_{0} \right) \left(\overrightarrow{B}_{0} \cdot \overrightarrow{\mathbf{v}_{1}} \right) \right]$
• $i\omega\rho_{0} \left(\overrightarrow{\mathbf{v}_{1}} \cdot \overrightarrow{k} \right) = -ik^{2}P_{1} + \frac{ik^{2}}{4\pi\omega} \left[B_{0}^{2} \left(\overrightarrow{k} \cdot \overrightarrow{\mathbf{v}_{1}} \right) - \left(\overrightarrow{k} \cdot \overrightarrow{B}_{0} \right) \left(\overrightarrow{B}_{0} \cdot \overrightarrow{\mathbf{v}_{1}} \right) \right]$
• substituting $P_{1} = -\frac{\kappa P_{0}}{\omega} \left(\overrightarrow{k} \cdot \overrightarrow{\mathbf{v}_{1}} \right)$
 $\omega^{2} \left(\overrightarrow{k} \cdot \overrightarrow{\mathbf{v}_{1}} \right) = k^{2} \frac{\kappa P_{0}}{\rho_{0}} \left(\overrightarrow{k} \cdot \overrightarrow{\mathbf{v}_{1}} \right) + \frac{k^{2}B_{0}^{2}}{4\pi\rho_{0}} \left(\overrightarrow{k} \cdot \overrightarrow{\mathbf{v}_{1}} \right) - \frac{k^{2}}{4\pi\rho_{0}} \left(\overrightarrow{k} \cdot \overrightarrow{B}_{0} \right) \left(\overrightarrow{B}_{0} \cdot \overrightarrow{\mathbf{v}_{1}} \right)$
• substituting $\omega^{2} \left(\overrightarrow{B}_{0} \cdot \overrightarrow{\mathbf{v}_{1}} \right) = c_{s,0}^{2} \left(\overrightarrow{k} \cdot \overrightarrow{B}_{0} \right) \left(\overrightarrow{k} \cdot \overrightarrow{\mathbf{v}_{1}} \right)$
 $\omega^{2} \left(\overrightarrow{k} \cdot \overrightarrow{\mathbf{v}_{1}} \right) = k^{2} \left[c_{s,0}^{2} + \frac{B_{0}^{2}}{4\pi\rho_{0}} - \frac{c_{s,0}^{2}}{4\pi\rho_{0}\omega^{2}} \left(\overrightarrow{k} \cdot \overrightarrow{B}_{0} \right)^{2} \right] \left(\overrightarrow{k} \cdot \overrightarrow{\mathbf{v}_{1}} \right)$

• if \overrightarrow{v}_1 has a component along \overrightarrow{k} (longitudinal): $\frac{\omega^2}{k^2} = c_{s,0}^2 + c_{A,0}^2 - \frac{k^2}{\omega^2} c_{s,0}^2 c_{A,0}^2 \cos^2 \theta$

MAGNETOSONIC SPEEDS

•
$$\frac{\omega^2}{k^2} = c_{s,0}^2 + c_{A,0}^2 - \frac{k^2}{\omega^2} c_{s,0}^2 c_{A,0}^2 \cos^2 \theta$$

•
$$\frac{\omega^4}{k^4} - \left(c_{s,0}^2 + c_{A,0}^2\right)\frac{\omega^2}{k^2} + c_{s,0}^2c_{A,0}^2\cos^2\theta = 0$$

is the magnetosonic dispersion relation.

• this dispersion relation has two real solutions:

$$\mathbf{v}_{\pm}^{2} \equiv \frac{\omega^{2}}{k^{2}} = \frac{1}{2} \left[c_{\mathrm{s},0}^{2} + c_{\mathrm{A},0}^{2} \pm \sqrt{\left(c_{\mathrm{s},0}^{2} + c_{\mathrm{A},0}^{2} \right)^{2} - 4c_{\mathrm{s},0}^{2}c_{\mathrm{A},0}^{2}\cos^{2}\theta} \right]$$

corresponding to the slow ($v_{SM} \equiv v_{-}$) and fast ($v_{FM} \equiv v_{+}$) magnetosonic waves.

