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LORENTZ 
TRANSFORMATION

Lorentz transformation preserves the fields components 
parallel to the boost vector : 

   and   . 

transformation of the perpendicular components: 

, 

, 

with  the Lorentz factor. 

Maxwell’s equations are Lorentz invariant!

⃗v = ⃗β c
⃗E ′ ∥ = ⃗E ∥

⃗B ′ ∥ = ⃗B ∥

⃗E ′ ⊥ = Γ ( ⃗E ⊥ + ⃗β × ⃗B )
⃗B ′ ⊥ = Γ ( ⃗B ⊥ − ⃗β × ⃗E )

Γ = (1 − β2)−1/2



NON-RELATIVISTIC TRANSFORMATION 
AND OHM’S LAW

Consider the non-relativistic limit , hence . 

One can show that: 
 and    (symmetric!) 

Consider a basic Ohm’s law in the co-moving frame  
with scalar electric conductivity . 

The  vs.  symmetry is broken for sufficiently high conductivity 
( ): 

, hence , hence , hence . 

One can also show that , hence a co-moving frame Ohm’s law  
transforms to  in general reference frame.

β ≪ 1 Γ ≃ 1 + β2/2

⃗E ′ ≃ ⃗E + ⃗β × ⃗B ⃗B ′ = ⃗B − ⃗β × ⃗E

⃗j ′ = σ ⃗E ′ 

σ

⃗E ⃗B
σ ≫ c2/vL

E′ ≪ E ⃗E ≃ ⃗B × ⃗β E ∼ βB ≪ B ⃗B ′ ≃ ⃗B

⃗j ′ ≃ ⃗j ⃗j ′ = σ ⃗E ′ 

⃗j ≃ σ ( ⃗E + ⃗β × ⃗B )



MAGNETIC DIFFUSIVITY

Ohm’s law in general reference frame: . 

Introducing the resistive (Faraday) time scale , and electric field 
variability time scale , the Ampère-Maxwell equation becomes: 

. 

, 

with the magnetic diffusivity . 

The displacement current can be neglected for . From the Spitzer 
resistivity, the standard magnetic diffusivity is  with 

. This implies microscopic resistive scales: , hence 
it is really safe to neglect the displacement current for all astrophysical objects.

⃗j = σ ( ⃗E + ⃗β × ⃗B )
τσ = 1/(4πσ)

τE = E/ |∂E/∂t |

⃗∇ × ⃗B ≃
⃗E + ⃗β × ⃗B

cτσ
+

⃗E
cτE

(1 +
τσ

τE ) ⃗E ≃ ⃗B × ⃗β +
η
c ( ⃗∇ × ⃗B )

η = τσc2 = c2/(4πσ)

τE ≫ τσ
η ≃ 104 T−3/2

6 cm2 s−1

T6 = T/(106 K) cτσ ≃ 3 T−3/2
6 nm



INDUCTION EQUATION

Neglecting the displacement current: 

 and . 

The Maxwell-Faraday equation becomes 
the induction equation: 

 

This is the basic equation of 
resistive magnetohydrodynamics (MHD).

⃗j ≃
c

4π ( ⃗∇ × ⃗B ) ⃗E ≃ ⃗B × ⃗β +
η
c ( ⃗∇ × ⃗B )

∂ ⃗B
∂t

= ⃗∇ × ( ⃗v × ⃗B − η ⃗∇ × ⃗B )



MAGNETIC DIFFUSION

The induction equation:  

for  and : 

: the diffusion equation (Fick’s second law) 

with diffusion coefficient  

Example: a Gaussian field 

 

yields a solution  and 

∂ ⃗B
∂t

= ⃗∇ × ( ⃗v × ⃗B − η ⃗∇ × ⃗B )
⃗v = 0 η = const

∂ ⃗B
∂t

= η∇2 ⃗B

η

Bx(t, y) = B0(t) exp [−y2/2σ2
y (t)]

σy(t) = 2ηt B0(t) ∝ 1/ t



DIFFUSIVE TIME SCALES

Consider a 
finite system 
with length 
scale . 

The diffusive 
(dissipative) 
time scale

 
or 

L

τη = L2/η

τη = L2/(π2η)

L [cm] T [K] η [cm2/s] τη [yr]

Earth 3.5×108 3×103 104 5×104

Sun 1.5×1010 107 2×103 2×1010

Galaxy 6×1020 103 3×108 4×1025



MAGNETIC REYNOLDS 
NUMBER

The diffusive time scale . 

