Stochastic GW background. Tests of GR

12.1.21

General schedule

- * History
- ★ Introduction to general relativity
- * Detection principles
- * Detectors
- ★ Binary black-hole system
- * Bursts and continuous waves
- * Rates and populations & cosmology
- ★ Stochastic GW background. Tests of general relativity using GWs
 - * GW background emission, and its possible sources,
 - * How to use various aspects of GWs to test theories of gravity?
- ★ Data analysis: signal processing
- ★ Data analysis: parameter estimation

Detectable astrophysical sources?

Supernovae

Fast-spinning neutron stars

Primordial gravitational waves

Stochastic GW background

- Incoherent superposition of many unresolved sources.
- Cosmological:
 - » Inflationary epoch, preheating, reheating
 - » Phase transitions
 - » Cosmic strings
 - » Alternative cosmologies
- Astrophysical:
 - » Supernovae
 - » Magnetars
 - » Binary black holes

Potentially could probe physics of the very-early Universe. Typical frist approximations:

- ★ Gaussian: a sum of many contributions,
- * Stationary: physical time scales are much larger than observational ones,
- * Isotropic (at least for cosmological backgrounds).

Under these approximations, it is completely described by its power spectrum.

Stochastic GW background

Stochastic GW background is usually described as energy density per logarithmic frequency interval with respect to the closure density of the universe ($\rho_c = \frac{3c^2 H_0^2}{8\pi G} \approx 7.6 \times 10^{-9} \text{ erg/cm}^3$):

$$\Omega_{GW}(f) = \frac{f}{\rho_c} \frac{d\rho_{GW}}{df}$$

or over a particular frequency band:

$$\Omega_{GW} = \int d \ln(f) \Omega_{GW}(f).$$

Usually a power-law form of the energy density frequency dependence is assumed:

$$\Omega_{GW}(f) = \Omega_{\alpha} \left(\frac{f}{f_{ref}} \right)^{\alpha}.$$

Stochastic GW background

The search uses an estimator \hat{Y}_{α}

$$\hat{Y}_{lpha} = \int_{-\infty}^{\infty} df \, \int_{-\infty}^{\infty} df' \, \delta_T(f-f') \tilde{s}_1^*(f) \tilde{s}_2(f') \tilde{Q}_{lpha}(f'),$$

with a variance σ_Y^2

$$\sigma_Y^2 \approx \frac{T}{2} \int_0^\infty df \, P_1(f) P_2(f) |\tilde{Q}_\alpha(f)|^2,$$

where $\delta_T(f - f')$ is a finite-time Dirac delta function, *T* is the observation time, $P_{1,2}$ are the one-sided power spectral densities for the detectors, and $\tilde{Q}_{\alpha}(f)$ is a filter function to optimize the search:

$$\tilde{Q}_{\alpha}(f) = \lambda_{\alpha} \frac{\gamma(f)H_0^2}{f^3 P_1(f)P_2(f)} \left(\frac{f}{f_{\rm ref}}\right)^{\alpha}.$$

 $\gamma(f)$ is called the overlap reduction function (measures the reduction in sensitivity due to separation and relative misalignment between the two detectors).

(see N. Christensen review for more details)

Overlap reduction function (coherence function)

In principle, sensitive to all possible 6 polarizations (\rightarrow stochastic background can be used to test theories of gravity).

Stochastic GW background from binary mergers

- For every detected binary merger, there are many more that are too distant and too faint.
- They generate a stochastic background of gravitational waves.

$$\Omega_{\rm GW}(f;\theta_k) = \frac{f}{\rho_c H_0} \int_0^{z_{\rm max}} dz \frac{R_m(z,\theta_k) \frac{dE_{\rm GW}}{df_s}(f_s,\theta_k)}{(1+z)E(\Omega_{\rm M},\Omega_{\Lambda},z)}$$

• Relatively high rate and large masses of observed systems implies a relatively strong stochastic background.

