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Detection principles
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General schedule

? History

? Introduction to general relativity

? Detection principles
? Deviation of geodesics,
? Wave equation from Einstein’s equation,
? What is actually measured?

? Detectors

? Binary black-hole system

? Bursts and continuous waves

? Rates and populations, stochastic GW background, cosmology

? Testing general relativity

? Data analysis: waveforms and detection

? Data analysis: parameter estimation
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Geodesic deviation in curved spacetime
? In general relativity, trajectories of freely-falling particles are

geodesics (the equivalent of straight lines in curved spacetime)

→ Newton’s 1st law: Unless acted upon by a non-gravitational
force, a test mass will follow a geodesic.

? The curvature of spacetime is revealed by the behavior of
neighbouring geodesics

? Non-zero curvature↔ acceleration of geodesic deviation↔
non-uniform gravitational field
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Geodesic deviation: Newtonian viewpoint

Two test masses falling towards
the Earth from points P1 and P2,
initially separated by ξ0 (distance
to the center r0).

Finding similar triangles:

ξ0

r0
=
ξ(t)
r(t)

= k ,

so if

r̈ = −GM
r2 , then ξ̈ = k r̈ = −k

GM
r2 .

or

ξ̈ = −ξ
r

GM
r2 = −GMξ

r3 .
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Geodesic deviation: Newtonian viewpoint

d2ξ

d(ct)2 = −GMξ

c2r3 = − ξ

a(r)2 .

At the surface of the Earth
(r = R = 6370 km):

1
a(R)

=
1
R2 =

GM
c2R3 = 2× 10−23 m−2.

R represents the radius of
curvature of spacetime at the
Earth’s surface:

R ∼ 2× 1011 m� R.

→ spacetime near Earth is nearly
flat.
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Geodesic deviation: Newtonian viewpoint

R represents the radius of
curvature of spacetime at the
Earth’s surface:

R ∼ 2× 1011 m� R.

→ spacetime near Earth is nearly
flat.

? GMξ
c2r3 has a form of a tidal
force,

? Relation to the Riemann
tensor: R−2 = |Rαβγδ|.
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What is a wave?
General relativity is nonlinear & fully dynamical→ not so clear a
distinction between waves and the rest of the metric. Speaking about
waves is ”safe” in certain limits:

? linearized theory,

? as small perturbations of a smooth background metric (gravitational
lensing of waves, cosmological perturbations),

? in weak field (far-zone, i.e., much more than one wavelength distant
from the source):
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Gravitational waves in linearized general relativity

Einstein’s equations are

Rµν −
1
2

gµν R =
8πG

c4 Tµν ,

where

? gµν is the spacetime metric; ds2 = gµνdxµdxν ,

? Rµν = gρσ Rρµσν is the Ricci tensor,

? Rρµσν is the Riemann tensor (Rρµσν ≡ 0 means flat spacetime),

? R = gµν Rµν is the Ricci scalar,

? Tµν is the energy-momentum tensor (describing matter content).

Let’s assume that gravitational waves (hµν) are a small addition to
otherwise stationary metric ηµν (for example, Minkowski):

gµν = ηµν + hµν , and |hµν | � 1
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Riemann tensor in linearized general relativity

Rν
µρσ = ∂ρΓνµσ − ∂σΓνµρ + Γνλρ Γλµσ − Γνλσ Γλµρ, and Rνµρσ = gνρRρ

µρσ,

where the connection coefficients are expressed using the metric as
the Christoffel symbols:

Γνµρ =
1
2

gνλ(gλµ,ρ + gλρ,µ − gµρ,λ),

We are interested in expressions linear in hµν (h2 too small to be
important). Therefore:

Γνµρ =
1
2
ηνλ(hλµ,ρ + hλρ,µ − hµρ,λ)

and
Rν
µρσ = ∂ρΓνµσ − ∂σΓνµρ +O(h2)→

Rµνρσ =
1
2

(∂ρνhµσ + ∂σµhνρ − ∂ρµhνσ − ∂σνhµρ) .
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Convenient choice of variables and gauge

To simplify, the trace-reversed tensor h
µν

is introduced:

h
µν

= hµν − 1
2
ηµνh, where h = ηαβ hαβ and h = −h.

