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Why relativity? Maxwell and Newton incompatible

Maxwell’s equations describe electromagnetism and optical
phenomena within the theory of waves:

« A special medium, “luminiferous aether”, needed to propagate
the waves; /Ether weakly interacts with matter, is carried along
with astronomical objects,

* Light propagates with a finite speed, but this speed is not
invariant in all frames,

+ Especially, Maxwell's equations are not invariant under Galilean
transformations between, say, inertial coordinate frames O and
O/.

X =x—-vt, =t
* To make electromagnetism compatible with classical Newton'’s

mechanics, light has speed ¢ = 3 x 108 m/s only in frames
where source is at rest.
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Why relativity? Maxwell and Newton incompatible

Albert Einstein (1905): Maxwell’s unification of electricity and
magnetism is complete by showing that the two fields is really one.
Special relativity is based on two postulates:

* the laws of physics are invariant (i.e., give the same results) in all

inertial systems (non-accelerating frames of reference),
— no experiment can measure absolute velocity,

* the speed of light in vacuum is the same for all observers.

Lorentz transformation instead of

; * length contraction A/' = Al/+,
Galilean:
* time dilation At = Aty,
, VX
r =y (t - g) * “relativistic mass” m,
X = y(x-w) * mass—energy equivalence E = mc?,
withy = 1 * universal speed limit,
V1 —=v2/c? . , ,
* relativity of simultaneity.
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Gravity and acceleration

What is the difference between Newtonian and Einsteinian
theory?
* Newton viewpoint: mass tells gravity how to exert a force,
force tells mass how to accelerate

* is gravitational mass my equal to inertial mass m;?

* Einstein viewpoint: Mass (energy) tells spacetime how to
curve, curved spacetime tells mass (energy) how to move
(J. Wheeler) - geometry is related to mass distribution.
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Equivalence principle

Weak equivalence principle: testing the
equivalence of gravitational mass and
inertial mass

mao

Eo6tvds parameter 7 for two different test
bodies A and B (aluminum and gold, for
example):

(A, B) =2 (%)A B (%)B
()t (%),
From the times of Galileo (no difference ,by

eye”) till present (E6t-Wash group)
n<10-13
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Equivalence principle

Strong equivalence principle:

* The outcome of any local experiment (gravitational or not)
in a free-falling laboratory is independent of the velocity of
the laboratory and its location in spacetime,

* the laws of gravitation are independent of velocity and
location,

* Locally, the effects of gravitation (motion in a curved
space) are the same as that of an accelerated observer in
flat space.
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Einstein: equivalence principle

Einstein (1907), "the happiest thought of his life”:

Gravitation is a form of acceleration; locally, the effects of
gravitation (motion in a curved space) are the same as those of
an accelerated observer (in flat space).
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How it is to be free?

General relativity was not easy to acknowledge, because of various
freedoms:

+ Choice of coordinate systems (rectilinear, curvilinear),
* Choice of reference frames (inertial, non-inertial),
* Fields (scalar, vector) change from point to point,

* Curved spacetime itself changes from point to point.
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http://brickisland.net/cs177

A curved 2D surface: at a given point, principal curvatures denoted «¢ and

K2, are the maximum and minimum values of the curvature — various notions
describing the curvature: Gauss (intrinsic to the surface, K = k1k2), extrinsic
(requires an idea of embedding space exterior to the surface).
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Laws in the inertial frame

2nd Newton’s law (F = ma):

Xk = %F"(x, t) + Coriolis, centrifugal, ...

. . non-inertial frame add-ons
inertial frame

Let’'s assume:

* the simplest case of an affine space (flat space of Euclides,
Galileo and Newton),

« arectilinear (Cartesian) coordinate system in a 4-dimensional
space, (y4) = (t, x,y, 2).

In an inertial frame, trajectory of a body follows a straight line (1st
Newton law):
y@=0 (free fall)

How does it look like in a different (maybe curvilinear) coordinate
system (x*)?
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* X is a second derivative with respect to an independent time
variable, e.g. proper time 7,

* Assuming Einstein’s summation convention:
Xax2 = XoX° + x4 X1 4+ X2x% + Xax5.

