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* Deviation of geodesics,
* Wave equation from Einstein’s equation,
* What is actually measured?
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Binary black-hole system

Bursts and continuous waves

Rates and populations, stochastic GW background, cosmology
Testing general relativity

Data analysis: waveforms and detection

Data analysis: parameter estimation
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Geodesic deviation in curved spacetime
* In general relativity, trajectories of freely-falling particles are
geodesics (the equivalent of straight lines in curved spacetime)

— Newton’s 1st law: Unless acted upon by a non-gravitational
force, a test mass will follow a geodesic.

* The curvature of spacetime is revealed by the behavior of
neighbouring geodesics

* Non-zero curvature «» acceleration of geodesic deviation «»
non-uniform gravitational field
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Geodesic deviation: Newtonian viewpoint

Two test masses falling towards
the Earth from points P; and Ps,
initially separated by &, (distance
to the center ny).

Finding similar triangles:
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Geodesic deviation: Newtonian viewpoint

ad?¢ GM¢ 13

d(ct)2 — 28 a(r)?

At the surface of the Earth
(r=R=6370 km):
1 1 GM
— == —— =2x10"® m™2.
aR) ~RE ceRe 2x10Tm
R represents the radius of
curvature of spacetime at the
Earth’s surface:

R~2x10"m> R.

— spacetime near Earth is nearly
flat.
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Geodesic deviation: Newtonian viewpoint

R represents the radius of
curvature of spacetime at the
Earth’s surface:

R~2x10"m> R.

— spacetime near Earth is nearly
flat.

SY¢ has a form of a tidal

force,

*

* Relation to the Riemann
tensor: R72 = |Rug.s)-
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What is a wave?
General relativity is nonlinear & fully dynamical — not so clear a

distinction between waves and the rest of the metric. Speaking about

waves is "safe” in certain limits:
* linearized theory,

* as small perturbations of a smooth background metric (gravitational
lensing of waves, cosmological perturbations),
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* in weak field (far-zone, i.e., much more than one wavelength distant
from the source):

Local Asymptotic Rest Frame
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Gravitational waves in linearized general relativity
Einstein’s equations are

1 81 G
RHV - Eguy R=

o Tuvs
where
* g, is the spacetime metric; ds? = g,,, dx*dx”,
* R, = 9" R,... is the Ricci tensor,
* R,,.0v is the Riemann tensor (R,.,., = 0 means flat spacetime),
* R = g"” R,, is the Ricci scalar,

* T, is the energy-momentum tensor (describing matter content).

Let’s assume that gravitational waves (h,,,) are a small addition to
otherwise stationary metric 7, (for example, Minkowski):

Guv = Nuv + huz/a and ‘huy| < 1
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Riemann tensor in linearized general relativity

v v v v A v A _
RMW = 8PFW — &JW + FAP I‘W -5, FW, and R, = gl,pRZpU,
where the connection coefficients are expressed using the metric as
the Christoffel symbols:
v 1 vA
rup = Eg (g)\u,p + Drp,pu — gupﬁx\)a

We are interested in expressions linear in h,,,, (h* too small to be
important). Therefore:

174 1 v
Chp = 5l A(hkuyp + Pxp = Nup,r)

and )
R, = 0,0, — 0,1, + O(h?) —

upo Pl po
1
RIU/PU = E (a/wh/w + afmhvp - apuhwf - am/hup) :
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Convenient choice of variables and gauge

To simplify, the trace-reversed tensor A" is introduced:

TV

h =h"— %n“"h, where h=1n,p h*? and h=—h.

With this change & after some algebra, the Einstein equations

1 81 G
R/u/ - é g/u/ R= 7 7-/1,V
are

7167TG

Ohyo + 0o 8° 0 hyy — 0P 8,h,e — 0P Ophy, + O(H?) = =

TUU?

where O = n,, 0” 07 is the d’Alambert operator (wave operator). In
Cartesian terms

1
D:np08p8”:7?85+0§+8§+a§.
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Gauge freedom

Further simplification is the use of gauge freedom; by imposing the
Lorenz (de Donder, harmonic) gauge condition,

o, =0,

we get

Chosing a gauge (gauge fixing) is a way to (sometimes partially) deal
with redundant degrees of freedom in field variables. For example in
EM, for a vector potential A*, the Lorenz gauge condition is

,A" = 0.

Note, transformations of the type A* — A¥ 4+ 9*f are still possible,
with f a scalar function (harmonic, 0,0 f = 0).
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Coordinate freedom

We are also allowed to make infinitesimal coordinate transformations,

X' = x*4£%(x?), with £~ small in the sense that £ < 1, |93 < 1.

