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LORENTZ FORCE

° Consider a particle of mass m, electric charge g, velocity V. = S,

D

Lorentz factor y = (1 — #?)~'2, energy & = ymc?, and momentum

D —yhme

dp
dr
the magnetic field B and electric field E .

° The Lorentz force F]: ==

=(q <f+ ﬁ>>< B>> can be used to define

o We adopt Gaussian cgs (centimetre-gram-second) units throughout

this lecture. The unit of B is gauss (G), 1 G = 10~ T (tesla - the SI
unit). The unit of E is statvolt/cm (statV/cm), the unit of q is
statcoulomb (statC).




ENERGIZATION OF
CHARGED PARTICLES

ldp * Idy =) - = dv d&
= = M-C.=y—nm c =9yn —
2 dr 2l ds dr

?-F{zyﬁmc-q(f+7x§>=qu7-f

particle energy change — = I

mc =
dr z

dg dy.
v \%
[

magnetic fields do not contribute directly to particle
energization




CHARGED PARTICLES IN
UNIFORM MAGNETIC FIELD

Consider a uniform magnetic field B = const without any electric field E = 0, and a

charged particle of constant energy y = const and velocity components /| || B and

Bl B

dv e .
e (7><B>=Q(7><B),

dr ymc
QB 2 A =
where 2 = is the gyrofrequency and B = B/B.
ymc

Consider that B = (1,0,0), hence v X B= Oy~ Vy) = (0,z, — y), where z = dz/dt, etc.

The equations of motion are ¥ = 0, = Qz, 7 = — Qy = — Q%z. We thus have a
combination of a uniform motion along x = B, and circular oscillation in the (v, z) plane.
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The particle follows a helical trajectory with the gyroradius R = O
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CHARGED PARTICLES
IN NON-UNIFORM MAGNETIC FIELD

gradient drift for VBL1B

curvature drift for bent field lines V B l (? 2)

magnetic mirror for VB || B

—

E X ? drift for uniform _E




PROBLEM 1:
MAGNETIC MIRROR

° Consider the case of V B | B.
What may happen to a charged particle?

® Suggestion 1: solve particle motion along B by
linearizing about uniform gyration.

° Suggestion 2: prove that u = V%_/ B 1s invariant.
What is the implication?

This problem is worth 5 points. Solutions should be sent as 1-page PDF files to
knalew@camk.edu.pl before the next lecture.



mailto:knalew@camk.edu.pl

MAXWELL’S EQUATIONS

= 4np, Gauss's law for electric fields

—

- B =0 Gauss’s law for magnetic fields




ELECTRIC CHARGE
CONSERVATION

electric charge density p, = Z q: n
i

electric current density j = Z q;n;V;

l

electric four-current density j* = (p.c, f) foru € 0,1,2,3

aj,u=ape IV“;):O
H or




MAGNETIC MONOPOLES

V.-E = 4rp, Gauss's law for electric fields

V. .B = 4rp ., Gauss’s law for magnetic fields

VXE=—— ]m__E Maxwell-Faraday equation
C C

— — 471' - 1 af . :
VXB=—7]+ = Ampere-Maxwell equation
C C

—

magnetic charge density p,, = Z dm.;1; and current density fm — Z Gm.i TV

l l

For g, # 0 magnetic fields would be screened and limited to short ranges.




MAGNETIC FLUX TUBE

magnetic flux: ® = H? ds

magnetic flux tube: a volume
element bounded by a surface
parallel to local magnetic fields

(no magnetic flux through the sides)

divergence theorem:

ﬂ( 7 B’) dv

The Gauss law for magnetism
V-B=0 implies that ®, = ®,
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ELECTRIC
ENERGY DENSITY

Consider two large flat parallel plates of thickness 0z
with opposite electric charges

of uniform surface densities (. = p,. 0z2).

Using VoE = dmp,, the electric field between the plates is E, ~ 4xp_ 0z = 4rnX..

Each plate is attracted to the other by Lorentz force of surface density

Al B E?
= Ee ==
AA ) S

(the 1/2 factor accounts for the linear decay of £_ across each plate).

Increasing separation between the plates by Az requires a work AW = AF; Az = AE,

increasing the electric energy for the same E..

NI
AA A A

The electric energy density is thus ug =




MAGNETIC
ENERGY DENSITY

An analogous argument can be made,
considering large flat plates with opposite current

densities, e.g. £(.7, = j. 07).

> > 4]1' - 4][
Using V X B = —j, the magnetic field between the platesis B, ~ —.7 ..
C G

Each plate is attracted to the other by Lorentz force of surface density
A, B 7 B

Ah )T

2

er.
The magnetic energy density is thus ug = P (1G* =8z —g3)
T cm

Magnetic fields can store energy, they can also release it. This is fundamentally
important for magnetic reconnection, magnetoluminescence, etc.