With this change & after some algebra, the Einstein equations

Rµν −
1
2

gµν R =
8πG

c4 Tµν

are

�hνσ + ηνσ ∂
ρ ∂λhρλ − ∂ρ ∂νhρσ − ∂ρ ∂σhνρ +O(h2) = −16πG

c4 Tνσ,

where � = ηρσ ∂
ρ ∂σ is the d’Alambert operator (wave operator). In

Cartesian terms

� = ηρσ ∂
ρ ∂σ = − 1

c2 ∂
2
t + ∂2

x + ∂2
y + ∂2

z .
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Gauge freedom
Further simplification is the use of gauge freedom; by imposing the
Lorenz (de Donder, harmonic) gauge condition,

∂νh
µν

= 0,

we get

�hνσ = −16πG
c4 Tνσ .

Gauge fixing

Chosing a gauge (gauge fixing) is a way to (sometimes partially) deal
with redundant degrees of freedom in field variables. For example in
EM, for a vector potential Aµ, the Lorenz gauge condition is

∂µAµ = 0.

Note, transformations of the type Aµ → Aµ + ∂µf are still possible,

with f a scalar function (harmonic, ∂µ∂µf ≡ 0).
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Coordinate freedom
We are also allowed to make infinitesimal coordinate transformations,

x ′α = xα+ξα(xβ), with ξα small in the sense that ξα � 1, |∂βξα| � 1.

This imply

∂x ′α

∂xβ
= δαβ + ∂βξ

α, and
∂xα

∂x ′β
= δαβ − ∂βξα +O((∂ξ)2).

Recalling that gµν = ηµν + hµν and g′µν(x ′) =
∂xα

∂x ′µ
∂xβ

∂x ′ν
gαβ(x),

g′αβ = ηαβ + hαβ − ∂αξβ − ∂βξα︸ ︷︷ ︸
h′
αβ

+O(h∂ξ, (∂ξ)2) (ξα = ηαβξ
β).

Because |∂βξα| � 1 the metric perturbation h′αβ is small, the

approximation is still valid. Applied to metric perturbation h
′
αβ :

h
′
αβ = hαβ − ∂αξβ − ∂βξα + ηαβ∂µξ

µ.
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Dealing with deegrees of freedom

? A symmetric 4× 4 tensor hµν has 10 degrees of freedom,

? 4 d.o.f. used by imposing the Lorenz gauge (∂νh
µν

= 0).

In vacuum Tµν ≡ 0, so �hνσ = 0.

→ speed of the wave equals speed of light c. Remaining 6 d.o.f.: in
Lorenz gauge one can always consider coordinate transformations

h′νσ = hνσ + ξµν , where ξµν = ηµν ∂ρξ
ρ − ξµ,ν − ξν,µ → �ξµν = 0

�ξµν = 0 means fixing 4 of 6 remaining d.o.f.
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Transverse-traceless gauge

A good choice is the transverse-traceless gauge, with ξt such that
h = 0, and ξi such that h

it
= 0, ∂th

tt
= 0:

h
tt

= 0, h
it

= 0︸ ︷︷ ︸
purely spatial

, ∂ih
ij

= 0︸ ︷︷ ︸
Lorenz gauge

, h
i
i = 0︸ ︷︷ ︸

trace = 0

.

This is the definition of the transverse-traceless tensor h
TT
ij (and since

it’s traceless, h
(TT )

µν = h(TT )
µν ).

TT is not a necessary, but a convenient choice: h
TT
µν contains only

physical (non-gauge) information about the radiation.
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Plane gravitational waves in the TT gauge
Let’s consider a plane wave: hµν = < (Aµν exp (ikαxα))

? Because it is a solution to Einstein (wave) equation:
kαkα = 0 → ω = k t =

√
k2

x + k2
y + k2

z .