Stochastic GW background from binary mergers

Based on the Field formation mechanism

Directional stochastic GW background

 Relax assumption of isotropy and generalize the search for a stochastic signal to the case of arbitrary angular distribution.

$$\Omega_{\rm GW}(f) \equiv \frac{f}{\rho_c} \frac{d\rho_{\rm GW}}{df} = \frac{2\pi^2}{3H_0^2} f^3 H(f) \int_{S^2} d\hat{\Omega} \, \mathcal{P}(\hat{\Omega})$$

$$\mathcal{P}(\hat{\Omega}) = \mathcal{P}_{\alpha} \mathbf{e}_{\alpha}(\hat{\Omega})$$
Radiometer Analysis
Spherical Harmonic
Decomposition

$$\mathcal{P}(\hat{\Omega}) \equiv \eta(\hat{\Omega}_0) \delta^2(\hat{\Omega}, \hat{\Omega}_0)$$

$$\mathcal{P}(\hat{\Omega}) \equiv \sum_{lm} \mathcal{P}_{lm} Y_{lm}(\hat{\Omega})$$

 \rightarrow radiometer searches.

Directional stochastic GW background

First access to the strong-field dynamics of spacetime

Before the direct detection of gravitational waves:

- Solar system tests: weak-field; dynamics of spacetime itself not being probed
- Binary neutron stars: relatively weak-field test of spacetime dynamics
- Cosmology: dark matter and dark energy may signal GR breakdown

Direct detection of GW from binary black hole mergers:

- Genuinely strong-field dynamics
- (Presumed) pure spacetime events

Evolution of a binary system

Effect of parameters on the shape of the wave

The 'mechanics' of the GR binary system and its emitted GW waveform is actually quite well known:

Illustration by N. Cornish and T. Littenberg

Complementary information from different events

- $\star\,$ GW150914 ($ho\simeq$ 24): merger at the most sensitive detector frequencies,
- ★ GW151226 (ρ \simeq 13): long inspiral in sensitive frequency band,
- ★ GW170104 (ρ \simeq 13): twice as far away \rightarrow effects of distance on propagation

Exploiting the phenomenology of IMR

- ★ Post-Newtonian description of inspiral
 - * Expansion of gravitational wave phase in powers of v/c,
 - $\star~$ Do the coefficients depend on masses, spins as predicted by GR?
- * Consistency between inspiral and post-inspiral regimes
- * Propagation of gravitational waves over large distances
 - * Mass of the graviton,
 - * violations of local Lorentz invariance,
 - * dispersion relation,
- * Ringdown
 - From the quasi-normal mode spectrum: (indirect) test of no-hair theorem
- * Gravitational wave echoes
- ★ Tidal effects during inspiral
 - * "Black hole mimickers": boson stars, dark matter stars, gravastars, ... (deviations from standard GR and matter descriptions)
- * Polarization modes beyond GR

A zoo of alternative theories of gravity

David Lovelock (1971): it's actually not straightforward to obtain a metric theory of gravity other than Einstein's GR. Specifically,

 * "In four spacetime dimensions the only divergence-free symmetric rank-2 tensor constructed solely from the metric and its derivatives up to second order, and preserving diffeomorphism invariance, is the Einstein tensor plus a cosmological term"

which means

 * "If a local gravitational action contains only up to second derivatives of the four-dimensional spacetime metric, then the only possible equations of motion are the Einstein field equations."

A zoo of alternative theories of gravity

David Lovelock (1971): to modify Einstein's GR, one can

- add extra fields other than metric tensor (vector, scalar fields),
- \star add or remove dimensions,
- take non-locality into account (action-at-a-distance),
- * allow breaking of GR principles (e.g. the equivalence principle).

How to check GR observationally

Karl Popper (1902-1994): falsifiability of the theory is the fundamental scientific criterion.

LIGO-Virgo O1-O2-O3a delivered 50 various detections, which were used for several kinds of tests:

- * "residual" (does the data contain anything unexpected after subtracting the signal model?)
- * "astrophysical parameters" (are the parameters consistent with each other in various regimes?)
- * "parameters of the theory" (are the coefficient values consistent with the theory?)
- * "dispersion relation" (do gravitational waves propagate like photons?)
- ★ "ringdown" (are we observing horizons as predicted by GR?)
- ★ "echoes" (are observed objects really GR black holes?)
- * "polarizations" (do gravitational waves interact with matter as GR predicts?)

