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LORENTZ
TRANSFORMATION

e Lorentz transformation preserves the fields components

parallel to the boost vector V = fc:
Ej=E and B =B

o transformation of the perpendicular components:

B,=r(F,-FxE)

with " = (1 — %)~ the Lorentz factor.

» Maxwell’s equations are Lorentz invariant!




NON-RELATIVISTIC TRANSFORMATION
AND OHM'S LAW

Consider the non-relativistic limit # < 1, hence I" ~ 1 + $%/2.

One can show that:
E'~FE+ fXBand B'= B — ff X E (symmetric!)

Consider a basic Ohm’s law in the co-moving frame f’ — o
with scalar electric conductivity o.

The E vs. B symmetry is broken for sufficiently high conductivity
(6 > c?/VL):
E’ < E, hence E ~ B X p,hence £ ~ B < B, hence B'~ B.

One can also show that f’ o f, hence a co-moving frame Ohm’s law f’ —

transforms to f =~ 0 ( Er Br) in general reference frame.




MAGNETIC DIFFUSIVITY

Ohm’s law in general reference frame: f — (f + [ . B>>.

Introducing the resistive (Faraday) time scale 7, = 1/(4x0), and electric field
variability time scale 7y = E/| 0E/0t |, the Ampere-Maxwell equation becomes:
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with the magnetic diffusivity n = Tdcz = ¢?/(4n0).

The displacement current can be neglected for 7, > 7_. From the Spitzer
resistivity, the standard magnetic diffusivity is # ~ 10* 12 32 cm? 5! with
b (10° K). This implies microscopic resistive scales: crec 317 32 nm, hence

it is really safe to neglect the displacement current for all astrophysical objects.




INDUCTION EQUATION

* Neglecting the displacement current:
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 The Maxwell-Faraday equation becomes
the induction equation:

This 1s the basic equation of
resistive magnetohydrodynamics (MHD).




MAGNETIC DIFFUSION

. 0B — /[, — — —
The induction equation:—t =V X (V X B —nV X B)

° for v = 0 and # = const:

0B —
— =y V? B the diffusion equation (Fick’s second law)

ot
with diffusion coetficient 7

o Example: a Gaussian field
B.(1,y) = By(t) exp [—yz/ZGyZ(Z)]

yields a solution ay(t) = +/2nt and By(7) « 1/ \/;



DIFFUSIVE TIME SCALES

» Consider a
finite system Llem]  TI[K] nlem2?/s] y[yr]
with length
scale L.

Farth 3.5x108 3x103 104 5X104

The diffusive
(dissipative)
time scale
T, = L?/n
or
=Ly

Sun 1.5X1010 107 2x103 2x1010

Galaxy  6x1020 103 3x108  4x1025




MAGNETIC REYNOLDS
NUMBER

* The diffusive time scale 7, = L*/n.

° For a typical velocity v, this can be compared with the
dynamical time scale 7, = L/v.

e The magnetic Reynolds number:
_ Induction 7, VL

m ; X
diffilsion. 7. = 7




MAGNETIC PRANDTL
NUMBER

° Considering a kinematic viscosity v,
the viscous time scale is 7, = L*/v.

 The Reynolds number:
. adveenon- o vl

VISeosity -t

* the magnetic Prandtl number:
e, vIscoSity - Ty

R  diffusion 7,




MAGNETIC REYNOLDS
AND PRANDTL NUMBERS

A. Brandenburg, K. Subramanian / Physics Reports 417 (2005) 1—-209

Table 1

Summary of some important parameters in various astrophysical settings. The values given should be understood as rough
indications only. In particular, the applicability of Eq. (3.17) is questionable in some cases and has therefore not been used for
protostellar discs (see text). We have assumed In 4 = 20 in computing Ry, and Pp,. CZ means convection zone, CV discs and
similar refer to cataclysmic variables and discs around other compact objects such as black holes and neutron stars. AGNs are
active galactic nuclei. Numbers in parenthesis indicate significant uncertainty due to other effects

T [K] p [gem™] B 2y [oms ] L [cm] i

Solar CZ (upper part) 104 190 10~7 106 108 106
Solar CZ (lower part) 100 10-1 10— 10* 1010 10°
Protostellar discs 103 10-10 108 10° 1012 10
CV discs and similar 104 101 10~° 10° 107 104
AGN discs 107 102 10* 10° 10° 10!1
Galaxy 104 g (o 106 102Y

Galaxy clusters 108 1620 (10%%) 108 1022




IDEAL MHD

° Most astrophysical systems satisty R, > 1

or L > n/vor o > c?/VL,
hence magnetic diffusion can be neglected.

