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General schedule

History
Introduction to general relativity
Detection principles
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Detectors

* Sensitivity curve,
* Noise sources,
* Antenna patterns, triangulation.

Binary black-hole system

Bursts and continuous waves

Rates and populations, stochastic GW background, cosmology
Testing general relativity

Data analysis: waveforms and detection
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Data analysis: parameter estimation
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THE GRAVITATIONAL WAVE SPECTRUM
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Detection principle: laser interferometry
"How to measure distance when the ruler also changes length?”
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Changes in arms length are very small: 6L, — 6L, = AL < 10~ '® m (smaller
than the size of the proton). Wave amplitude h = AL/L < 1072".
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Change of arms’ length < variation in light travel time

Change of the x-arm: ds? = —c?dt? 4+ (1 + h) dx® = 0.

Assume h(t) is constant during light’s travel through interferometer,
replace v/1 + hy with 1 + hy, /2, integrate from x = 0to x = L:

/dt—1/<1 +1hxx> dx — &= hul/2c.
. c. 2

Round-trip time in the x-arm:  t, = hyL/c.

Round-trip time in the y-arm: {, = —hL/c (hyy = —hy = —h)

Round-trip times difference: | Ar =2hL/c

Phase difference (dividing A7 by the radian period of light 27 /\):

A

Ab=Tht|
?=N
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Orders of magnitude comparison

x GW150914: h = AL/L ~ 10~

% Two neutron stars merging near Sgr A*: ~ 10~1°

% lo orbiting Jupiter: ~ 3 x 1072°

* Hulse-Taylor pulsar: ~ 10726

% Dumbbell 1 tonnes masses, 1 m arm from 300 m: ~ 1073°
* Collision of two aircraft carriers: 5 x 10746

% Angry protester shaking her fist: ~ 7 x 10752

% Tennis ball rotating on 1 m string, from 10 m: ~ 1054,

* The amplitude h = AL/L < 107" corresponds to the distance
measurement between Earth and Sun with the accuracy of the size of
the atom (10~ % m)

* Ground motion amplitude near the detector: AL ~ 107%m (102 x h)
* Laser wavelength: 107% m (10" x h)
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Initial estimates

For a spherical wave of amplitude h(r),
x flux of energy is F(r) o< H(r),
x the luminosity L(r) oc 4xr?h?(r).

Conservation of energy (flux through surface at r):

= h(r) c1/r.

For a mass distribution p(r), conserved moments:
* monopole [ p(r)d®r - total mass-energy (energy conservation),
* dipole [ p(r)rd®r - center of mass-energy (momentum conservation).
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Sensitivity — amplitude — volume
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* Detector’s sensitivity
(registering waves of
amplitude h) is related to
maximal range r, hoc 1/r

* Reachable cosmic volume
Vxrd

* Increase of sensitivity
h— 0.1h gives r — 10r,
thatis V — 1000V.
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How the sensitivity curve looks like?

107

* Range of frequencies similar to
sensitivity of our hearing:

10-1°

SION JWSIBS

107

R(f) (Hz'?)

From 20 Hz (HO) to a few thousands

; 0 o T Hz (3960 Hz, H7) - 8 octaves,
f (Hz)

* Poor, like for an ear, angular
Initial LIGO proposal (1989) resolution (directional capabilities).
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Advanced LIGO design sensitivity
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GW interferometers are noise-dominated detectors!
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Sensitivity - amplitude spectral density of the noise

10-19

10-20 Li

ASD (strain/rtHz)

1023 -

1024

* Plot dominated by instrumental noise, lines: mirror suspension
resonances at 500 Hz and harmonics, calibration lines and power lines

Advanced LIGO strain data near GW150914

1021}

1022 |

— H1 strain
— L1 strain

L
1pt 102
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(60 Hz and harmonics) etc.,

* Data sampled at 16384 Hz, so the Nyquist frequency is 8192 Hz,
* Data stream: ~50 MB/s (main GW + auxiliary "witness” channels).

10°
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Sensitivity - amplitude spectral density of the noise

* GW detectors register time series x(t) (as light phase difference at the
photodiode),

* The average power P of x(t) over T:

:I|mT/ \dt—hmT/ (f)|2af

Parseval’s theorem: / |x(1)] dt*/ |X(f)[2df,

with X(f) the Fourier transform of x(t).
* Power spectral density (PSD) is

o e o
S(f) = lim_ 7\X(f)l ,  units: W/Hz.
* Amplitude spectral density (ASD) is
Sasp(f) = v/ S(f), units: VW/Hz.

