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General relativity
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General schedule

? History

? Introduction to general relativity
? What gravity really is (according to Einstein),
? Connection and curvature,
? Einstein equations.

? Detection principles

? Detectors

? Binary black-hole system

? Bursts and continuous waves

? Rates and populations, stochastic GW background, cosmology

? Testing general relativity

? Data analysis: waveforms and detection

? Data analysis: parameter estimation
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Why relativity? Maxwell and Newton incompatible

Maxwell’s equations describe electromagnetism and optical
phenomena within the theory of waves:

? A special medium, ”luminiferous æther”, needed to propagate
the waves; Æther weakly interacts with matter, is carried along
with astronomical objects,

? Light propagates with a finite speed, but this speed is not
invariant in all frames,

? Especially, Maxwell’s equations are not invariant under Galilean
transformations between, say, inertial coordinate frames O and
O′:

x ′ = x − vt , t ′ = t

? To make electromagnetism compatible with classical Newton’s
mechanics, light has speed c = 3× 108 m/s only in frames
where source is at rest.
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Why relativity? Maxwell and Newton incompatible

Albert Einstein (1905): Maxwell’s unification of electricity and
magnetism is complete by showing that the two fields is really one.

Special relativity is based on two postulates:

? the laws of physics are invariant (i.e., give the same results) in all
inertial systems (non-accelerating frames of reference),
→ no experiment can measure absolute velocity,

? the speed of light in vacuum is the same for all observers.

Lorentz transformation instead of
Galilean:

t ′ = γ
(

t − vx
c2

)
x ′ = γ (x − vt)

with γ =
1√

1− v2/c2

? length contraction ∆l ′ = ∆l/γ,

? time dilation ∆t ′ = ∆tγ,

? ”relativistic mass” mγ,

? mass–energy equivalence E = mc2,

? universal speed limit,

? relativity of simultaneity.
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Gravity and acceleration

What is the difference between Newtonian and Einsteinian
theory?
? Newton viewpoint: mass tells gravity how to exert a force,

force tells mass how to accelerate

F = −
GMgmg

r2 , F = mia

a = −
GMg

r2
mg

mi

? is gravitational mass mg equal to inertial mass mi?

? Einstein viewpoint: Mass (energy) tells spacetime how to
curve, curved spacetime tells mass (energy) how to move
(J. Wheeler) - geometry is related to mass distribution.
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Equivalence principle

Weak equivalence principle: testing the
equivalence of gravitational mass and
inertial mass

Eötvös parameter η for two different test
bodies A and B (aluminum and gold, for
example):

η(A,B) = 2

(
mg
mi

)
A
−
(

mg
mi

)
B(

mg
mi

)
A

+
(

mg
mi

)
B

From the times of Galileo (no difference „by
eye”) till present (Eöt-Wash group)
η < 10−13
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Equivalence principle

Strong equivalence principle:

? The outcome of any local experiment (gravitational or not)
in a free-falling laboratory is independent of the velocity of
the laboratory and its location in spacetime,

? the laws of gravitation are independent of velocity and
location,

? Locally, the effects of gravitation (motion in a curved
space) are the same as that of an accelerated observer in
flat space.
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Einstein: equivalence principle

Einstein (1907), ”the happiest thought of his life”:

Gravitation is a form of acceleration; locally, the effects of
gravitation (motion in a curved space) are the same as those of
an accelerated observer (in flat space).
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How it is to be free?

General relativity was not easy to acknowledge, because of various
freedoms:

? Choice of coordinate systems (rectilinear, curvilinear),

? Choice of reference frames (inertial, non-inertial),

? Fields (scalar, vector) change from point to point,

? Curved spacetime itself changes from point to point.
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http://brickisland.net/cs177

A curved 2D surface: at a given point, principal curvatures denoted κ1 and
κ2, are the maximum and minimum values of the curvature→ various notions
describing the curvature: Gauss (intrinsic to the surface, K = κ1κ2), extrinsic
(requires an idea of embedding space exterior to the surface).
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Laws in the inertial frame
2nd Newton’s law (F = ma):

ẍk =
1
m

F k (x, t)︸ ︷︷ ︸
inertial frame

+ Coriolis, centrifugal, . . .︸ ︷︷ ︸
non-inertial frame add-ons

Let’s assume:

? the simplest case of an affine space (flat space of Euclides,
Galileo and Newton),

? a rectilinear (Cartesian) coordinate system in a 4-dimensional
space, (ya) = (t , x , y , z).