Residuum test (left-over after removing the model)

Does the data after subtracting the model contain anything else except noise? If the waveform model reproduces the reality well, we expect:

- $\star\,$ No correlations between signal-to-noise ratio of the model and the residual,
- Statistical properties of the residual consistent with data in which no signal was present (comparison with the 'background').

Residual data after subtraction of best-fitting waveform

After subtraction of best-fitting waveform, is residual data consistent with noise?

$$SNR_{res}^2 = rac{1-FF^2}{FF^2}SNR_{det}^2$$

In case of GW150914, $FF \ge 0.96$; GR violations limited to 4%, at least for effects that can not be absorbed into redefinition of physical parameters.

Inspiral-merger-ringdown (IMR) consistency

- If GR is correct, the final state of a BBH merger is a Kerr BH.
- The final mass and spin of the BH inferred from high and low frequency regimes must be consistent.
- Use parameter estimation on full signal and NR-calibrated fits to infer the final masses and spins, and obtain the cutoff frequency f_c splitting signal into inspiral and merger-ringdown regimes.

- $\frac{\Delta M_{\rm f}}{\bar{M}_{\rm f}} = 2 \frac{M_{\rm f}^{\rm insp} M_{\rm f}^{\rm postinsp}}{M_{\rm f}^{\rm insp} + M_{\rm f}^{\rm postinsp}}$ $\frac{\Delta \chi_{\rm f}}{\bar{\chi}_{\rm f}} = 2 \frac{\chi_{\rm f}^{\rm insp} \chi_{\rm f}^{\rm postinsp}}{\chi_{\rm f}^{\rm insp} + \chi_{\rm f}^{\rm postinsp}}$
- For this test to be applicable, the inspiral and merger-ringdown regions of the signal must be informative.
- Impose a cut on SNR: both inspiral and merger ringdown regimes must have optimal SNR > 6.
- Additionally, demand that the detector frame total mass is below 100 solar masses.
- Reweight the posteriors to a prior uniform in deviation parameters.

Inspiral-merger-ringdown (IMR) consistency

Inspiral-Merger-Ringdown (IMR) waveform model written as frequency-dependent amplitude and phase

Phe 0

0

 $\tilde{\mathbf{i}}$ (c) \mathbf{i} (c) \mathbf{i}

$$h(f) = \mathcal{A}(f) e^{\varphi_{\varphi}(f)}$$
Parameterize phase corrections in 3 distinct regions:
• Inspiral $\varphi_{Ins}(f) = \varphi_{ref} + 2\pi f t_{ref} + \varphi_{Newt}(Mf)^{-5/3}$

$$\xrightarrow{Coefficients analytically} + \varphi_{0.5PN}(Mf)^{-4/3} + \varphi_{1PN}(Mf)^{-1}$$

$$+ \varphi_{1.5PN}(Mf)^{-2/3} + \cdots$$
Phenomenological Coefficients
• Intermediate $\varphi_{Int} = \frac{1}{\eta} \left(\beta_0 + \beta_1 f + \beta_2 \log(f) - \frac{\beta_3}{3} f^{-3} \right)$
• Merger-Ringdown $\varphi_{MR} = \frac{1}{\eta} \left\{ \alpha_0 + \alpha_1 f - \alpha_2 f^{-1} + \frac{4}{3} \alpha_3 f^{3/4} + \alpha_4 \tan^{-1} \left(\frac{f - \alpha_5 f_{RD}}{f_{damp}} \right) \right\}$

Pratten+, arXiv:2001.11412

LSC+Virgo, Phys. Rev. X 6, 041015 (2016) 23/49

LSC+Virgo, Phys. Rev. X 6, 041015 (2016)24/49

LSC+Virgo, Phys. Rev. X 6, 041015 (2016) 25/49

LSC+Virgo, Phys. Rev. X 6, 041015 (2016) 26/49

- Construct joint posteriors using two approaches:
 - Shared common value of deviation parameter
 - Hierarchical analysis
- Distributions and hyperparameters must be consistent with

GR: $\delta \hat{p}_i = 0, \mu = \sigma = 0$

- Dashed horizontal line is GR limit (vanishing deformations)
- Shaded regions: population-marginalized expectations from hierarchical analysis for *Phenom* and *SEOB*
- Black distributions: events share common value of parameter

- * Parameters of the theory: $p_i \rightarrow (1 + \delta \hat{p}_i) p_i, p_i \in \{\phi_i, \beta_i, \alpha_i\},\$
- * Similarly, also astrophysical parameters may be studied like this, e.g. the spin-induced quadrupole moment $Q = -(1 + \delta \kappa) \chi^2 m^3$.

