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Binary system

24.11.20, 1.12.20
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General schedule

⋆ History

⋆ Introduction to general relativity

⋆ Detection principles

⋆ Detectors

⋆ Binary black-hole system

⋆ First look at data and waveforms,

⋆ Newtonian approximation to binary system,

⋆ Material objects: neutron stars.

⋆ Bursts and continuous waves

⋆ Rates and populations, stochastic GW background, cosmology

⋆ Testing general relativity

⋆ Data analysis: waveforms and detection

⋆ Data analysis: parameter estimation
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Last orbits of a binary system
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GW150914: parameters

False alarm probability <1 in 5 million

False alarm rate <1 in 200000 years

⋆ M1 = 36+5
−4 M⊙, M2 = 29+4

−4 M⊙,

⋆ Final black hole parameters:

⋆ mass M = 62+4
−4 M⊙,

⋆ spin a = 0.67+0.05
−0.07,

⋆ Distance: 410+160
−180 Mpc

i.e. 1 billion 300 million light years,

redshift z = 0.09+0.03
−0.04 (assuming standard cosmology).

(uncertainties define 90% credible intervals)
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GW150914: parameters

⋆ Duration: 0.2 s,

⋆ Final orbital velocity: > 0.5 c,

⋆ Total energy emitted in waves:

E = mc2 = 3+0.5
−0.5 M⊙c2,

⋆ Peak ”brightness”:

3.6+0.5
−0.4 × 1049 Joule/s

(200+30
−30 M⊙c2/s),

→ much more than all the stars

in the Universe radiate in EM!

(uncertainties define 90% credible intervals)
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Binary system: 15+ parameters
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Frequency dependence in waveform

LIGO-Virgo Webinar 2020-11-19 LIGO–G2002002

parameterized Tests

17

● Inspiral-Merger-Ringdown (IMR) waveform model written as frequency-dependent amplitude and phase

● Parameterize phase corrections in 3 distinct regions:

○ Inspiral

● Phenomenological Coefficients

○ Intermediate

○ Merger-Ringdown

Caution: Coefficients calibrated against 
NR but are not expressed in parameters 
relevant to GR or modified theories of 
gravity...

Coefficients analytically 
known in GR

[Pratten+, arXiv:2001.11412]

LIGO–G2002002
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How the data looks like

The data are dominated by the low

frequency noise (L1 offset by −2 × 10−18

due to very low frequency oscillations).

If one knows the signal is there:

⋆ filtering the frequencies outside the

desired band with bandpass filter,

⋆ suppressing the instrumental lines,

⋆ whitening: dividing the data by the

noise ASD in the Fourier domain to

normalize the power for all

frequencies for an easier

comparison.
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Raw vs whitened waveform

1.0 0.8 0.6 0.4 0.2 0.0
time [s]

1.5

1.0

0.5

0.0

0.5

1.0

1.5

h

1e 21

101 102 103

frequency [Hz]

10 25

10 24

10 23

10 22

10 21

10 20

10 19

AS
D 

[1
/
H
z]

1.0 0.8 0.6 0.4 0.2 0.0
time [s]

200

150

100

50

0

50

100

150

200

h 
(w

hi
te

ne
d)

Whitening: hw (f ) → h(f )/ASD(f )
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Matched filtering: a monochromatic signal
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In this case a Fourier transform is

sufficient to detect the signal (simplest

matched filter method):

F =

∣
∣
∣
∣

∫ T0

0

x(t) exp(−iωt)dt

∣
∣
∣
∣

2

Signal-to-noise SNR = h0

√

T0

S0

T0 - time series duration, S0 - spectral

density of the data.
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Matched filtering

Assuming a signal model h, looking for the ”best match” correlation

C(t) in data stream x , for a given time offset t

C(t) =

∫ ∞

−∞

x(t ′)
︸︷︷︸

Data

× h(t ′ − t)
︸ ︷︷ ︸

Template with time offset t

dt ′

Rewrite correlation using Fourier transforms

C(t) = 4

∫ ∞

0

x̃(f )h̃∗(f )e2πiftdf

(an inverse FT of x̃(f )h̃∗(f )). In practice, optimal matched filtering with

the frequency weighting

C(t) = (x |h) = 4

∫ ∞

0

x̃(f )h̃∗(f )

Sn(f )
e2πiftdf , with Sn(f ) (noise PSD).