In an inertial frame, trajectory of a body follows a straight line (1st
Newton law):

ÿa = 0 (free fall)

How does it look like in a different (maybe curvilinear) coordinate
system (xk )?
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? ẍ is a second derivative with respect to an independent time
variable, e.g. proper time τ ,

? Assuming Einstein’s summation convention:
xaxa = x0x0 + x1x1 + x2x2 + x3x3.

Expressing (ya) in (xk ):

ẏa =
∂ya

∂xk ẋk , and ÿa =
∂ya

∂xk ẍk +
∂2ya

∂xk∂x l ẋ
k ẋ l ≡ 0.

We want ẍm in (xk ) coordinates, so using the following relation
between (ya) and (xk ) systems,

∂xm

∂ya
∂ya

∂xk =
∂xm

∂xk = δm
k ,

We get

ẍm +
∂xm

∂ya
∂2ya

∂xk∂x l ẋ
k ẋ l = 0.
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Connection coefficients

Defining

Γm
kl :=

∂xm

∂ya
∂2ya

∂xk∂x l , (Γm
kl ≡ Γm

lk , due to symmetry of derivatives)

we get the equation of motion (equation of geodesics):

ẍm + Γm
kl ẋ

k ẋ l = 0.

? In general case, coefficients Γm
kl measure a departure of the (xk ) frame

from linearity (”inertiality”),

? Non-linear addition Γm
kl ẋ

k ẋ l contains all the apparent forces (Coriolis,
etc.), related to non-inertial nature of the coordinate system (frame),

? in 3+1 spacetime, Γm
lk has 4× 10 = 40 independent components.
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Gravitation: Newton vs Einstein

Newton:
? Space is euclidean, time is absolute,

there is no relation between them

? Gravitation is a force acting between
masses

? Laws of motion expressed in the
rectilinear inertial frame

Einstein:
? Space and time are related

? 4-dimensional space-time is curved
by masses, and gravitation is an
effect of this curvature

? Spacetime is curved, so rectilinar
coordinate systems are not even
possible
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Gravitation = a field of local inertial frames

In general relativity, there is no global inertial frame, but in
every point in spacetime there is a local inertial frame.

An inertial frame is an equivalence class of inertial coordinate
systems: coordinate systems (xk ) and (ya) belong to the same
equivalence class

(xk ) ∼x (ya)

iff, in the neighborhood of point x ∈ M,

∂2ya

∂xk∂x l (x) = 0.
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Gravity as apparent force

Rewriting the geodesic equation in a form of Newton’s equation of
motion,

ẍm = −Γm
kl ẋ

k ẋ l ,

with the right side describing gravitational forces in (xk ) coordinate
frame (depends on this choice).

? Locally, gravitational forces can be eliminated (Γm
kl = 0) by

choosing an inertial frame,

→ this is the core idea behind the ”free-falling lift”
Gedankenexperiment (nowadays, the space station at the orbit),
and gravity as an apparent force,

? Gravitation in a curved space can be eliminated locally (from
point to point), but not globally: it is present in the curvature of
spacetime, i.e., in the global structure of free-falling trajectories.

Is there a way to distinguish real acceleration from apparent one,
caused by a choice of coordinates and frames?
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How to quantify curvature?
Detecting the true (coordinate independent) departure from flatness:

? If spacetime is flat in the neighborhood of x ∈ M, then we could chose a
coordinate system in which Γm

kl = 0 in that neighborhood.

