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Bursts and continuous

waves

8.12.20



2/35

General schedule

⋆ History

⋆ Introduction to general relativity

⋆ Detection principles

⋆ Detectors

⋆ Binary black-hole system

⋆ Bursts and continuous waves

⋆ Taxonomy of GW sources and signal types,

⋆ Burst sources: supernovæ,

⋆ Continuous waves: rotating non-axisymmetric neutron stars.

⋆ Rates and populations & cosmology

⋆ Testing general relativity

⋆ Data analysis: waveforms and detection

⋆ Data analysis: parameter estimation
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Taxonomy of GW sources
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(P. Sutton, Banach Center, Warsaw, 2013/07/02)
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Burst sources
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”Collider” vs ”table top” experiments

⋆ Many potential sources, but the GW ‘engine‘ is not
guaranteed

⋆ ”opposite problem” to compact binary coalescences.

⋆ Discovery of a persistent source will be the capstone of
GW astronomy:

⋆ Reality of signal confirmed by need for corrections

(modulation of the signal),

⋆ Corrections give precise direction of source,

⋆ Single interferometer can make definitive discovery,

⋆ Repeatable studies,

→ Not only NS interiors, but also

⋆ Testing GR (polarizations etc.),

⋆ Calibration, ”distance ladder”/cosmography.
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Bursts as unmodeled signals

Even though we don’t use matched filters, the

matched-filter signal-to-noise ratio (SNR) is still the natural

measure of burst detectability (next lecture):

ρ2 = 2

∫

∞

−∞

df
|F+h̃+(f ) + F×h̃×(f )|

2

S(f )
. (1)

where S(f ) is the one-sided noise power spectral density

(PSD):

〈ñ(f )ñ∗(f ′)〉 =
1

2
δ(f − f ′)S(f ),

where 〈. . . 〉 is the ensemble average over many noise n(f )
realisations (in reality, one noise realisation, so it is a time

average for stationary stochastic noise).

(P. Sutton, Banach Center, Warsaw, 2013)
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Bursts as unmodelled signals

A standard signal measure for burst searches is the

root-sum-square amplitude:

h2
rss =

∫

∞

−∞

dt
[

h2
+(t) + h2

×
(t)
]

(3)

= 2

∫

∞

0

df
[

|h̃+(f )|
2 + |h̃×(f )|

2
]

. (4)

This has the same units as the noise spectrum, so we can

use it to estimate the SNR. E.g., for unpolarised

narrowband GWs we have

ρ2 ≃ [F 2
+ + F 2

×
]

h2
rss

S(f )
. (5)

(P. Sutton, Banach Center, Warsaw, 2013)
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Bursts as unmodelled signals

We can relate hrss to the energy emitted in GWs, EGW,

using the flux (energy per unit area per unit time):

FGW =
c3

16πG
〈ḣ2

+(t) + ḣ2
×
(t)〉 (6)

=
πc3

4G

1

T

∫

∞

−∞

df f 2
(

|h̃+(f )|
2 + |h̃×(f )|

2
)

. (7)

For a narrowband signal & isotropic emission this gives

EGW = 4πr2 T FGW (8)

=
π2c3

G
r2f 2

0 h2
rss . (9)

(P. Sutton, Banach Center, Warsaw, 2013)
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Bursts as unmodelled signals

Combining eqns (5) and (9) relates SNR to energy:

ρ2 = [F 2
+ + F 2

×
]

G

π2c3

EGW

S(f0)r2f 2
0

. (10)

Averaging over angles (sky direction, source orientation)

gives average range for detection with ρ ≥ ρ0:

Reff ≃

(

G

2π2c3

EGW

S(f0)f
2
0 ρ

2
det

)1/2

. (11)

For a homogeneous isotropic population of sources of rate

density Ṅ , the detection rate is

Ṅ =
4

3
πR3

eff
Ṅ . (12)

(P. Sutton, Banach Center, Warsaw, 2013)
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Why bursts?

● Historically, transient signal whose waveforms are not accurately known or very 
complex such that templated searches are not affordable.

      Not totally true :  

– Cosmic string → templates do exist

– Compact Binary mergers → templates do exist

● Transient : duration typically < 1s but some GW signals duration O (100s)

● Astrophysical GW sources : neutron star and black holes → core collapse 
supernova, black hole merger, fallback accretion onto a neutron star, neutron star 
instabilities (post-merger), magnetar flares, …

● Many GW sources are emitting photons and neutrinos → multi-messengers.