• for relativistic magnetizations:

$$\frac{\omega^4}{k^4} - \left[\frac{1+\sigma_0\cos^2\theta}{1+\sigma_0}c_{s,0}^2 + c_{A,0}^2\right]\frac{\omega^2}{k^2} + c_{s,0}^2c_{A,0}^2\cos^2\theta = 0$$

WAVES ALONG B_0

- Consider the case of $\theta = 0$, hence $\vec{k} \parallel \vec{B}_0$.
- Note that $\vec{k} \times \vec{B}_0 = 0$. We can only use the magnetosonic dispersion relation:

$$v_{\pm}^{2} = \frac{1}{2} \left[c_{s,0}^{2} + c_{A,0}^{2} \pm \sqrt{\left(c_{s,0}^{2} + c_{A,0}^{2}\right)^{2} - 4c_{s,0}^{2}c_{A,0}^{2}\cos^{2}\theta} \right]$$
$$v_{\pm}^{2} = \frac{1}{2} \left[c_{s,0}^{2} + c_{A,0}^{2} \pm \sqrt{\left(c_{s,0}^{2} - c_{A,0}^{2}\right)^{2}} \right]$$

the solutions reduce to c²_{s,0} and c²_{A,0},
 which correspond to the sound and Alfvén waves, respectively.

WAVES ALONG B_0

• Consider the perturbed Lorentz force, splitting the perturbation velocity $\vec{v}_1 = \vec{v}_{1,\parallel} + \vec{v}_{1,\perp}$ into components parallel and perpendicular to \vec{k} :

$$\vec{B}_{1} = \frac{1}{\omega} \left[\left(\vec{k} \cdot \vec{B}_{0} \right) \vec{v}_{1} - \left(\vec{k} \cdot \vec{v}_{1} \right) \vec{B}_{0} \right]$$
$$\vec{B}_{1} = \frac{kB_{0}}{\omega} \vec{v}_{1,\perp}$$

•
$$\vec{f}_{L,1} = \frac{i}{4\pi\omega} \left\{ \left(\vec{k} \cdot \vec{B}_0 \right)^2 \vec{v}_1 - \left(\vec{k} \cdot \vec{B}_0 \right) \left(\vec{k} \cdot \vec{v}_1 \right) \vec{B}_0 + \left[B_0^2 \left(\vec{k} \cdot \vec{v}_1 \right) - \left(\vec{k} \cdot \vec{B}_0 \right) \left(\vec{B}_0 \cdot \vec{v}_1 \right) \right] \vec{k} \right\}$$

$$\vec{f}_{L,1} = \frac{ik^2 B_0^2}{4\pi\omega} \vec{v}_{1,\perp}$$

• $i\omega\rho_0 \vec{\mathbf{v}}_1 = -i\vec{k}P_1 + \vec{f}_{L,1}$ $P_1 = -\frac{\kappa P_0}{\omega}k\mathbf{v}_{1,\parallel}$ $\omega\rho_0 \vec{\mathbf{v}}_1 = k^2 \frac{\kappa P_0}{\omega} \vec{\mathbf{v}}_{1,\parallel} + \frac{k^2 B_0^2}{4\pi\omega} \vec{\mathbf{v}}_{1,\perp}$

•
$$\left(\omega^2 - k^2 c_{\mathrm{s},0}^2\right) \overrightarrow{\mathrm{v}}_{1,\parallel} + \left(\omega^2 - k^2 c_{\mathrm{A},0}^2\right) \overrightarrow{\mathrm{v}}_{1,\perp} = 0$$

WAVES ALONG B_0

•
$$\left(\omega^2 - k^2 c_{\mathrm{s},0}^2\right) \overrightarrow{\mathrm{v}}_{1,\parallel} + \left(\omega^2 - k^2 c_{\mathrm{A},0}^2\right) \overrightarrow{\mathrm{v}}_{1,\perp} = 0$$

- For the sound wave: $\omega^2 = k^2 c_{s,0}^2$ and hence $\vec{v}_{1,\perp} = 0$: velocity perturbations are longitudinal $\vec{v}_1 \parallel \vec{k}$ and compressible $P_1 \neq 0$, there is no Lorentz force (and $\vec{B}_1 = 0$).
- For the Alfvén wave: ω² = k²c²_{A,0} and hence v
 _{1,||} = 0: velocity perturbations are transverse v
 ₁ ⊥ k and incompressible P₁ = 0, there are transverse perturbations of magnetic field and Lorentz force density B
 ₁ || f
 _{L,1} || v
 ₁.