? Is it easy, hard or even possible to select such a coordinate system? So
far we know how to chose the inertial frame in which Γm

kl (x) = 0, i.e.,
only at x. . .

? Something less ambitious: is it possible to zero the derivatives of Γm
kl ,

∂Γm
kl

∂xn = ∂nΓm
kl := Γm

kln at x?

? If for (xk ), Γm
kl (x) = 0, but Γm

kln(x) 6= 0, is there (ya), for which both
Γ̃a

bc(x) = 0 and Γ̃a
bcd (x) = 0?

? We have selected (xk ) and (ya) to be both inertial, because
Γm

kl (x) = Γ̃a
bc(x) = 0, so they belong to the same equivalence class,

which means
∂2xm

∂yb∂y c =
∂2ya

∂xk∂x l = 0.
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How to quantify curvature?

Transformation law between connections is (given here without
derivation):

Γ̃a
bc =

∂ya

∂xm
∂xk

∂yb
∂x l

∂yc Γm
kl +

∂ya

∂xm
∂2xm

∂yb∂yc ,

(btw. it is obvious that connections are not tensors from the existence
of the second, non-tensor term).

The derivative ∂d Γ̃a
bc := Γ̃a

bcd is

Γ̃a
bcd =

∂ya

∂xm

(
∂xk

∂yb
∂x l

∂yc
∂xn

∂yd Γm
kln +

∂3xm

∂yb∂yc∂yd

)
.

Can we chose the (ya) coordinates such that Γ̃a
bcd = 0?

Since the third derivative is symmetric, we can only remove the
symmetric part of Γm

kln.
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How to quantify curvature?

Completely symmetric part of Γm
kln is

Γm
(kln) :=

1
3!

(Γm
kln + Γm

nkl + Γm
lnk + Γm

nlk + Γm
lkn + Γm

knl ) =
1
3

(Γm
kln + Γm

nkl + Γm
lnk ) .

Also
∂xk

∂y (b

∂x l

∂yc
∂xn

∂yd) Γm
kln =

∂xk

∂yb
∂x l

∂yc
∂xn

∂yd Γm
(kln).

Therefore

Γ̃a
(bcd) =

∂ya

∂xm

(
∂xk

∂yb
∂x l

∂yc
∂xn

∂yd Γm
(kln) +

∂3xm

∂yb∂yc∂yd

)
,

so

Γ̃a
bcd − Γ̃a

(bcd) =
∂ya

∂xm
∂xk

∂yb
∂x l

∂yc
∂xn

∂yd

(
Γm

kln − Γm
(kln)

)
.

If there is a non-symmetric part of Γm
kln, then it cannot be removed by

a choice of coordinates. Note however, that the above looks like a
transformation law for a tensor!
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Curvature tensor

In an arbitrary inertial frame, the curvature tensor is

K m
kln := Γm

kln − Γm
(kln) = ∂nΓm

kl − ∂(nΓm
kl).

If it is non-zero in some inertial frame, then it cannot be zeroed in
another→ the spacetime is not flat!

Useful properties:

? Symmetric in first two ’downstairs’ indicies: K m
kln = K m

lkn,

? Completely symmetric part vanishes (first Bianchi identity):
K m
(kln) = 1

3 (K m
kln + K m

nkl + K m
lnk ) = 0.

In an arbitrary non-inertial frame, K m
kln equals

K m
kln = Γm

kln − Γm
(kln) + Γj

kl Γ
m
nj − Γj

(kl Γ
m
n)j︸ ︷︷ ︸

non-inertial part

.
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Riemann tensor

An equivalent measure for the ”departure from flatness” is the
Riemann tensor, which exploits the anti-symmetric properties of K m

kln:

Rm
kln := −2K m

k [ln] = −K m
kln + K m

knl ,

Useful properties:

? Anti-symmetric in last two ’downstairs’ indicies: Rm
kln = −Rm

knl ,

? Completely anti-symmetric part vanishes (first Bianchi identity):
Rm

[kln] = 1
3 (Rm

kln + Rm
nkl + Rm

lnk ) = 0.