Matched filter SNR: ρ = (x |h)/
√

(h|h), Optimal SNR: ρopt =
√

(h|h)
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Matched filter in pictures
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LIGO O1: 2 (”and a half”) events

Optimal signal-to-noise ρ : ρ2 =

∫
∞

0

(

2|h̃(f )|
√

f
√

Sn(f )

)2

d ln(f )

(GW150914: ρ ≃ 24, GW151226: ρ ≃ 13, LVT151012: ρ ≃ 10)



14/48

Initial estimates

For a spherical wave of amplitude h(r),

⋆ flux of energy is F (r) ∝ h2(r),

⋆ the luminosity L(r) ∝ 4πr2h2(r).

Conservation of energy (flux through surface at r ):

=⇒ h(r) ∝ 1/r .

Radiating modes: quadrupole and higher

For a mass distribution ρ(r), conserved moments:

⋆ monopole
∫
ρ(r)d3r - total mass-energy (energy conservation),

⋆ dipole
∫
ρ(r)rd3r - center of mass-energy (momentum conservation).
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Quadrupolar nature of GWs

In electromagnetism, radiation due time changing electric dipole moment

d = ex:

Luminosity ∝ d̈

Gravitational-wave emission in the dipole mode would mean the changing in

time mass dipole moment:

d =
∑

i

mixi → ḋ =
∑

i

mi ẋi

︸ ︷︷ ︸
Momentum

Conservation of momentum means no mass dipole GW radiation. Likewise,

for the current dipole moment

D =
∑

i

mixi × ẋi

︸ ︷︷ ︸
Angular momentum

the conservation of angular momentum means no current dipole GW

radiation.
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Estimate of wave amplitude

The wave equation for GWs,

�h
αβ

=
16πG

c4
T

αβ

is an analogue to the Maxwell equation (Gauss law) in the Lorenz gauge,

(1/c2)∂tφ+∇ · A = 0:

∇ · E = �φ = 4πρ, where E = −∇φ+ ∂tA.

By analogy between solutions

φ(t , r) =

∫
ρ(t − R/c, x)

R
dV , h

αβ
=

4G

c4

∫
Tαβ(t − R/c, x)

R
dV .

with R = |r − x|. Far from the compact source (r ≫ x), the solution is

described by the far-field solution:

h
αβ

(t , r) =
4G

c4r

∫

T
αβ(t − R/c, x)dV .
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Estimate of wave amplitude

Using the energy-momentum conservation:

T
αβ
,β = 0 → h

ij
≈ −

2G

c4r

d2I ij

dt2
,

where I
ij

is the moment of inertia tensor (related to quadrupole moment tensor),

Iij =

∫ (

r
2δij − xixj

)

ρ(r)dV , Qij =

∫ (

3xixj − r
2δij

)

ρ(r)dV .

For two masses m separated by a on circular orbit in the x − y plane with

angular frequency ω around their center of mass,

I
xx ∝

∫

ρx
2
dV = 2m

(a

2
cos(ωt)

)2

=
1

4
ma

2 (1 + cos(2ωt)) ,

which leads to

h
xx

=
2Gma2ω2

c4r
cos(2ωt).

⋆ GW quadrupole radiation is at twice the orbital frequency (in the first

approximation),

⋆ Amplitude ∝ Gma2ω2/(c4r).



16/48

Gravitational waves: some estimates

GWs correspond to accelerated movement of masses.

Consider a binary system of m1 and m2, semiaxis a with

⋆ total mass M = m1 + m2,

⋆ reduced mass µ = m1m2/M,

⋆ mass quadrupole moment

Q ∝ Ma2,

⋆ Kepler’s third law GM = a3ω2.

h(r) ∝ 1

r

∂2(Ma2)

∂t2
=

G2

c4

1

r

Mµ

a
=

G5/3

c4

1

r
M2/3µω2/3.
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Gravitational waves: quadrupole approximation

The quadrupole approximation (slowly-moving sources,

Einstein 1918), wave amplitude is

hµν =
2

r

G

c4
Q̈µν , or, in terms of kinetic energy, h ∼ E

nsph.
kin.

r
.

Resulting GW luminosity is

LGW ≡ dEGW

dt
≈ 1

5

G

c5
〈
...
Q

µν ...
Qµν〉

∝ G

c5
Q2ω6 ∝ G4

c5

(
M

a

)5

∝ c5

G

(
Rs

a

)2 (v

c

)6

.

