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UNIFORM MAGNETIC 
FIELD: EULER EQUATION

 

 

Consider a static background  with uniform magnetic field . Since , 
there is no background Lorentz force density , and with uniform background 

pressure  we have . 
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induction equation: 
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Adopt oscillatory velocity perturbation  
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      a quadrupole cross product! 

reducing the inner two cross products: 

 

 

reducing the remaining double cross products: 
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dot products with ,  and : 
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FORCE



 

 

 

note the lack of  term since . 

 

if  has a component in the  plane: 

   the Alfvén dispersion relation. 

introducing the wave vector inclination angle  

and the background magnetization , the propagation speed is 

,   where  is the Alfvén speed.
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RELATIVISTIC 
ALFVÉN SPEED

For relativistic plasmas we would use a momentum equation: 

 

with the relativistic enthalpy density  

and relativistic magnetization . 

This yields  

with the relativistic Alfvén speed . 

For ultra-relativistic magnetizations , hence , we have , with the 
corresponding Alfvén Lorentz factor . 

In the limit of non-relativistic magnetization  and pressure , we recover  and 

.
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LINEARIZED EULER 
EQUATION ALONG ⃗B 0

 

 

 

the linearized pressure equation 

: 
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LINEARIZED EULER 
EQUATION ALONG ⃗k

 

        

 

substituting  

 

substituting  

 

if  has a component along  (longitudinal): 

iωρ0 ⃗v 1 = − i ⃗k P1 + ⃗fL,1
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MAGNETOSONIC SPEEDS

 

 

is the magnetosonic dispersion relation. 

this dispersion relation has two real solutions:

 

corresponding to the slow ( ) and fast ( ) magnetosonic waves. 

for relativistic magnetizations: 

ω2

k2
= c2

s,0 + c2
A,0 −
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=
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WAVES ALONG ⃗B 0

Consider the case of , hence . 

Note that . We can only use the magnetosonic dispersion 
relation: 

 

 

the solutions reduce to  and , 
which correspond to the sound and Alfvén waves, respectively.

θ = 0 ⃗k ∥ ⃗B 0
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Consider the perturbed Lorentz force, splitting the perturbation velocity  into 
components parallel and perpendicular to : 

 

 

 

 

 

 

 

⃗v 1 = ⃗v 1,∥ + ⃗v 1,⊥
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ω
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⃗fL,1 =

ik2B2
0

4πω
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For the sound wave:  and hence : velocity 

perturbations are longitudinal  and compressible 
, there is no Lorentz force (and ). 

For the Alfvén wave:  and hence : 

velocity perturbations are transverse and 
incompressible , there are transverse perturbations of 
magnetic field and Lorentz force density .

(ω2 − k2c2
s,0) ⃗v 1,∥ + (ω2 − k2c2
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⃗v 1 ∥ ⃗k
P1 ≠ 0 ⃗B 1 = 0

ω2 = k2c2
A,0 ⃗v 1,∥ = 0
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WAVES ALONG ⃗B 0



WAVES ACROSS ⃗B 0

Consider the case of , hence . 

The Alfvén dispersion relation reduces to . 

The magnetosonic dispersion relation: 

 

 

Let us thus define the fast magnetosonic speed .
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( ⃗k ⋅ ⃗B 0)

2
= 0

v2
± =

1
2 [c2

s,0 + c2
A,0 ± (c2

s,0 + c2
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Consider the perturbed magnetic field and Lorentz force, splitting the perturbation velocity 
 into components parallel and perpendicular to : 

 

 

 

 

 

 

 

⃗v 1 = ⃗v 1,∥ + ⃗v 1,⊥
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⃗B 1 =
1
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ω
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⃗fL,1 =
i

4πω {( ⃗k ⋅ ⃗B 0)
2 ⃗v 1 − ( ⃗k ⋅ ⃗B 0) ( ⃗k ⋅ ⃗v 1) ⃗B 0 + [B2

0 ( ⃗k ⋅ ⃗v 1) − ( ⃗k ⋅ ⃗B 0) ( ⃗B 0 ⋅ ⃗v 1)] ⃗k }
⃗fL,1 =

ik2B2
0

4πω
⃗v 1,∥

iωρ0 ⃗v 1 = − i ⃗k P1 + ⃗fL,1

P1 = −
κP0

ω
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WAVES ACROSS ⃗B 0



 

For the fast magnetosonic wave:  and 

hence : velocity perturbations are 

longitudinal and compressible , the 
perturbed magnetic field is  (polarized), and 
the perturbed Lorentz force density is .

(ω2 − k2c2
FM,0) ⃗v 1,∥ + ω2 ⃗v 1,⊥ = 0

ω2 = k2c2
FM,0

⃗v 1,⊥ = 0
⃗v 1 ∥ ⃗k P1 ≠ 0

⃗B 1 ∥ ⃗B 0
⃗fL,1 ∥ ⃗k

WAVES ACROSS ⃗B 0
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SUMMARY

Linearization of ideal gas with uniform background magnetic field 
 yields 3 stable modes: Alfvén (intermediate) and slow/fast 

magnetosonic. 

Modes propagating along  reduce to the Alfvén and sound waves. 

Modes propagating across  reduce to the fast magnetosonic wave. 

Propagation speeds of Alfvén and fast magnetosonic waves can be 

ultra-relativistic for , with the Alfvén Lorentz factor 

.

⃗B 0

⃗B 0

⃗B 0

σ0 =
B2

0

4πw0
≫ 1

ΓA,0 = 1 + σ0