Spin-induced quadrupole moment

- Spinning motion of a compact object creates a distortion in the mass distribution
- Induces a distortion in the gravitational field measured by the quadrupole-moment tensor ${\cal Q}$
- Effect imprinted in emitted GW radiation at specific PN orders specialized variant of parameterized test
 - Include leading order correction at 2PN and a correction at 3PN
- For a compact object of mass m and spin χ

$$Q = -(1+\delta\kappa)\,\chi^2_A m^3_A$$

Coefficient depends on the equation of state, mass and spin of compact object...

Enables us to test the black hole nature of the compact object!

Black Holes (no-hair conjecture)	$\delta\kappa$ = 0 [Poisson '98]
Neutron Stars	$\delta\kappa$ ~ 1 - 13 [Laarakkers '97, Pappas '12]
Boson Stars	$\delta\kappa$ ~ 10 - 150 [Ryan '97]

Spin-induced quadrupole moment

• Highly correlated with masses and spins, adopt an alternative parameterisation (cf χ_{eff})

Propagation tests. Dispersion relation

Generalized dispersion relation:

$$E^2 = p^2 c^2 + A_\alpha p^\alpha c^\alpha$$

E = Energy

 \overline{p} = momentum

C = speed of light

 $A_{lpha}, lpha$ = phenomenological parameters

 $\begin{array}{ll} \underline{\textbf{GR}} & \underline{\textbf{Extensions of GR}} \\ A_{\alpha} = 0, \mbox{ for all } \alpha & \mbox{Massive gravity theory:} \\ m_g = 0 & \mbox{ } \alpha = 0, \ A_{\alpha} > 0, \ m_g = A_0^{1/2} c^{-2} \end{array}$

Dispersion of light wave

 m_g = graviton mass

Propagation tests. Dispersion relation

- Noticeable improvement in the upper bound of $|A_{lpha}|$ as compared to GWTC-1
- A factor of ~2.6 improvement, consistent with the increase in number of events from GWTC-1 to GWTC-2
- $m_g \leq 1.76 imes 10^{-23} \, \mathrm{eV/c^2}$, with 90% credibility
- A factor of ~2.7 improvement as compared to GWTC-1
- 1.8 times more stringent than the recent Solar System bound of $3.16\times10^{-23}\,eV/c^2$ with 90% credibility [Phys. Rev. D 102.021501 (2020)]

GW170817: speed of gravitation

Relative speed difference between GWs and photons:

$$rac{v_{GW}-c}{c}=rac{\Delta v}{c}pproxrac{c\Delta t}{d}$$

Assuming very conservative values:

- Distance d = 26 Mpc (lower bound from 90% credible interval on luminosity distance derived from the GW signal),
- * Time delay $\Delta t = 10$ s (actual delay between GW170817 and GRB170817A was $\simeq 1.7$ s)

$$-3 imes 10^{-15} \leq rac{\Delta
u}{c} \leq 7 imes 10^{-16}$$

 $v_{GW} = 299792458^{+0.00001}_{-0.00006} \text{ m/s} = c^{+0.000001}_{-0.00006} \text{ m/s}$

Constraining large extra dimensions

- Braneworld models
 - Standard model physics confined to the brane
 - Gravity can propagate into the bulk
 - "Leakage" of gravitational radiation into large extra dimensions
 - Gravitational wave strength drops off as $1/d^{(D-2)/2}$
- Compare distance inferred from GW signal with the distance to host galaxy
 D = 4.02 ± 0.1

Pardo et al., arXiv:1801.08160

A new cosmic distance marker

- Mapping out the large-scale structure and evolution of spacetime by comparing:
 - Distance
 - Redshift
- Current measurements depend on cosmic distance ladder
 - Intrinsic brightness of e.g. supernovae determined by comparison with different, closer-by objects
 - Possibility of systematic errors at every "rung" of the ladder
- Gravitational waves from binary mergers: Distance can be measured directly from the gravitational wave signal!