WAVES ACROSS B_0

- Consider the case of $\theta = \pi/2$, hence $\vec{k} \perp \vec{B}_0$.
- The Alfvén dispersion relation reduces to $\omega^2 = \frac{1}{4\pi\rho_0} \left(\vec{k} \cdot \vec{B}_0\right)^2 = 0.$
- The magnetosonic dispersion relation:

$$v_{\pm}^{2} = \frac{1}{2} \left[c_{s,0}^{2} + c_{A,0}^{2} \pm \sqrt{\left(c_{s,0}^{2} + c_{A,0}^{2}\right)^{2} - 4c_{s,0}^{2}c_{A,0}^{2}\cos^{2}\theta} \right]$$
$$v_{\pm}^{2} = \frac{1}{2} \left[c_{s,0}^{2} + c_{A,0}^{2} \pm \sqrt{\left(c_{s,0}^{2} + c_{A,0}^{2}\right)^{2}} \right] = \left\{ 0, c_{s,0}^{2} + c_{A,0}^{2} \right\}$$

• Let us thus define the fast magnetosonic speed $c_{\text{FM},0}^2 \equiv c_{\text{s},0}^2 + c_{\text{A},0}^2$.

WAVES ACROSS \overline{B}_0

• Consider the perturbed magnetic field and Lorentz force, splitting the perturbation velocity $\vec{v}_1 = \vec{v}_{1,\parallel} + \vec{v}_{1,\perp}$ into components parallel and perpendicular to \vec{k} : $\vec{B}_1 = \frac{1}{\omega} \left[\left(\vec{k} \cdot \vec{B}_0 \right) \vec{v}_1 - \left(\vec{k} \cdot \vec{v}_1 \right) \vec{B}_0 \right]$ $\vec{B}_1 = -\frac{k}{\omega} v_{1,\parallel} \vec{B}_0$

•
$$\vec{f}_{L,1} = \frac{i}{4\pi\omega} \left\{ \left(\vec{k} \cdot \vec{B}_0 \right)^2 \vec{v}_1 - \left(\vec{k} \cdot \vec{B}_0 \right) \left(\vec{k} \cdot \vec{v}_1 \right) \vec{B}_0 + \left[B_0^2 \left(\vec{k} \cdot \vec{v}_1 \right) - \left(\vec{k} \cdot \vec{B}_0 \right) \left(\vec{B}_0 \cdot \vec{v}_1 \right) \right] \vec{k} \right\}$$

$$\vec{f}_{L,1} = \frac{ik^2 B_0^2}{4\pi\omega} \vec{v}_{1,\parallel}$$

• $i\omega\rho_0 \overrightarrow{\mathbf{v}}_1 = -i\overrightarrow{k}P_1 + \overrightarrow{f}_{\mathrm{L},1}$ $P_1 = -\frac{\kappa P_0}{\omega}k\mathbf{v}_{1,\parallel}$ $\omega\rho_0 \overrightarrow{\mathbf{v}}_1 = k^2 \frac{\kappa P_0}{\omega} \overrightarrow{\mathbf{v}}_{1,\parallel} + \frac{k^2 B_0^2}{4\pi\omega} \overrightarrow{\mathbf{v}}_{1,\parallel}$

•
$$\left(\omega^2 - k^2 c_{\text{FM},0}^2\right) \overrightarrow{\mathbf{v}}_{1,\parallel} + \omega^2 \overrightarrow{\mathbf{v}}_{1,\perp} = 0$$

WAVES ACROSS \overline{B}_0

•
$$\left(\omega^2 - k^2 c_{\text{FM},0}^2\right) \overrightarrow{\mathbf{v}}_{1,\parallel} + \omega^2 \overrightarrow{\mathbf{v}}_{1,\perp} = 0$$

• For the fast magnetosonic wave: $\omega^2 = k^2 c_{\text{FM},0}^2$ and hence $\vec{v}_{1,\perp} = 0$: velocity perturbations are longitudinal $\vec{v}_1 \parallel \vec{k}$ and compressible $P_1 \neq 0$, the perturbed magnetic field is $\vec{B}_1 \parallel \vec{B}_0$ (polarized), and the perturbed Lorentz force density is $\vec{f}_{\text{L},1} \parallel \vec{k}$.

MHD WAVE SPEEDS

SUMMARY

- Linearization of ideal gas with uniform background magnetic field \overrightarrow{B}_0 yields 3 stable modes: Alfvén (intermediate) and slow/fast magnetosonic.
- Modes propagating along \overrightarrow{B}_0 reduce to the Alfvén and sound waves.
- Modes propagating across \overrightarrow{B}_0 reduce to the fast magnetosonic wave.
- Propagation speeds of Alfvén and fast magnetosonic waves can be ultra-relativistic for $\sigma_0 = \frac{B_0^2}{4\pi w_0} \gg 1$, with the Alfvén Lorentz factor

$$\Gamma_{\rm A,0} = \sqrt{1 + \sigma_0}.$$