(Rs = 2GM/c2, c5/G ≃ 3.6 × 1052 Joule/s)
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Binary system: evolution of the orbit

Waves are emitted at the expense of the orbital energy:

Eorb = −Gm1m2

2a
,

dEorb

dt
≡ Gm1m2

2a2
ȧ = −dEGW

dt
.

Evolution of the semi-major axis:

da

dt
= −dEGW

dt

2a2

G m1m2
︸ ︷︷ ︸

µM

→ da

dt
= −64

5

G3

c5

µM4

a3
.

The system will coalesce after a time τ ,

τ =
5

256

c5

G3

a4
0

µM4
,

where a0 is the initial separation.
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Binary system: chirp mass

Waves are emitted at the expense of the orbital energy:

Eorb = −Gm1m2

2a
,

dEorb

dt
≡ Gm1m2

2a2
ȧ = −dEGW

dt
.

Resulting evolution of the orbital frequency ω:

ω̇3 =

(
96

5

)3
ω11

c15
G5µ3M2 =

(
96

5

)3
ω11

c15
G5M5,

where M =
(
µ3M2

)1/5
= (m1m2)

3/5/(m1 + m2)
1/5 is the chirp mass.

GWs frequency from a binary system is primarily twice the orbital

frequency (2πfGW = 2ω). M is a directly measured quantity:

M =
c3

G

(
5

96
π−8/3f

−11/3

GW ḟGW

)3/5

.
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Binary system: energy emitted in GWs

End of the chirp f c
GW is related to critical distance between

masses afin:

afin = Rs1 + Rs2 =
2G

c2
(m1 + m2) .

It can be used to estimate the total mass M:

M = m1 + m2 ≈ c3

2
√

2Gπ

1

f c
GW

.

Energy emitted during the life of the binary system (rest-mass

energy + orbital energy):

E = Erm + Eorb = (m1 + m2) c2 − Gm1m2

2a
.

(for m1 = m2, afin = 2Rs = 4Gm1/c2, ∆E ≈ 6%).
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Final black hole spin

Orbital angular momentum J (major semi-axis a = a1 + a2):

J = m1a2
1ω + m2a2

2ω = m1m2

√

Ga

m1 + m2
.

Dimensionless spin magnitude χ of an object with J and M:

χ =
cJ

GM2
.

For m1 = m2 = m,

⋆ a = afin, χ ≈ 0.35,

⋆ a = 2risco (innermost stable circular orbit around BH of

mass m), χ ∼ 0.7.
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Circularization of orbit by GW radiation

Peters (1964, p. 103):

For a - semi-major axis, e - eccentricity,

e

e0

≈

(
a

a0

)19/12

Reduction of a by ≈ 2 means reduction in eccentricity by ≈ 3

→ radiation reaction quickly circularizes the orbit.
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Parameter estimation basics (GW510914)

GW amplitude dependence for a binary system

h ∝ M5/3 × f
2/3

GW × r
−1

where M is the chirp mass, M = (m1m2)
3/5

(m1+m2)
1/5 , known from the observations:

M =
c3

G

[
5

96
π−8/3

f
−11/3

GW ḟGW

]3/5

From higher-order post-Newtonian corrections: q = m2/m1, spin components

parallel to the orbital angular momentum...

M ≃ 30M⊙ =⇒ M = m1 + m2 ≃ 70M⊙ (if m1 = m2, M = 2
6/5M)

8 orbits observed until 150 Hz (orbital frequency 75 Hz):

⋆ Binary neutron star system is compact enough, but too light,

⋆ Neutron star-black hole system for a given total mass - black hole too

big, would merge at lower frequency.

→ Black hole binary.
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Binary inspiral vs the sensitivity curve
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Binary inspiral vs the sensitivity curve

The so-called Newtonian signal at instantaneous frequency fGW

is

h = Q(angles)×M5/3 × f
2/3

GW
× r−1 × e−iΦ.

where the signal’s phase is

Φ(t) =

∫

2πfGW (t ′)dt ′.

The relation between fGW and t

πMfGW (t) =

(
5M

256(tc − t)

)3/8

The orbital velocity is v ∝ (πMfGW )1/3 because from Kepler’s

3rd law (ω2a3 = GM), one gets ω = 2πf = πfGW , v = ωa

→ v3 = πGMfGW .
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Binary inspiral vs the sensitivity curve

Matched filtering means that the signal is integrated with a

proper phase as it sweeps through the range of frequencies.