* In the ideal MHD limit: E ~ B X 8
and the induction equation becomes:




MICROSCOPIC CONDITIONS
FOR IDEAL MHD

° Consider dimensionless parameters y = R/L and
x =/m;/m, ((V) 7,on/L) with R the gyroradius, (v) the mean

thermal particle speed, and 7_;; the collisional time scale.

» Three conditions for ideal MHD:
1. small gyroradius y < 1;
2. large collisionality x < 1;
3. small resistivity y? < x.

» For more details, see Freidberg (1982), Sec. I1.G-H.




MAGNETIC FLUX
FREEZING

° magnetic flux through surface § at time t:

(1) = H B()-dS
S

® due to flow velocity field l_fby time ¢’ = t + dr we
have S(7) — S'(¢') sweeping volume dV.
(not a magnetic flux tube!)

® magnetic flux through S’ at t:®'(¢') = H E)(t’) . ds
g

° divergence theorem at time "

(1) — D) + Dy (1) = [[ (z') dV 0
dVv

D...(1) =35 B() - (dfx l_fdt)

Brandenburg & Subramanian (2005)




MAGNETIC FLUX
FREEZING

o D) — D) = D) — @) — <JE B(t) - (di’x ﬁdr)
C

>
dt

o applying the Stokes’ theorem:

dd 0B o
el S g Vx(UxB)-
@l :

o from the induction equation the RHS is zero, hence
d® = 0 (Alfvén’s theorem).

e Magnetic flux is thus frozen into the flow. Brandenburg & Subramanian (2005)



LORENTZ FORCE DENSITY
IN NON-RELATIVISTIC MHD

e
peE+—<j><B>
C

° Electric charge density: p, =

— C
* Electric current density: j = i
T

BT 1 > > > 1 > > —
‘fL=—E<V-E>+— (VxB)xB
A 4

° In non-relativistic MHD: E ~ B < B, hence the electric term can be neglected.

= (B-V) B-— V(8

47 87T




LORENTZ FORCE DENSITY
IN IDEAL MHD

o The first term is the magnetic tension.
Example: toroidal field in cylindrical coordinates B = B,(r, z)qu

> >\ — B2
(B Y ) B = — —¢? a radial component directed inwards.
r

® The second term is the magnetic pressure gradient — VPB.
i 2 o(B?
Example: B = B (y)x: V (Bz) — (ax)fi.
Y

o Uniform magnetic field is force-free.



PROBLEM 3:
MAGNETIC BRAKING

o Consider a thin ring of radius R centered in cylindrical
coordinates (r, ¢, z) of conducting plasma rotating with

angular velocity Q = Q2 and threaded by

an axisymmetric magnetic field B = |B,(r), B¢(r),0].

° By considering how £ changes due to the torque exerted
by the Lorentz force, derive an expression for the

Q
dQ/dr|

This problem is worth 5 points. Solutions should be sent as 1-page PDF files to
knalew@camk.edu.pl before the next lecture.

magnetic braking time scale f; =
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MHD STRESS TENSOR
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SUMMARY

* A simple Ohm’s law with scalar resistivity, non-relativistic Lorentz
transformation and neglecting the displacement current are the

— — — }’]

basis for resistive MHD: £ ~ B X f + —
C

e In most astrophysical systems, magnetic diffusivity can be
neglected, which leads to the ideal MHD limit E ~ B X F

» Inideal MHD, magnetic flux is frozen into the flow.
e In non-relativistic MHD, the Lorentz force density is

— 1 > > > 1 —
fi ~— (B -V ) B——V (Bz): (tension) - (pressure gradient).
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