A new cosmic distance marker

- Measurement of the local expansion of the Universe: The Hubble constant
 - Distance from GW signal
 - Redshift from EM counterpart (galaxy NGC 4993)

- One detection: limited accuracy
- Few tens of detections: O(1%) accuracy after few tens of detections

What is the true nature of black holes?

Ringdown of newly formed black hole

- Not yet observed in detail
- Will enable indirect test of no hair theorem: "Stationary, neutral black holes only characterized by mass and spin"
- Requires further factor 3-4 improvement of detectors for test at the few percent level

Carullo *et al.,* arXiv:1805.04760 Brito *et al.,* arXiv:1805.00293

Gravitational wave echoes

- Alternatives to standard black holes, e.g. "firewalls" prompted by Hawking's information paradox
- Even after ringdown, black hole will continue to emit gravitational wave bursts: *echoes*
- Macroscopic signature of quantum gravity

Cardoso et al., PRD 94, 084031 (2016) Tsang et al., PRD 98, 024023 (2018)

Ringdown of newly formed black hole

- Ringdown regime: Kerr metric + linear perturbations
 - Ringdown signal is a superposition of quasi-normal modes

$$h(t) = \sum_{nlm} \mathcal{A}_{nlm} e^{-t/\tau_{nlm}} \cos(\omega_{nlm} t + \phi_{nlm})$$

- Characteristic frequencies ω_{nlm} and damping times au_{nlm}
- No-hair conjecture: stationary, electrically neutral black hole completely characterized by mass M_f , spin a_f
 - Linearized Einstein equations around Kerr background enforce specific dependences:

$$\omega_{nlm} = \omega_{nlm}(M_f, a_f)$$

$$\tau_{nlm} = \tau_{nlm}(M_f, a_f)$$

• Empirically checking these dependences would constitute an indirect test of the no-hair conjecture

Ringdown of GW150914?

- Numerical relativity simulations: linearized regime valid no earlier than ~10 M after merger
 - For GW150914: 10 M corresponds to ~3 milliseconds
- Evidence for a least-damped quasi-normal mode in GW150914 from fitting a single damped sinusoid:

LIGO + Virgo, PRL **116**, 221101 (2017)

Testing the black hole no-hair conjecture

- GW50914: ringdown part had signal-to-noise ratio of ~8.5
 - Would have been 3 times louder in Advanced LIGO/Virgo at design sensitivity
- Should a similar signal be seen after final detector upgrades, will we be able to test the no-hair conjecture?
 - Assume availability of accurate ringdown signal model for "standard" black holes
 - · Find out at what time after merger the linearized regime is valid
 - Allow deviations from expressions for frequencies, damping times:

 $\begin{aligned} \omega_{lmn}(M_f, a_f) &\to (1 + \delta \hat{\omega}_{lmn}) \,\omega_{lmn}(M_f, a_f) \\ \tau_{lmn}(M_f, a_f) &\to (1 + \delta \hat{\tau}_{lmn}) \,\tau_{lmn}(M_f, a_f) \end{aligned}$

• If no-hair conjecture valid then measured deviations should be consistent with zero

Ringdown tests in GWTC-2

- Ringdown: quasi-normal modes (QNMs) with set frequencies and damping times
 - Infer final mass and final spin independent of inspiral
 - Constrain deviations from GR predictions of the frequencies and damping times
- Key results (qualitatively):
 - Measurements of the final mass and the spin consistent with the measurements using the full IMR signals
 - Inferred QNM frequencies and damping times consistent with BH perturbation theory calculations

Credit: Phys. Rev. Lett. 116, 061102 (2016)

$$h_{+}(t) - ih_{\times}(t) = \sum_{\ell=2}^{+\infty} \sum_{m=-\ell}^{\ell} \sum_{n=0}^{+\infty} \mathcal{A}_{\ell m n} \exp\left[-\frac{t-t_0}{(1+z)\tau_{\ell m n}}\right] \exp\left[\frac{2\pi i f_{\ell m n}(t-t_0)}{1+z}\right]_{-2} S_{\ell m n}(\theta, \phi, \chi_{f})$$

- Mass and spin measurement using 3 different ringdown-only waveforms
 - Kerr₂₂₀: include only

$$\ell = 2, |m| = 2, n = 0 \text{ mode}$$

Kerr₂₂₁: include both
$$\ell = 2, |m| = 2, n = 0, 1$$
 mode

Kerr_{HM}: include all the fundamental modes
$$(n = 0)$$
 for $\ell < 4$

Ringdown tests in GWTC-2

Zoo of possible exotic compact objects

"Black hole mimickers":

- Boson stars
- Dark matter stars
- Gravastars
- · Firewalls, fuzzballs
- ...