For a typical velocity , this can be compared with the 
dynamical time scale . 

The magnetic Reynolds number: 

.

τη = L2/η

v
τv = L/v

Rm ≡
induction
diffusion

=
τη

τv
=

vL
η



MAGNETIC PRANDTL 
NUMBER

Considering a kinematic viscosity , 
the viscous time scale is . 

The Reynolds number: 

 

the magnetic Prandtl number: 

ν
τν = L2/ν

R ≡
advection
viscosity

=
τν

τv
=

vL
ν

Pm =
Rm

R
≡

viscosity
diffusion

=
τη

τν
=

ν
η



MAGNETIC REYNOLDS 
AND PRANDTL NUMBERS
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Table 1
Summary of some important parameters in various astrophysical settings. The values given should be understood as rough
indications only. In particular, the applicability of Eq. (3.17) is questionable in some cases and has therefore not been used for
protostellar discs (see text). We have assumed ln! = 20 in computing Rm and Pm. CZ means convection zone, CV discs and
similar refer to cataclysmic variables and discs around other compact objects such as black holes and neutron stars. AGNs are
active galactic nuclei. Numbers in parenthesis indicate significant uncertainty due to other effects

T [K] " [g cm−3] Pm urms [cm s−1] L [cm] Rm

Solar CZ (upper part) 104 10−6 10−7 106 108 106
Solar CZ (lower part) 106 10−1 10−4 104 1010 109

Protostellar discs 103 10−10 10−8 105 1012 10
CV discs and similar 104 10−7 10−6 105 107 104

AGN discs 107 10−5 104 105 109 1011
Galaxy 104 10−24 (1011) 106 1020 (1018)
Galaxy clusters 108 10−26 (1029) 108 1023 (1029)

In protostellar discs, on the other hand, the gas is mostly neutral with low temperatures. In this case, the
electrical conductivity is given by # = nee

2$en/me, where $en is the rate of collisions between electrons
and neutral particles. The associated resistivity is % = 234x−1

e T 1/2 cm2 s−1, where xe = ne/nn is the
ionization fraction and nn is the number density of neutral particles [144]. The ionization fraction at the
ionization–recombination equilibrium is approximately given by xe=(&/'nn)

1/2, where & is the ionization
rate and ' = 3 × 10−6T −1/2 cm3 s−1 is the dissociative recombination rate [145,146]. For a density of
"=10−10 g cm−3, and a mean molecular weight 2.33mp [144], we have nn =2.6×1013 cm−3.Adopting
for & the cosmic ray ionizing rate & ∼ 10−17 s−1, which is not drastically attenuated by the dense gas in
the disk, and a disc temperature T =103 K, we estimate xe ∼ 2×10−12, and hence % ∼ 4×1015 cm2 s−1.
In Table 1 we summarize typical values of temperature and density in different astrophysical settings

and calculate the corresponding values of Pm. Here we also give rough estimates of typical rms velocities,
urms, and eddy scales, L, which allow us to calculate the magnetic Reynolds number as

Rm = urms/(%kf) , (3.18)

where kf = 2(/L. This number characterizes the relative importance of magnetic induction relative to
magnetic diffusion.A similar number is the fluid Reynolds number, Re=Rm/Pm, which characterizes the
relative importance of inertial forces to viscous forces. (We emphasize that in the above table, Reynolds
numbers are defined based on the inverse wavenumber; our values may therefore be 2( times smaller than
those by other authors. The present definition is a natural one in simulations where one forces power at
a particular wavenumber around kf .)

3.3. Stretching, flux freezing and diffusion

The U× B term in Eq. (3.11) is usually referred to as the induction term. To clarify its role we rewrite
its curl as

∇ × (U× B) = − U · ∇B
︸ ︷︷ ︸

advection

+ B · ∇U
︸ ︷︷ ︸

stretching

− B∇ · U
︸ ︷︷ ︸

compression

, (3.19)



IDEAL MHD

Most astrophysical systems satisfy  
or   or , 
hence magnetic diffusion can be neglected. 

In the ideal MHD limit:  
and the induction equation becomes: 

.

Rm ≫ 1
L ≫ η/v σ ≫ c2/vL

⃗E ≃ ⃗B × ⃗β

∂ ⃗B
∂t

≃ ⃗∇ × ( ⃗v × ⃗B )



MICROSCOPIC CONDITIONS  
FOR IDEAL MHD

Consider dimensionless parameters  and 
 with R the gyroradius,  the mean 

thermal particle speed, and  the collisional time scale. 