? Choice of Lorenz gauge: ∂αh
µα

= Aµαkα = 0.

Using remaining freedom, applying the transverse-traceless (TT)
gauge for a wave traveling in the z direction we get:

? k t = kz = ω, kx = ky = 0, Aαz = 0,

? Aµµ = ηµνAµν = 0, Aαt = 0.

which means h
(TT )

µν = A(TT )
µν cos (ω (t − z)), with

A(TT )
µν =


0 0 0 0
0 A(TT )

xx A(TT )
xy 0

0 A(TT )
xy −A(TT )

xx 0
0 0 0 0

 (2 remaining d.o.f.)
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If a direction of propagation is ni , then ni hTT
ij = 0 in the TT

gauge (the gravitational wave is described by 2× 2 matrix in
the plane orthogonal to the direction of propagation n). For
propagation along the z-axis

h(TT )
µν =


0 0 0 0
0 A(TT )

xx A(TT )
xy 0

0 A(TT )
xy −A(TT )

xx 0
0 0 0 0

 cos(ω(t − z)),

where A(TT )
xx and A(TT )

xy are two independent polarization states,
usually called A+ and A×; sometimes called the helicity states -
change under rotation of φ around n as

h→ eiS·nφA where S = particle spin

h× ± i h+ → e∓2i φ (A× ± i A+).
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Gravitational waves in the TT gauge

For a free test particle initially at rest, in the coordinate system
corresponding to the TT gauge, it stays at rest: coordinates do
not change, particles remain attached to initial positions.

TT gauge represents a coordinate system comoving with
freely-falling particles.

How to know that something is changing?

What about the proper (spacetime) distance between
neighbouring particles?
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Detection principle: proper distance measurement

”How to measure distance if the ruler also changes length?”

(Quentin Blake ”Izaak Newton”) (Rene Magritte ”The Son of Man”)
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Proper distance between test particles

Two test particles, initially at rest, one at x = 0 and the other at
x = ε, in spacetime described by gµν = ηµν + hµν .

The proper distance between them is

∆s =

∫
|gµνdxµdxν |1/2 =

∫ ε

0
|gxx |1/2 ≈ ε

√
gxx (x = 0).

If gxx (x = 0) = ηxx + h(TT )
xx (x = 0),

then

∆s ≈ ε
(

1 +
1
2

h(TT )
xx (x = 0)

)
,

which, in general, is varying in time (as hTT
xx is).
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Geodesic deviation in general relativity

The geodesic deviation equation is

D2ξα

Dτ2 = Rα
βγδu

βuγξδ,

with D/Dτ a covariant derivative, and uµ = ∂ξµ/∂τ , a 4-velocity along
the geodesic.
An analogue of an evolution of distance ξ between two distant test
particles due to the tidal force.

A simplified case:

? two test particles, both initially at rest (uα = (1,0,0,0)),

? one located at x = 0 and the other at x = ε (distance between
particles ξα = (0, ε,0,0)),

? Weak-field limit (proper time τ ≈ coordinate time t).
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Geodesic deviation in general relativity (weak field)
The general equation

D2ξα

Dτ2 =
∂2ξα

∂t2 = Rα
βγδu

βuγξδ

is, due to our simplifications,

∂2ξα

∂t2 = εRα
ttx = −εRα

txt ,

with two interesting directions (α = x or α = y ):

Rx
txt = ηxxRxtxt = −1

2
h(TT )

xx,tt ,

Ry
txt = ηyy Rytxt = −1

2
h(TT )

xy,tt ,

that is,
∂2ξx

∂t2 =
1
2
ε
∂2h(TT )

xx

∂t2 ,
∂2ξy

∂t2 =
1
2
ε
∂2h(TT )

xy

∂t2 .
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Geodesic deviation in general relativity (weak field)

A more general case:
with x = ε cos θ, y = ε sin θ, z = 0,

∂2ξx

∂t2 =
1
2
ε cos θ

∂2h(TT )
xx

∂t2 +
1
2
ε sin θ

∂2h(TT )
xy

∂t2 ,

∂2ξy

∂t2 =
1
2
ε cos θ

∂2h(TT )
xy

∂t2 − 1
2
ε sin θ

∂2h(TT )
xx

∂t2 .