For a dimensionless amplitude h = AL/L, the amplitude
spectral density has units of 1/v Hz.
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Delay line vs Fabry-Perot
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* Key point for GW detection is
light path folding: making the
light storage time higher without
extending the interferometer,

* Charles Fabry, Alfred Perot
(1899) resonance cavity:
standing wave, storage for ~5
ms, corresponding to ~ 400
round trips.
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Seismic noise
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Isolation from seismic noise

Pendulum: above the resonant
frequency (1 Hz) the motion of mass is
smaller than the motion of suspension
point (at 10 Hz - factor 10?). LIGO,
Virgo: multiply suspended pendula.
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Fresco by Luigi Sabatelli (1772-1850)
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Isolation from seismic noise

Strain [1/VHz]
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Newtonian noise

Ground and air around the mirror (test mass) moves, exerting Newtonian
(F = —GMm/r?) gravitational force.
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Thermal/brownian noise, mirror coatings

T
—Quantum noise
—Seismic noise
—Gravity Gradients

—Suspension thermal noise

——Coating Brownian noise

~ Goating Thermo-optic noise:

~ Substrate Brownian noise
Excess Gas

=—Total noise

Strain [1/vVHZ]

10°
Frequency [Hz]

* Test masses (mirrors and coating) are at finite temperature (LIGO, Virgo - not a
KAGRA) — thermodynamical fluctuations of mechanical and optical variables,
coupling with the environment (thermal energy (kg T) populates the oscillatory
levels of the instrument),

* Friction and dissipation losses determine how much energy exchanged with the

environment.
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Mirror coatings

* Alternate layers of high and
low refractive index materials

Interference of
Fresnel reflections

Silica

Refractive

" Loss angle
index s Tantala*
Silica
Silica 1.45 0.4x 10* Tantala*
Sio, N i
ilica
| Tantala*
Tantala » :
Ta,O, 2.03 3.4x 10
Titania-doped Substrate
tantala 2.07 2.3x10*
Ta,04-TiO,

* Titania doped
The effective loss angle is a combination of those of the two P

materials: dominated by the high index material
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Suspension thermal noise
High Q material (Q factor - measuring how damped a resonator is) e.g. silica
or sapphire, minimizes dissipation: test masses (mirrors), and also
suspension wires made of the same high Q materials.
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Radiation pressure and quantum shot noise

* Shot noise: uncertainty in
intensity due to photon counting

statistics (~1/v/P),

* Radiation pressure noise:
quantum limited intensity
fluctuations (photons exert a
time varying force, ~v/P/m)

* The problem - optimization of the

quadrature sum /hZ, + h2,
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Antenna directionality
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21/28



Antenna patterns (antenna characteristics)

The detector response is

AL
T:F+h++F><h><,

where F; and Fx are

F. = %(1 + cos? 0) cos 2¢ cos 21)
+ cosfsin2¢sin 21,
Fe = %(1 + cos” ) cos 26 sin 24)

A
Euler angles {¢, 6, ¢} used in converting from the

cos 0'sin 2¢ cos 2v
(see e.g Drew Keppel PhD GW propagation frame {X, Y, Z} to the detector

thesis.library.caltech.edu/1901, Chap. 3) frame {x, y, 2}

Taking into account a second angle related to the source orientation, ¢
(inclination between the orbital plane and direction towards the detector):

h(t) = hy(t)F(1 + cos® ) + hy (t)Fx (2 cos )
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Antenna patterns (antenna characteristics)

Antenna patterns for interferometer detectors for + (left), x (center), and combined (right) polarizations with

polarization angle ¢ = 0.
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Global detector network: LIGO-Virgo-(KAGRA)
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Light travel time between Livingston-Hanford: 10 ms, Hanford-Virgo: 27 ms,
Livingston-Virgo: 26 ms.
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Antenna pattern of the network of GW detectors
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Network of detectors: sky position/triangulation

0817-HLV.

GW170814-HLV

W150914 .
a——

GW151012

GW170817-HLV. GW170809
- GW170814-HLV

. ["Hm gwuomf

Credit: LIGO/Virgo/NASA/Leo Singer (Milky Way image: Axel Mellinger)

GW170814 Top: initial results, bottom: refined using
updated calibration and waveform models.
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Sky localization via triangulation

Triangulation uses time delays between
detectors. Single-site timing accuracy is

approximately HL :
1 4 . )
o = ~ 107" s =~ 1/100 light travel time,
2mpos

HV

with the SNR p for a given detector and o¢
effective bandwidth of the signal (typically 100
Hz).

In real observations, one takes also into
account:

* signal phase and amplitude consistency

between deteCtorS’ Three detectors (L, H, V) marked by black dots. The locus of

* uncertai nty in the emitted gravitational constant time delay (with associated timing uncertainty)
between two detectors forms an annulus on the sky concentric
waveform, about the baseline between the two sites (labeled by the two

. . . . detectors). For three detectors, these annuli may intersect in
* instrumental calibration accuracies two locations: true source direction (S) and S’, a mirror image

(timing accuracies ~5 ms). with respect to the plane passing through the three sites.
For four or more detectors there is a unique intersection region.
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Sky localization: number of detectors

HHKL

S Fairhurst 2014 J. Phys.: Conf. Ser. 484 012007 27/28
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