Three conditions for ideal MHD: 
1. small gyroradius   ; 
2. large collisionality   ; 
3. small resistivity   . 

For more details, see Freidberg (1982), Sec. II.G-H.

y = R/L
x = mi /me (⟨v⟩ τcoll /L) ⟨v⟩

τcoll

y ≪ 1
x ≪ 1

y2 ≪ x



MAGNETIC FLUX 
FREEZING

magnetic flux through surface  at time : 

 

due to flow velocity field  by time  we 
have  sweeping volume . 
(not a magnetic flux tube!) 

magnetic flux through  at :  

divergence theorem at time : 

 

S t

Φ(t) = ∬S

⃗B (t) ⋅ d ⃗S

⃗U t′ = t + dt
S(t) → S′ (t′ ) dV

S′ t′ Φ′ (t′ ) = ∬S′ 

⃗B (t′ ) ⋅ d ⃗S ′ 

t′ 

Φ′ (t′ ) − Φ(t′ ) + Φside(t′ ) = ∭dV
( ⃗∇ ⋅ ⃗B (t′ )) dV = 0

Φside(t′ ) = ∮C

⃗B (t′ ) ⋅ (d ⃗l × ⃗U dt)
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Fig. 3.1. The surface S enclosed by the curve C is carried by fluid motion to the surface S′ after a time dt . The flux through this
surface ! is frozen into the fluid for a perfectly conducting fluid.

where we have used the fact that ∇ · B= 0. As a simple example, we consider the effect of a linear shear
flow, U = (0, Sx, 0) on the initial field B = (B0, 0, 0). The solution is B = (1, St, 0)B0, i.e. the field
component in the direction of the flow grows linearly in time.
The net induction term more generally implies that the magnetic flux through a surface moving with

the fluid remains constant in the high-conductivity limit. Consider a surface S, bounded by a curve C,
moving with the fluid, as shown in Fig. 3.1. Suppose we define the magnetic flux through this surface,
! =

∫

S B · dS. Then after a time dt the change in flux is given by

!! =
∫

S′
B(t + dt) · dS−

∫

S
B(t) · dS . (3.20)

Applying
∫

∇ · B dV = 0 at time t + dt , to the ‘tube’-like volume swept up by the moving surface S,
shown in Fig. 3.1, we also have

∫

S′
B(t + dt) · dS=

∫

S
B(t + dt) · dS−

∮

C
B(t + dt) · (dl× U dt) , (3.21)

where C is the curve bounding the surface S, and dl is the line element along C. (In the last term, to linear
order in dt , it does not matter whether we take the integral over the curve C or C′.) Using the above

Brandenburg & Subramanian (2005)



 

using the identity : 

 

applying the Stokes’ theorem: 

 

from the induction equation the RHS is zero, hence 
 (Alfvén’s theorem). 

Magnetic flux is thus frozen into the flow.

Φ′ (t′ ) − Φ(t) = Φ(t′ ) − Φ(t) − ∮C

⃗B (t′ ) ⋅ (d ⃗l × ⃗U dt)

(d ⃗l × ⃗U) ⋅ ⃗B = ( ⃗U × ⃗B ) ⋅ d ⃗l
dΦ
dt

=
∂Φ
∂t

− ∮C
( ⃗U × ⃗B ) ⋅ d ⃗l

dΦ
dt

= ∬S

∂ ⃗B
∂t

⋅ d ⃗S − ∬S

⃗∇ × ( ⃗U × ⃗B ) ⋅ d ⃗S

dΦ = 0
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Fig. 3.1. The surface S enclosed by the curve C is carried by fluid motion to the surface S′ after a time dt . The flux through this
surface ! is frozen into the fluid for a perfectly conducting fluid.

where we have used the fact that ∇ · B= 0. As a simple example, we consider the effect of a linear shear
flow, U = (0, Sx, 0) on the initial field B = (B0, 0, 0). The solution is B = (1, St, 0)B0, i.e. the field
component in the direction of the flow grows linearly in time.
The net induction term more generally implies that the magnetic flux through a surface moving with

the fluid remains constant in the high-conductivity limit. Consider a surface S, bounded by a curve C,
moving with the fluid, as shown in Fig. 3.1. Suppose we define the magnetic flux through this surface,
! =