with solutions, for the plane wave in the z direction,

ξx = ε cos θ +
1
2
εA(TT )

xx cos θ cosωt +
1
2
εA(TT )

xy sin θ cosωt ,

ξy = ε sin θ +
1
2
εA(TT )

xy cos θ cosωt − 1
2
εA(TT )

xx sin θ cosωt .
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The + polarisation

A(TT )
xx 6= 0, A(TT )

xy = 0

ξx = ε cos θ

(
1 +

1
2

A(TT )
xx cosωt

)
,

ξy = ε sin θ

(
1− 1

2
A(TT )

xx cosωt
)
.

SUPAGWD, October 2012 



12/18

The × polarisation

A(TT )
xy 6= 0, A(TT )

xx = 0

ξx = ε cos θ +
1
2
ε sin θA(TT )

xy cosωt ,

ξy = ε sin θ − 1
2
ε cos θA(TT )

xy cosωt .

SUPAGWD, October 2012 
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Polarizations: EM vs GW

Electromagnetic waves:
Gravitational waves:
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Polarizations: EM vs GW

? + and × patterns are orthogonal polarization states (by analogy with
EM waves, where the two linear polarizations added with phase
difference ±π/2 to obtain circularly polarized waves),

? GW is invariant under rotations of π about direction of propagation (EM
waves are invariant under rotations of 2π),

→ in analogy to quantum mechanics: helicity 2π/s, where s is the particle
spin (s = 1 for a photon, s = 2 for hypothetical graviton).
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For pure + mode, fractional change in proper distance is

∆L
L

=
h
2

Fractional change in proper separation 

Gravitational wave                        propagating along   z axis. 

SUPAGWD, October 2012 

Gertsenshtein & Pustovit (1962) were first to suggest an
interferometer to detect GWs. In the 70s Rainer Weiss had the same
idea→ LIGO
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Detection principle: laser interferometry
”How to measure distance when the ruler also changes length?”

Changes in arms length are very small: δLx − δLy = ∆L < 10−18 m (smaller
than the size of the proton). Wave amplitude h = ∆L/L ≤ 10−21.
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Change of arms’ length↔ variation in light travel time

Change of the x-arm: ds2 = −c2dt2 + (1 + hxx ) dx2 = 0.

Assume h(t) is constant during light’s travel through interferometer,
replace

√
1 + hxx with 1 + hxx/2, integrate from x = 0 to x = L:∫

dt =
1
c

∫ (
1 +

1
2

hxx

)
dx → tx = hxxL/2c.

Round-trip time in the x-arm: tx = hxxL/c.

Round-trip time in the y-arm: ty = −hL/c (hyy = −hxx = −h)

Round-trip times difference: ∆τ = 2hL/c

Phase difference (dividing ∆τ by the radian period of light 2π/λ):

∆φ =
4π
λ

hL .



17/18

? Do test masses move in response to a gravitational wave?
? No, in the TT gauge (free-falling masses define the

coordinates),
? Yes, in the laboratory coordinates (masses move affected

by tidal forces).
? Do light wavelength change in response to a gravitational

wave?
? No (see above),
? Yes, stretch by h as the masses move (as in the

cosmological redshift).
? If light waves are stretched by gravitational waves, how can

light be used as a ruler?
? Indeed, the instantaneous response of an interferometer to

a gravitational wave is null.
? But the light travels through the arms for some finite time

allowing for the phase shift to build up.

(P. R. Saulson, 1997, Am. J. Phys. 65, 501)
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Literature

? Lecture notes of Sean Carroll
(http://preposterousuniverse.com/grnotes)

? ”General Relativity and Gravitational Waves”, Thomas Moore,
http://pages.pomona.edu/~tmoore/LesHouches, lecture 5

? ”The basics of gravitational wave theory”, É. Flanagan, S. Hughes,
arXiv:gr-qc/0501041