Sensitivity curves most often show the effective (match-filtered)

heff , and not the instantaneous h.

Dimensonal estimation of the frequency slope:

Ncycles ≈ f 2
GW ×

(
dfGW

dt

)−1

heff ∝
√

Ncycles h ∝
√

fGW t h ∝
√

fGW × f
−8/3

GW
× f

2/3

GW
∝ f

−1/6

GW
.
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Binary inspiral vs the sensitivity curve

Actually used in estimating the SNR is the frequency-domain

match-filtering signal model h̃(f ) ≃ heff (Fourier transform of

h(t)),

h̃(f ) = Q(angles)

√

5

24
π−2/3M5/6

r
f
−7/6

GW
e−iΨ(f ),

where the frequency domain phase Ψ is (in point-particle

approximation):

Ψ(f ) ≡ ΨPP(f ) = 2πftc − φc −
π

4
+

3M

128µv5/2

N∑

k=0

αkvk/2.
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Binary system: source distance estimate

⋆ At cosmological distances, the observed frequency fGW is

redshifted by (1 + z):

f → f/(1 + z)

⋆ There is no mass scale in vacuum GR, so redshifting of

fGW cannot be distinguished from rescaling the masses

because of the expansion in powers of v ∝ (πMfGW )1/3

=⇒ inferred masses are m = (1 + z)msource

→ Direct, independent luminosity distance measurement

(but not z) from GW with fGW and the strain h:

r =
5

96π2

c

h

ḟGW

f 3
GW

.
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Post-Newtonian expansion

(J. Calderón Bustillo PhD thesis, Sect. 2)
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Post-Newtonian expansion

P. Jaranowski (bcc.impan.pl/13Gravitational/index.php/programme.html)
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Post-Newtonian expansion

Up to 3.5PN order, the energy and flux (non-spinning part) is:

with

(J. Calderón Bustillo PhD thesis, Sect. 2)
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PN expansion: higher-oder modes

(J. Calderón Bustillo PhD thesis, Sect. 2)
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PN expansion: higher-oder modes
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Ringdown modes: BH spectroscopy
The final BH is highly perturbed

(non-stationary, ”has hair”):

⋆ BH radiates its excess energy in a GW

”ringdown”,

⋆ perturbation theory applicable to

describe the ”quasi-normal modes”

(QNMs) → mode frequencies flmn and

damping times τlmn,

⋆ measuring two modes: calculation of Mf

and χf , more than two modes: tests of

GR.

h+ = A(flmn,Qlmn)
r

(
1 + cos2 ι

)
exp

(
−πflmn t

Qlmn

)

cos (2πflmnt + φlmn) ,

h× = A(flmn,Qlmn)
r

2 cos ι exp
(

−πflmn t

Qlmn

)

sin (2πflmnt + φlmn) ,

with Qlmn = ωlmnτlmn/2.

e.g. f200 = 1.2 × 103 10M⊙

M
Hz, τ200 = 5.5 × 10−4 M

10M⊙
s.



31/48

Binary system: distance-inclination degeneracy

Luminosity distance ∼1/h, and

h = h+F+ + h×F×

depends on the inclination of the

binary with repect to the ”line of

sight”.

line 
of sight

Two independent polarizations h+ and h×:

h+ =
2µ

r
(πMfGW )2/3

(

1 + cos2 ι
)

cos (2φ(t)) ,

h× =
4µ

r
(πMfGW )2/3 cos ι sin (2φ(t)) .
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Efects of various parameters on inspiral waveform
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Binaries are standard sirens
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Binary inspiral vs the sensitivity curve

For extended-body interactions, phase evolution differs from point-particle

description,

Ψ(f ) = ΨPP(f )+Ψtidal(f )

Ψtidal breaks the v expansion degeneracy.
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GW170817: 17 August 2017, 14:41:04 CEST

⋆ Combined LIGO-Virgo signal-to-noise ratio: SNR=32.4

(strongest signal so far!),

⋆ False alarm rate: less than one in 80000 years,

⋆ Chirp mass M = 1.188+0.004
−0.002 M⊙ → a very light system!