∫

S B · dS. Then after a time dt the change in flux is given by

!! =
∫

S′
B(t + dt) · dS−

∫

S
B(t) · dS . (3.20)

Applying
∫

∇ · B dV = 0 at time t + dt , to the ‘tube’-like volume swept up by the moving surface S,
shown in Fig. 3.1, we also have

∫

S′
B(t + dt) · dS=

∫

S
B(t + dt) · dS−

∮

C
B(t + dt) · (dl× U dt) , (3.21)

where C is the curve bounding the surface S, and dl is the line element along C. (In the last term, to linear
order in dt , it does not matter whether we take the integral over the curve C or C′.) Using the above
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LORENTZ FORCE DENSITY 
IN NON-RELATIVISTIC MHD

 

Electric charge density:  

Electric current density:  

 

In non-relativistic MHD: , hence the electric term can be neglected. 

⃗fL = ρe
⃗E +

1
c ( ⃗j × ⃗B )

ρe =
1

4π
⃗∇ ⋅ ⃗E =

1
4πc

⃗∇ ⋅ ( ⃗B × ⃗v )
⃗j =

c
4π ( ⃗∇ × ⃗B )

⃗fL =
1

4π
⃗E ( ⃗∇ ⋅ ⃗E ) +

1
4π [( ⃗∇ × ⃗B ) × ⃗B ]
E ∼ βB ≪ B

⃗fL ≃
1

4π [( ⃗∇ × ⃗B ) × ⃗B ] =
1

4π ( ⃗B ⋅ ⃗∇ ) ⃗B −
1

8π
⃗∇ (B2)



LORENTZ FORCE DENSITY 
IN IDEAL MHD

 

The first term is the magnetic tension. 
Example: toroidal field in cylindrical coordinates : 

   a radial component directed inwards. 

The second term is the magnetic pressure gradient . 

Example: : . 

Uniform magnetic field is force-free.

⃗fL ≃
1

4π ( ⃗B ⋅ ⃗∇ ) ⃗B −
1

8π
⃗∇ (B2)

⃗B = Bϕ(r, z) ̂ϕ

( ⃗B ⋅ ⃗∇ ) ⃗B = −
B2

ϕ

r
̂r

− ⃗∇ PB

⃗B = Bx(y) ̂x ⃗∇ (B2) =
∂(B2

x )
∂y

̂y



PROBLEM 3: 
MAGNETIC BRAKING

Consider a thin ring of radius R centered in cylindrical 
coordinates  of conducting plasma rotating with 
angular velocity  and threaded by 
an axisymmetric magnetic field . 

By considering how  changes due to the torque exerted 
by the Lorentz force, derive an expression for the 

magnetic braking time scale .

(r, ϕ, z)
⃗Ω = Ω ̂z

⃗B = [Br(r), Bϕ(r),0]

Ω

tL ≡
Ω

|dΩ/dt |
This problem is worth 5 points. Solutions should be sent as 1-page PDF files to 

knalew@camk.edu.pl before the next lecture.

mailto:knalew@camk.edu.pl


MHD STRESS TENSOR

 

  

T00
EM = uEM =

E2 + B2

8π
=

(1 + β2)B2 − ( ⃗β ⋅ ⃗B )2

8π

T0i
EM =

Si

c
=

1
4π ( ⃗E × ⃗B )

i
=

B2βi − ( ⃗β ⋅ ⃗B )Bi

4π

Tij
EM =

E2 + B2

8π
δij −

EiEj + BiBj

4π
=

=
B2

4π
βiβ j +

(1 − β2)B2 + ( ⃗β ⋅ ⃗B )2

8π
δij − (1 − β2)

BiBj

4π
−

⃗β ⋅ ⃗B
4π (βiBj + β jBi)



SUMMARY

A simple Ohm’s law with scalar resistivity, non-relativistic Lorentz 
transformation and neglecting the displacement current are the 

basis for resistive MHD: . 

In most astrophysical systems, magnetic diffusivity can be 
neglected, which leads to the ideal MHD limit . 

In ideal MHD, magnetic flux is frozen into the flow. 

In non-relativistic MHD, the Lorentz force density is 

: (tension) - (pressure gradient).

⃗E ≃ ⃗B × ⃗β +
η
c ( ⃗∇ × ⃗B )

⃗E ≃ ⃗B × ⃗β

⃗fL ≃
1

4π ( ⃗B ⋅ ⃗∇ ) ⃗B −
1

8π
⃗∇ (B2)