In an arbitrary non-inertial frame, Rm
kln equals

Rm
kln = Γm

knl − Γm
kln + Γj

knΓm
lj − Γj

kl Γ
m
nj︸ ︷︷ ︸

non-inertial part

.
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Riemann = curvature

The two notions are equivalent:

Rm
kln = −2K m

k [ln], K m
kln = −2

3
Rm

(kl)n,

although each one is suited for specific purposes:

Curvature tensor:

A measure of ”obstruction” against
”flattening” the coordinates in the
neighborhood of a point.

Riemann tensor:

A measure of how a vector
changes in a process of parallel
transport along a closed curve.
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Of course, general relativity is much more than connection &
curvature, but these two concepts are sufficient to describe
motion of test masses in curved spacetime (→ detect the
curvature and its changes).

Other mathematical tools:
? Vectors and forms, co- and contravariant objects,
? Manifolds, fibres, bundles,
? Metric tensor,
? Parallel transport,
? Covariant derivative,
? Lie derivative,
? Symmetries and Killing fields,
? Principle of least action.
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Special relativity in Minkowski spacetime

How we evaluate the distance in space in the usual 3D geometry?
Let’s consider spherical coordinates,

x1 = r sin θ cosφ

x2 = r sin θ sinφ

x3 = r cos θ

and call such an object, g =

1 0 0
0 r2 0
0 0 r2 sin2 θ


the metric tensor. An infinitesimal distance between (r , θ, φ) and
(r + dr , θ + dθ, φ+ dφ) is then,

ds2 = gαβdxαdxβ = dr2 + r2dθ2 + r2 sin2 θdφ2.
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Special relativity in Minkowski spacetime
Let’s consider now a 4D space, with a following coordinate system:

x0 = ct (= t for c=1)
x1 = x
x2 = y
x3 = z

and introduce the following metric tensor

η =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


that can be used to calculate the distances in an usual way

ds2 = ηαβdxαdxβ = −dt2 + dx2 + dy2 + dz2.

A manifold with the signature (-+++) - set of points in a topological
space - is called a pseudo-Riemannian manifold: the metric tensor is
not positive-definite.
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Comparing vectors in curved spaces
Consider an infinitesimal change of a vector v along a line
parametrized by λ in a space with a coordinate basis e:

dv
dλ

=
d(vαeα)

dλ
=

dvα

dλ
eα + vα

deα
dλ

.

How the vectors from the coordinate basis change with λ?

deα
dλ

=
deα
dxβ

dxβ

dλ
with

deα
dxβ

= Γγαβ︸︷︷︸
Connection

eγ

so we can write a total derivative

dv
dλ

=

(
dvα

dλ
+ Γαγβvγ

dxβ

dλ

)
eα or

Dvα

dλ
=

dvα

dλ
+ Γαγβvγ

dxβ

dλ
.

In a curved space, the changes are because of

? physical changes of a vector field between points,

? curvilinear coordinates.
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Comparing vectors in curved spaces

Γαγβ (affine connection, Christoffel, Levi-Civita symbols) describe the
effects of parallel transport in curved spaces; they are functions of the
metric gαβ :

Γαγδ =
1
2

gαβ
(
∂gβγ
∂x δ

+
∂gβδ
∂xγ

− ∂gγδ
∂xβ

)

=
1
2

gαβ(gβγ,δ + gβδ,γ − gγδ,β)

(symmetric in lower indices, Γαγδ = Γαδγ).
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Comparing vectors in curved spaces

The total derivative, similar like in hydrodynamics, is

Dvα

Dλ
=

dvα

dλ
+ Γαγβvγ

dxβ

dλ
or in vector notation

Dv
Dλ

= ∇uv

with uα = dxα/dλ, the 4-velocity/tangent vector to the curve.