⋆ Distance d = 40+8
−14 Mpc (90% credible intervals)
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Signature of matter in binary NS waveforms
Tidal tensor Eij of one of the components induces quadrupole

moment Qij in the other:

Qij = −λEij → λ = size of quadrupole deformation
strength of external tidal field

In lowest-order approximation: λ =
2

3
k2R5

λ - tidal deformability,

k2 ∈ (0.05, 0.15) - Love number

(dependent on M and EOS).

⋆ From the scaling this is a 5PN effect (v/c)10

⋆ Convenient redefinition: Λ = Gλ

(
GM

c2

)−5

∈ (500, 3000)
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Neutron stars: dense matter, M(R)

http://xtreme.as.arizona.edu/~fozel
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Tolman-Oppenheimer-Volkoff equations (1939)

In spherically-symmetric spacetime,

ds
2 = e

ν(r)
c

2
dt

2 −
dr 2

1−2GM(r)/rc2
− r

2(dθ2 + sin2 θdφ2)

equations of hydrostatic equilibrium are

dP(r)

dr
= −

GM(r)ρ(r)

r 2

(

1 +
P(r)

ρ(r)c2

)(

1 +
4πr 3P(r)

M(r)c2

)(

1 −
2GM(r)

c2r

)−1

dM(r)

dr
= 4πρ(r)r 2,

and
dν(r)

dr
= −

(
2

P(r) + ρ(r)c2

)
dP(r)

dr
.

⋆ Every P(ρ) relation (Equation Of State, EOS) results in the mass limit Mmax .
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Tidal deformability Λ
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GW170817: constraints on dense matter

With minimal assumptions

on the nature of compact

objects:

⋆ Low-spin ”realistic”

priors (90% highest

posterior density

interval):

Λ̃ = 300+420
−230

LVC: Phys. Rev. X 9, 011001 (2019)
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⋆ GW170817: very

long inspiral

”chirp” (>100 s!)

firmly detected by

the LIGO-Virgo

network,

⋆ GRB 170817A:

1.74 ± 0.05 s later,

weak short

gamma-ray burst

observed by Fermi

(also detected by

INTEGRAL).
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GW170817: LIGO-Virgo triangulation

⋆ Fortunate orientation of Virgo w.r.t. signal → small sky patch: 28◦2,

⋆ New EM source in NGC 4993, consistent with GW distance 40+8
−14 Mpc,

⋆ Chance of temporal-spatial coincidence < 5 × 10−8.
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GW170817: Virgo beam patterns
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GW170817: speed of gravitation

Relative speed difference between GWs and photons:

vGW − c

c
=

∆v

c
≈ c∆t

d
.

Assuming very conservative values:

⋆ Distance d = 26 Mpc (lower bound from 90% credible

interval on luminosity distance derived from the GW

signal),

⋆ Time delay ∆t = 10 s

−3 × 10−15 ≤ ∆v

c
≤ 7 × 10−16

vGW = 299792458+0.000001
−0.000006 m/s = c+0.000001

−0.000006 m/s
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GW170817: Hubble parameter with a ”standard siren”

⋆ Hubble parameter defined as vH = H0d ,

⋆ H0,GW = 70.0+12.0
−8.0 km s−1 Mpc−1 (maximum a posteriori and 68%

credible interval) = ∼14% at 1σ:

⋆ ∼11% because of GW luminosity distance,

⋆ The rest from the peculiar velocity of the galaxy.

⋆ Planck: 67.74 ± 0.46, SHoES: 73.24 ± 1.74 km s−1 Mpc−1
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Astrophysically-interesting parameters

⋆ Chirp mass M =
(
µ3M2

)1/5
= (m1m2)

3/5/(m1 + m2)
1/5,

⋆ Mass ratio q = m2/m1 (at 1PN), alternatively

ν = m1m2/(m1 + m2)
2,

⋆ Spin-orbit and spin-spin coupling (at 2PN and 3PN, resp.) →

χeff = (m1χ1z + m2χ2z)/(m1 + m2)

where χiz are spin components along system’s total angular

momentum,

⋆ Tidal deformability Λ (at 5PN) →

Λ̃ =
16

13

(m1 + 12m2)m
4
1Λ1

(m1 + m2)5
+ (1 ↔ 2)

⋆ Direct ”luminosity” (”loudness”) distance: binary systems are

”standard sirens”.
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