(Marie Anne Bizouard, Ecole de Physique des Houches, 2018)
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Core-collapse supernovæ as GW burst sources

● The explosion mechanisms :

Type I Type Ib/Ic & type II

Progenitors White dwarfs Massive stars

Explosion 
mechanism

Matter/gas falls onto a 'dead' white dwarf 
raising its mass until the Chandrasekhar 
limit.
→ triggers runaway nuclear fusion 
explosion that destroys the star.

The core runs out of fuel to power its 
nuclear fusion reactions and collapses in 
on itself.
→ release gravitational potential energy 
in a form that blows away the star's outer 
layers.

OK but how ?

(Marie Anne Bizouard, Ecole de Physique des Houches, 2018)
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Core-collapse supernovæ as GW burst sources

11

 Core bounce

● Nuclear equation of state stiffens → 
rebound of the inner core (“core 
bounce”). 

● A hydrodynamic shock wave is 
launched at the outer edge of the inner 
core and propagates outward in mass 
and radius, slamming into the still 
infalling outer core.

 After core bounce

● The shock quickly loses energy 
(dissociation of heavy elements + 
neutrino losses) and stalls.

● Without shock revival, black-hole 
(BH) formation is inevitable and even 
with a successful explosion, a BH may 
still form via fall-back accretion.

(Marie Anne Bizouard, Ecole de Physique des Houches, 2018)
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CCSN engine mechanism
● The explosion mechanism current paradigm : neutrino-driven delayed explosion (Wilson 82’, Bethe&Wilson 85’)

1. Trapped neutrinos diffuse out 
(τ

ν-diff
 >> 1) of the opaque PNS

2. Neutrinos heat matter in semi-transparant 
(τ

ν-diff
 ~ 1) post-shock region and drive 

convective flow in hot bubble region 
between gain radius and shock

3. Neutrinos stream freely (τ
ν-diff

 << 1) 

through transparent stellar envelope.

Additional key ingredients for explosion :
● Nuclear burning.
● Standing accretion shock instability

(SASI) is an instability of the shock 
wave itself. SASI aids the explosion and 
determines the asphericity.

(Marie Anne Bizouard, Ecole de Physique des Houches, 2018)
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CCSN engine mechanism

● GW emission mechanisms : rotating collapse and bounce, non axisymmetric rotational 
instabilities, postbounce convective overturn/standing accretion shock instability (SASI) and 
PNS pulsations. 

● Neutrinos emission : A large correlation between neutrinos and GW time evolution signals is 
expected because of SASI (sloshing). 

PNS instabilities Neutrino driven convection

(Marie Anne Bizouard, Ecole de Physique des Houches, 2018)
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CCSN and GW emission

16

P. Cerda-Duran et al, Astrophys.J. 779 (2013) L18

(Marie Anne Bizouard, Ecole de Physique des Houches, 2018)
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CCSN and GW emission

Yakunin et al, Phys.Rev. D92 (2015) no.8, 084040

Morozova et al, Astrophys.J. 861 (2018) no.1, 10

(Marie Anne Bizouard, Ecole de Physique des Houches, 2018)
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CCSN - what can we learn?

Credit : T. Mezzacappa

(Marie Anne Bizouard, Ecole de Physique des Houches, 2018)
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Neutron stars = very dense, magnetized stars

The most relativistic material objects in the Universe:

compactness M/R ≃ 0.5, observed in all EM spectrum as

pulsars, magnetars, in supernovæ remnants, in accreting

systems, in double neutron star binaries...
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About 2500 NS observed to date, ∼108 − 109 in the Galaxy.
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Continuous GWs from spinning neutron stars
Characteristics:

⋆ Long-lived: T > Tobs,

⋆ Nearly periodic: fGW ∝ frot

Mechanisms that can create
time-varying quadrupole
moment:

⋆ ”Mountains” (elastic and/or magnetic

stresses, fGW = 2frot ),

⋆ Oscillations (r-modes, fGW = 4/3frot

+ GR corr.),

⋆ Free precession (fGW ∝ frot + fprec)