This imply
6x/°‘ ox“ o o
ox® OxP

Recalling that g = + b and g, (x) = =05 2 (),

géyﬁ =Nap + haﬁ - 8&5;3 - a{ﬁga + O(ha& (ag) ) (ga = ﬂanB)

/
hu B

Because [03¢“| < 1 the metric perturbation h 4 is small, the
approximation is still valid. Applied to metric perturbation ha

ﬁa@ = hapg — Bals — Do + Napduc".
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Dealing with deegrees of freedom

* A symmetric 4 x 4 tensor h,,,, has 10 degrees of freedom,
% 4 d.o.f. used by imposing the Lorenz gauge (9, A" = 0).
In vacuum T, =0, so [Jh,, = 0.

— speed of the wave equals speed of light c. Remaining 6 d.o.f.: in
Lorenz gauge one can always consider coordinate transformations

W:/o - Ez/o + 5;“/7 where Euu = Nuv 8p£p - &u,u - fu,,u — Dg,ul/ =0

[0, = 0 means fixing 4 of 6 remaining d.o.f.
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Transverse-traceless gauge

A good choice is the transverse-traceless gauge, with £ !'such that
h=0,and ¢ suchthat A" =0, A" = 0:

=0, A'=0, 9K =0, A =0.

—_— ——— N—_——

; N
purely spatial Lorenz gauge trace = 0

This is the definition of the transverse-traceless tensor E;T (and since

it's traceless, E,(;,T) = hfLTyT)).

TT is not a necessary, but a convenient choice: EZ contains only
physical (non-gauge) information about the radiation.
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Plane gravitational waves in the TT gauge

Let's consider a plane wave: h,, = R (A, exp (ik“X,))
* Because it is a solution to Einstein (wave) equation:
kok®* =0 — w=k=/kZ+k2+K2.
x Choice of Lorenz gauge: 9,7 = A,.k* = 0.

Using remaining freedom, applying the transverse-traceless (TT)
gauge for a wave traveling in the z direction we get:

* /(1‘:/(22{.()7 kX:kyZO, A(,VZZOS
* AZ = UMIAMV = 0: Aal =0.

which means A = AT cos (w (t — 2)), with

nv

0 o0 0 0
(TT) (TT)
AL = 8 %7) _A/X‘{TT) 8 (2 remaining d.o.f.
Xy XX
0 0 0 0
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If a direction of propagation is n', then n' hi™ = 0'in the TT
gauge (the gravitational wave is described by 2 x 2 matrix in
the plane orthogonal to the direction of propagation n). For
propagation along the z-axis

0 0
AUTT) AE( TT)

XX

0

(m _ |0

h' = 0 AU _ A}(/TT)
0

cos(w(t — 2)),
Xy XX

0 0

O O O O

where AEOCT) and AEJT) are two independent polarization states,
usually called A, and A, ; sometimes called the helicity states -
change under rotation of ¢ around n as

h— eS™A where S = particle spin
he £ih, — &2 (A, +iA}).
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Gravitational waves in the TT gauge

For a free test particle initially at rest, in the coordinate system
corresponding to the TT gauge, it stays at rest: coordinates do
not change, particles remain attached to initial positions.

TT gauge represents a coordinate system comoving with
freely-falling particles.

How to know that something is changing?

What about the proper (spacetime) distance between
neighbouring particles?
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Detection principle: proper distance measurement

"How to measure distance if the ruler also changes length?”

(Quentin Blake “"Izaak Newton”) (Rene Magritte "The Son of Man”)
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Proper distance between test particles

Two test particles, initially at rest, one at x = 0 and the other at
X = ¢, in spacetime described by g,, = 7, + hyw.

The proper distance between them is
AS = /|guydxﬂdxl/|1/2 — / |gXX|1/2 ~ ey/gxx(x = 0)
0

If G (X = 0) = 1 + AL (x = 0),
then

As~ e (1 + %hf(y)(x = 0)>,

which, in general, is varying in time (as h/]] is).
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Geodesic deviation in general relativity

The geodesic deviation equation is

sza o
Doz = Riuau’uwe

with D/Dr a covariant derivative, and u* = 9¢* /07, a 4-velocity along
the geodesic.

An analogue of an evolution of distance ¢ between two distant test
particles due to the tidal force.