Often called the covariant derivative:

vα;β = vα,β + Γαγβvγ or
Dvα

Dλ
= vα;βuβ

Covariant derivative acting on the metric return 0 (metric
compatibility):

gαβ;γ = 0, gαβ;γ = 0.
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Riemann curvature tensor
In the language of covariant derivatives along vector directions,
R(u, v)w = ∇u∇v w −∇v∇uw −∇[u,v ]w measures a failure of
derivatives to commute.

? Constructed from gµν and its first and second derivatives,

? Imagine transporting a vector V around a closed loop by dxσ,
dxµ and then dxν ; the vector will change its components w.r.t.
the original ones by ∆V i .

Transport of a vector parallel to the
connection.

The Riemann tensor is roughly

Rρ
σµν = ∆V i/(dxσdxµdxν)
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Riemann curvature tensor
In the language of covariant derivatives along vector directions,
R(u, v)w = ∇u∇v w −∇v∇uw −∇[u,v ]w measures a failure of
derivatives to commute.

? Constructed from gµν and its first and second derivatives,

? Measures the intrinsic curvature→ Gauss curvature, ”rotation”
of parallel-transported vectors (R ≡ 0 ⇐⇒ space is flat),

? Measures the tidal forces acting on a body moving on the
geodesic→ relative acceleration between nearby bodies
(geodesic deviation),

? in 3+1 spacetime, Rρ
σµν has 256 components, only 20

independent (because of the following symmetries):

Rρσµν = −Rρσνµ = −Rσρµν ,
Rρσµν = Rµνρσ,

Rρσµν + Rρµνµ + Rρνσµ = 0.

Useful second Bianchi identity: ∇γRρσµν+∇µRρσνγ+∇νRρσγµ = 0.
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Ricci tensor and Ricci scalar
? Ricci tensor is a contraction of the Riemann tensor:

Rµν = Rρ
µρν

Rµν is kind of average curvature. It quantifies the amount by which a
test volume differs from one in flat space,

In the vicinity of a given point, gµν = ηµν +O(x2).

The difference in volume element: dV =
(

1− 1
6

Rµνxµxν +O(x3)
)

dVflat

? Ricci scalar (scalar curvature) is contracted Ricci tensor:

R = Rµ
µ

used e.g., to compare areas of circles with those from flat space in n
dimensions:

dS
dSflat

= 1− R
6n

r 2 +O(r 4)

in 2D, R = 2K (twice the Gauss curvature).

Useful second Bianchi identity: ∇µRαµ =
1
2
∇αR
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Energy-momentum tensor
The energy-momentum tensor (sometimes called the stress-energy
tensor) contains mass-energy information. Most often used is the
perfect fluid version,

Tµν = (ρ+ p)uµuν + pgµν ,

→ neglect viscosity and elastic effects. Fluid which is isotropic in its
rest frame (gµνuµuν = −1)

T ν
µ =


−ρ 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p


The conservation laws of Tµν are analogs of conservation laws for
energy and momenta from hydrodynamics, using the covariant
derivative:

∇µTµν = 0.
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Einstein equations

Using the just defined tensors, we arrive at

Gµν = Rµν −
1
2

Rgµν =
8πG
c4 Tµν

(10 equations in 3+1 dimensions).

Why like that? The equations should conserve energy &
momentum. We would like to have

∇µTµν = 0. It implies ∇µGµν = 0.

From the contracted Bianchi identity,

∇µRαµ =
1
2
∇αR → ∇µ

(
Rµν −

1
2

Rgµν

)
= 0.
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Literature

? Lecture notes of Sean Carroll
(http://preposterousuniverse.com/grnotes)

? Textbooks: Misner-Thorne-Wheeler, Wald,

? Jerzy Kijowski, ”Geometria różniczkowa jako narzędzie nauk
przyrodniczych”, Monografie CSZ, 2015 (in Polish),

? SageManifolds examples:
http://sagemanifolds.obspm.fr/examples.html

? My old introduction to general relativity lecture slides:
users.camk.edu.pl/bejger/raarcm/intro-gr.pdf