MAGNETOLUMINESCENCE
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Abstract Pulsar Wind Nebulae, Blazars, Gamma Ray Bursts and Magnetars all contain
regions where the electromagnetic energy density greatly exceeds the plasma energy density.
These sources exhibit dramatic flaring activity where the electromagnetic energy distributed
over large volumes, appears to be converted efficiently into high energy particles and y -rays.
We call this general process magnetoluminescence. Global requirements on the underlying,
extreme particle acceleration processes are described and the likely importance of relativistic
beaming in enhancing the observed radiation from a flare is emphasized. Recent research on
fluid descriptions of unstable electromagnetic configurations are summarized and progress
on the associated kinetic simulations that are needed to account for the acceleration and
radiation is discussed. Future observational, simulation and experimental opportunities are
briefly summarized.




ELECTROMAGNETIC
ENERGY CHANGE

- . . - E B?
electric and magnetic energy densities: ug = o Ug = =
T T

% : auE C — > >
electric energy change: — = —F - ( V XB )

ot A

o , Oy
magnetic energy change: =




POYNTING FLUX CHANGE

e
/ 4 . C

+ 0

E'E! + B'B’ e e o
- (7% F)

pressure tension

| . E*+B? . EF+BB .
with the (-)Maxwell stress tensor TEJM — ol = ; (symmetric)
T

and the Lorentz force density ]7]: = pef B




STRESS TENSOR
GRADIENT

E'F + B'B

Very close correspondence: f; ~ — ajTéjM




ENERGY-MOMENTUM
EQUATIONS

: auEM L — o>
energy equation: = — F - g

\ 'TEM_fL

momentum equation:
c? 0

let Tgl(\)/l = upy and Té(l)v[ = —

O

T .
this leads to 0 T*" = — = and o 17— =i

HEM c H EM

where 6ﬂ = d/ox" for u € {0,1,2,3} with x¥ = ¢t

the Poynting flux S /c can thus be identified as the electromagnetic momentum density




ELECTROMAGNETIC
STRESS TENSOR

. E'F+B'B
SU
47

2

- - B
example: B = (B,,0,0)and E = 0: TSK/{ = 8_;; diag(1, — 1,1,1)

o Note the fundamental difference: pressure pushes, tension pulls. This is
fundamentally important for magnetic reconnection, inverse cascade, etc.




INVERSE CASCADE

» Energy flow from small scales to large scales.
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FORCE-FREE
ELECTRODYNAMICS

—_— R 1 - —
. fL=peE+—(j><B> — 0
C
e.g., in relativistically magnetized plasmas, neglecting particle pressure and inertia

. ’<V7XE’)
c Ot c ot

)_ 2 (E’xB’)(v’.E’>+B’ B’-(V’xB’)—E’.(_’
A B2

current density as a function of instantaneous £, B fields




ELECTROMAGNETIC
POTENTIALS

B=Vx A, introducing the magnetic vector potential A

e e (90
E = — V¢ — ———, introducing the electric scalar potential ¢

c Ot

—

designed to satisfy source-free Maxwell’s equations V -

gauge function: A A V>l//and @ > @ dyic
Coulomb gauge: V-A=0 (for slowly varying fields)

Lorenz gauge: d,A” = 0 (for rapidly varying fields, radiation),

introducing the electromagnetic four-potential A* = (¢, A )




MAGNETIC MOMENT
AND DIPOLE

Sources of magnetic field (e.g., magnets) can be characterized by
magnetic moment 7.

When placed in external magnetic field B, a torque is induced

Magnetic moment generates a magnetic dipole described by vector

— ?

— m X R
potential A = == In cylindrical coordinates (7, ¢, z) where

mr
R3

m = (0,0,m) we have A = q$ = — sm(9¢ where 0 = 2(m, R)
The corresponding dipole magnetic field is:

0A A 0A
BV R i)

0z r or
— m : = ) - 1 AT
b= [3sm(90059r+(3c:os 0 — 1)z] =5 <m R e m

R3 R3

Geeks, CC BY-SA 4.0, Wikimedia Commons




SUMMARY

Magnetic fields confine the motion of charged particles, forcing
them to gyrate on helical paths.

Magnetic fields do not directly energize charged particles.
Magnetic fields are divergence-free and long-range, hard to screen.

Magnetic field is a form of energy. Poynting flux is a measure of
momentum density.

Magnetic stress tensor is anisotropic: pressure across the field
lines, tension along the field lines.