A simplified case:
* two test particles, both initially at rest (u* = (1,0, 0,0)),

* one located at x = 0 and the other at x = ¢ (distance between
particles &> = (0, ¢, 0, 0)),

* Weak-field limit (proper time 7 = coordinate time t).
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Geodesic deviation in general relativity (weak field)

The general equation

D2£a - 8250‘

Dz = g = et/
is, due to our simplifications,
02504 N N
e Ry = —€eRy

with two interesting directions (a = x or a = y):

1
Rg{t = UXXthxt = _Eh)((g;t)y

1
t = nnyytxt = _*h(TT)

Y
Ry 2y it

X
that is,
R, R W

— = —¢

oz 2 o o 2% ar
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Geodesic deviation in general relativity (weak field)

A more general case:
with x = ecosf, y = esinf, z =0,

2 ¢x 1 2 h(TT) 1 82h(TT)
8352 = EecosGG 6‘1)‘2( + éesiné 3;2/ ,
92¢y 1 PHgD 1 RG]
W = EECOSG 8t2 — EESH']G 31‘2 .

with solutions, for the plane wave in the z direction,

1 1

& = ecosf+ QGAEOT(T) cosf coswt + 2€AE(}7,—T) sin f cos wt,
1 1
& = esinf+ EGAE(Z,—T) cos f cos wt — EeAEOT(T) sin 0 cos wt.
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The + polarisation

AGT 20, AT =0

1
AT coswt) :

X —
& = ec059<1—|—2

& = esinf <1 - %AS(IT) coswt> .
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The x polarisation

AGD 20, AT =0

1

& = ec059+§esin9A§(;T) cos wt,
1

IS 65|n0—§ec059A(y)coswt
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Polarizations: EM vs GW

' Gravitational waves:
EIeCtromagnetIC Waves Polarizations present in GR: Fully to the ling of p

A JA
R . Tensormode X [ @ | ‘o - ‘e Lo
) { \ )
V4 Tensormode + | @ | e o [ o}
’ | Additional Polarizations not present in GR

Vectormode 1,2 == g —_— o = »>—_ -

Conformal mode

Scalar mode 1 :' 1o} 0 :' 1o | o |

I Linear '\‘\’Cwmular + Elliptical

Scalar mode 2 — -»> —_— — > —_— >
Longitudinal mode b . e . .
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Polarizations: EM vs GW

* + and x patterns are orthogonal polarization states (by analogy with
EM waves, where the two linear polarizations added with phase
difference +x/2 to obtain circularly polarized waves),

* GW is invariant under rotations of = about direction of propagation (EM
waves are invariant under rotations of 27),

— in analogy to quantum mechanics: helicity 27 /s, where s is the particle
spin (s = 1 for a photon, s = 2 for hypothetical graviton).
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For pure + mode, fractional change in proper distance is

AL b

L 2

Gertsenshtein & Pustovit (1962) were first to suggest an
interferometer to detect GWs. In the 70s Rainer Weiss had the same
idea — LIGO
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Detection principle: laser interferometry
"How to measure distance when the ruler also changes length?”

Test
vees ]
T T
N 4 S

<—Ly=4km D

um
Mass

Power
" Beam =
Recycling Splitter Ly =4km

el ] [
Laser 20w I_I & I_I 100 kW Circulating Power
Test

Test
Mass

Source
Mass

Signal
Recycling
"W Photodetector

Changes in arms length are very small: 6L, — 6L, = AL < 10~ '® m (smaller
than the size of the proton). Wave amplitude h = AL/L < 1072".
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Change of arms’ length « variation in light travel time

Change of the x-arm: ds® = —c?df? 4+ (1 + h) dx® = 0.

Assume h(t) is constant during light’s travel through interferometer,
replace v/1 + hy with 1 + hy, /2, integrate from x = 0to x = L:

/dt—1/<1 +1hxx> dx — b= hul/2c.
. C. 2

Round-trip time in the x-arm:  t, = hyL/c.

Round-trip time in the y-arm: {, = —hL/c (hy = —h = —h)

Round-trip times difference: |Ar =2hL/c

Phase difference (dividing A7 by the radian period of light 27 /\):

A

Ab=ThL|
?=
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* Do test masses move in response to a gravitational wave?
* No, in the TT gauge (free-falling masses define the
coordinates),
* Yes, in the laboratory coordinates (masses move affected
by tidal forces).
* Do light wavelength change in response to a gravitational
wave?
* No (see above),
* Yes, stretch by h as the masses move (as in the
cosmological redshift).
* If light waves are stretched by gravitational waves, how can
light be used as a ruler?
* Indeed, the instantaneous response of an interferometer to
a gravitational wave is null.
* But the light travels through the arms for some finite time
allowing for the phase shift to build up.

(P. R. Saulson, 1997, Am. J. Phys. 65, 501)
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Literature

* Lecture notes of Sean Carroll
(http://preposterousuniverse.com/grnotes)

* "General Relativity and Gravitational Waves”, Thomas Moore,
http://pages.pomona.edu/ tmoore/LesHouches, lecture 5

* "The basics of gravitational wave theory”, E. Flanagan, S. Hughes,
arXiv:gr-qc/0501041
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