⋆ Accretion (drives deformations from

r-modes, thermal gradients,

magnetic fields, fGW ≃ frot )

(see PASA 2015 32, 34 or Universe

2019, 5(11), 217)
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Mountains and NS oscillation modes

NS instabilities and their possible driving mechanisms:
⋆ Pressure modes: driven by pressure,

⋆ Fundamental mode: (aka “Kelvin mode”) the first (nodeless) p-mode,

⋆ Gravity modes: driven by buoyancy (thermal/composition gradients),

⋆ Inertial modes: driven by rotation (Coriolis force),

⋆ Magnetic (Alfven) modes: driven by the magnetic force,

⋆ Spacetime modes: like BH QNMs, need dynamical spacetime,

⋆ Shear modes: driven by elastic forces in the crust,

⋆ Superfluidity-related modes (e.g. Tkachenko modes: driven by tension of
superfluid vortex array)
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GW amplitude and the spindown limit

In general

hµν =
2G

dc4

d2Qµν

dt2

with Q ∝ I we get

GW strain h0 =
4π2G

c4

I3ǫf
2
GW

d

where d is the distance to the source and

ǫ = (I1 − I2)/I3 is the deformation

(non-axisymmetry).

Depending on the dense matter model,

ǫmax = 10−3 − 10−6.
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GW amplitude and the spindown limit

Rotational energy: Erot ∝ f
2

Rotational energy loss: Ėrot ∝ f ḟ

Energy emitted in GWs: ĖGW ∝ f
6
I
2
3ǫ

2

Spindown upper limit: a gravitar, in which the

observed spindown is fully due to GWs

Ėrot = ĖGW

Assuming the knowledge of I3 and d

→ upper limit hsd
0 = 1

d

√

5G

2c3

|ḟ |
f

I3

hsd = 8.06 × 10−19I
1/2

38

[

1kpc

d

][

ḟrot
Hz/s

]1/2[

Hz
frot

]1/2

ǫsd = 0.237 I−1
38

[

hsd
10−24

][

Hz
frot

]2[

d
1kpc

]
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Direct spindown limit

(K. Riles, Boston A.A.S. Summer Meeting 2011)
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O1/O2 CW search for known pulsars (arXiv:1902.08507)

222 known pulsars analyzed (55 new sources), at l = m = 2

and l = 2,m = 1 mode.

⋆ 20 targets surpass the

spin-down limit:

⋆ Crab: less than

0.017%Ėrot in GW,

⋆ Vela: less than

0.18%Ėrot .

⋆ PSR J0711-6830 millisecond recycled pulsar (frot ≃ 182 Hz) → ellipticity

ǫ < 1.2 × 10−8.



24/35

Indirect spindown limit

(K. Riles, Boston A.A.S. Summer Meeting 2011)
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Accretion, X-ray flux torque vs GW emission

(K. Riles, Boston A.A.S. Summer Meeting 2011)
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Torque balance: accretion vs GW emission

1. GW strain from mass quadrupole is hij =
2G

dc4

d2Iij

dt2 ,

For a rotating deformed NS: h0 = 2G

dc4 ω
2
gwǫI0, with

⋆ ωgw = 2πfgw = 4πfrot ,
⋆ fgw = 2frot is the signal frequency, frot is the spin frequency, and I0 is the

unperturbed moment of inertia,

→ h0 = 8π2G
dc4 f 2

gwǫI0

2. GW torque Ngw = Lgw/ωrot , because
d(I0ω

2
rot/2)

dt
= I0ωrot ω̇rot = Ngwωrot .

→ GW luminosity is Lgw = G
5c5 ǫ

2I2
0ω

6
gw, so Ngw = 32π5G

5c5 ǫ2I2
0 f 5

gw,

3. Accretion torque Na = Ṁ
√

GMrA, where rA is Alfven radius,

Accretion rate is related to X-ray flux via Ṁ = 4πd2FX R/XGM, where R

is stellar radius, M is stellar mass, and X is efficiency.

4. Balance equation: Na = Ngw to get ǫ, and estimate h0:

h0 =
201/2G1/4

c3/2

(

FX

X

)1/2
R1/2f

−1/2
gw r

1/4

A M−1/4
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Matched filtering: a monochromatic signal
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In this case a Fourier transform is

sufficient to detect the signal (simplest

matched filter method):

F =

∫ T0

0

x(t) exp(−iωt)dt

Signal-to-noise SNR = h0

√

T0

S0

T0 - time series duration, S0 - spectral

density of the data.