Find through:

Anomalous tidal effects during inspiral

Cardoso et al., arXiv:1701.01116

Giudice et al., JCAP 1610, 001 (2016)

Anomalous ringdown spectrum

Meidam et al., Phys. Rev. D 90, 064009 (2014)

Gravitational wave "echoes" after ringdown

Cardoso et al., Phys. Rev. D 94, 084021 (2016)

Echoes

- What if the remnant compact object is *not* a classical BH?
- Exotic compact objects (ECOs): event horizon replaced by a reflective surface
- GWs reflecting back and forth between the surface and the light ring ⇒ GW echoes
- Inspiral + Merger + Ringdown + Echoes (IMRE)
- Smoking-gun evidence for a BH mimicker if detected

Gravitational wave echoes

Cardoso et al., PRL **116**, 171101 (2016) Cardoso et al., PRD **94**, 084031 (2016)

- Exotic objects with corrections near horizon: inner potential barrier for radial motion
- After formation/ringdown: continuing bursts of radiation called *echoes*
- If microscopic horizon modification $\ell \ll M$ then time between successive echoes

$$\Delta t \sim -nM \log\left(\frac{\ell}{M}\right)$$

where *n* set by nature of object:

- n = 8 for wormholes
- *n* = 6 for thin-shell gravastars
- n = 4 for empty shell
- For GW150914 ($M = 65 M_{sun}$), taking $\ell = \ell_{Planck}$, and n = 4: $\Delta t = 117 ms$

Searching for alternative polarizations

- Generic metric theories of gravity allow up to six GW polarizations
 - two tensor modes (helicity ± 2), allowed in GR
 - two vector modes (helicity ±1)
 - two scalar modes (helicity 0)
- Polarization content is imprinted in the relative amplitudes of the output at different detectors
- Used to reconstruct the GW polarization content in the data
- Five-detector network would be ideal for this test
- We used three-detector network to distinguish between specific subsets of all the possible polarization combinations

Credit: Claudia de Rham, LRR, 17 (2014).

Searching for alternative polarizations

- Extreme polarization hypotheses:
 - full-tensor vs full-vector
 - o full-tensor vs full-scalar
- Null-stream based polarization test, does not rely on specific waveform models
 - Null-stream: linear combination of data streams from different detectors
 - Free of true GW signal with a given helicity and sky-location
 - Marginalized over sky-location
 - Any excess power in the *null stream* must be produced by a different helicity and sky-location
 - Quantify the excess power by null energy

Searching for alternative polarizations

Summary

- Population tests of the genuinely strong-field dynamics of pure spacetime:
 - * No evidence for violations of GR.
- \star Tests of coalescence dynamics
 - * Parameterized tests in inspiral and merger/ringdown regimes,
 - * Consistency of masses and spins between inspiral and post-inspiral.
- ★ Tests of gravitational wave propagation:
 - * Bound on graviton mass and speed of gravity,
 - $\star~$ Bounds on violation of local Lorentz invariance.
- * First tests of non-GR polarizations
- \star Tests of the black hole nature of the component and remnant objects,
- * Ringdown and no-hair theorem tests, GW echoes,
- \star 'Real' cosmology/cosmography with GWs.

Literature

- N. Christensen, "Stochastic Gravitational Wave Backgrounds", Reports on Progress in Physics, Vol. 82, 016903 (2019) (arXiv:1811.08797)
- * "Tests of General Relativity with Binary Black Holes from the second LIGO–Virgo Gravitational-Wave Transient Catalog" (dcc.ligo.org/LIGO-P2000091/public)
- * Z. Carson, K. Yagi, "Testing General Relativity with Gravitational Waves" (arXiv:2011.02938)
- * F. Dyson, "Is a Graviton Detectable?" publications.ias.edu/sites/default/files/poincare2012.pdf