(see

users.camk.edu.pl/bejger/snr-periodic-signal)
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In reality: signal is modulated
Since the detector is on Earth, planets and Earth’s rotation influences signal’s

amplitude and phase.

⋆ Signal is almost monochromatic:

sources may slow down/spin up,

⋆ it has to demodulated (detector is

moving),

→ precise ephemerides of the Solar

System needed.

Detector movement distinguishes a real signal from detector’s spectral

artifacts (”lines”).
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Example: the F-statistic

F-statistic estimates how well the amplitude and phase

modulated model matches the data x(t)

F =
2

S0T0

(

|Fa|
2

〈a2〉
+

|Fb|
2

〈b2〉

)

where S0 is the spectral density, T0 is the observation time, and

Fa =

∫ T0

0

x(t)a(t) exp(−iφ(t))dt , Fb = . . .

a(t), b(t) - amplitude modulation functions that depend on the

sources’ sky position (α, δ),

φ(t) - phase modulation function that depends on (f , ḟ , α, δ)

(PRD 58, 063001, 1998)
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Rossby waves in planetary atmospheres

⋆ Carl-Gustaf Rossby (1898 -

1957),

⋆ A type of inertial planetary

wave, driven by Coriolis force

(→ present in rotating

systems),

⋆ On Earth, associated with

high-altitude winds (→ jet

stream),

(Wikipedia) (S. Harris, AIMS Environmental Science 6(1):14-40 2019)
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Rossby waves on neutron stars: r-modes

GW emission from time-varying current quadrupole:

⋆ r-mode frequency in the rotating frame: ωr = κΩ, with κ = 2m
l(l+1)

.

→ for l = m = 2, ωr = 2/3Ω,

⋆ In the inertial frame: ωi = ωr − mΩ = −4/3Ω.
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Rossby waves on neutron stars: r-modes
⋆ r-modes belong to a subset of inertial modes supported by rotation

(Coriolis force as a restoring mechanism),

⋆ retrograde in frame co-rotating with the star, prograde in inertial frame

→ unstable to Chandrasekhar-Friedman-Schutz (CFS) instability,

⋆ the amplitude of the mode evolves ∝ exp(iωi t − t/τ),

⋆ modes damped by viscous processes (shear and bulk viscosity),

depend on dense matter equation of state,

1

τ
= −

1

τGR

+
1

τS

+
1

τB

,

⋆ l = m = 2 mode frequency in Newtonian approximation is ωi = 4/3Ω, in

GR corrections related to NS mass and radius (→ EOS):

ωi =
4

3
Ω

(

1 + C1
GM

Rc2
− C2

(

GM

Rc2

)2
)

,

where the (1 + . . . ) corrections are specifically due to GR, rapid

rotation, NS crust, matter stratification, magnetic fields. . .

(see Idrisy et al. 2014, arXiv:1410.7360)

Key early r-mode references: Papaloizou & Pringle (1978); Andersson (1998);

Friedman & Morsink (1998); Lindblom et al. (1998); Owen et al. (1998); Andersson et

al. (1999); Andersson & Kokkotas (2001)
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R-modes instability window

R-modes in newborn NSs (Owen
et al. 1998), characteristic strain
is:

h0 = 4.4×10−24α

(

ω
√

πGρ̄

)3 (
20 Mpc

d

)

,

where ρ̄ is the mean NS density,

and α is dimensionless r-mode

amplitude (see Sect. 4 in

arXiv:1909.12600 for a review).

1

τ
= −

1

τGR

+
1

τS

+
1

τB
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NS (astro)physics questions

⋆ Magneto-elastic ‘mountains’: elastic properties of the

crust, braking strain,

⋆ Thermally induced quadrupole: accretion processes,

heating reactions in the crust,

⋆ Instabilities (r-modes): heating & cooling, rotational

evolution,

⋆ Superfluidity.

⋆ Conditions at birth: SN ↔ NS deformation connection,

⋆ Long-term evolution of NS asymmetry,

⋆ Available populations ↔ search strategies.
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