Expressing (y?) in (x¥):

o Oy? % d2y?

vkl —
ye= 8ka and y? 8ka +6XK5X’X x'=0.

We want X™ in (x*) coordinates, so using the following relation
between (y?) and (x*) systems,

ox™ oy? _ oxm _m
dya oxk — oxk — Tk»
We get
oxm aZya

kol _
8_}/3—Bxk6x’x x'=0.

XM+
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Connection coefficients

Defining

IyMm 2,4
W= %%, (T =T, due to symmetry of derivatives)

we get the equation of motion (equation of geodesics):

x™ 4 TPxkx! = 0.

* In general case, coefficients '] measure a departure of the (x¥) frame
from linearity ("inertiality”),

* Non-linear addition I7x*x’ contains all the apparent forces (Coriolis,
etc.), related to non- |nert|al nature of the coordinate system (frame),

* in 3+1 spacetime, ' has 4 x 10 = 40 independent components.
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Gravitation: Newton vs Einstein

Newton:

* Space is euclidean, time is absolute,
there is no relation between them

* Gravitation is a force acting between
masses

* Laws of motion expressed in the
rectilinear inertial frame

Einstein:

* Space and time are related

* 4-dimensional space-time is curved
by masses, and gravitation is an
effect of this curvature

* Spacetime is curved, so rectilinar
coordinate systems are not even
possible
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Gravitation = a field of local inertial frames

In general relativity, there is no global inertial frame, but in
every point in spacetime there is a local inertial frame.

|
An inertial frame is an equivalence class of inertial coordinate
systems: coordinate systems (x) and (y2) belong to the same
equivalence class
() ~x (v

iff, in the neighborhood of point x € M,

aZya
axkax1 X) =0
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Gravity as apparent force

Rewriting the geodesic equation in a form of Newton’s equation of
motion,
XM= —xkx!,

with the right side describing gravitational forces in (x*) coordinate
frame (depends on this choice).

* Locally, gravitational forces can be eliminated (I';] = 0) by
choosing an inertial frame,

— this is the core idea behind the "free-falling lift”
Gedankenexperiment (nowadays, the space station at the orbit),
and gravity as an apparent force,

* Gravitation in a curved space can be eliminated locally (from
point to point), but not globally: it is present in the curvature of
spacetime, i.e., in the global structure of free-falling trajectories.

Is there a way to distinguish real acceleration from apparent one,
caused by a choice of coordinates and frames?
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How to quantify curvature?

Detecting the true (coordinate independent) departure from flatness:

*

If spacetime is flat in the neighborhood of x € M, then we could chose a
coordinate system in which '} = 0 in that neighborhood.

Is it easy, hard or even possible to select such a coordinate system? So
far we know how to chose the inertial frame in which I'j}(x) = 0, i.e.,
only at x...

Something less ambitious: is it possible to zero the derivatives of 'y,

ory

B = OnTh = i, at x?

If for (x*), Fi(x) = 0, but T{},(x) # 0, is there (y?), for which both
M.(x) =0and Ng4(x) = 0?

We have selected (x¥) and (y?) to be both inertial, because
ra(x) = I'g.(x) = 0, so they belong to the same equivalence class,
which means

aZXm 62}/6

oyboyc — oxkox' —
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How to quantify curvature?

Transformation law between connections is (given here without
derivation):
e _ dy? axk ox! m. dyd 9Px™m
be ™ axm ayb ayc KT gxm gybaye’
(btw. it is obvious that connections are not tensors from the existence
of the second, non-tensor term).

The derivative 9478, := 2., is

=a ay? (oxk ox' ox" . Pxm
bed = 5xm \ 9yb aye aya kn T 3y baycaya | -
oxm \ dyb dy° dy dyboycoy

Can we chose the (y?) coordinates such that 2, = 0?

Since the third derivative is symmetric, we can only remove the
symmetric part of ']},
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How to quantify curvature?

Completely symmetric part of I'f], is

1 1
M kiny = 3] (Tkin + Tk =+ Tk + Mol + Tien + Tiky) = 3 (Tkin =+ Tk =+ Tink) -

Also
oxk ox' ox" . oxk ox! ox"
Gy 0y Gy n ~ GyB oye oyd (0
Therefore
o dy? (oxk ax! ax" rm 23xm
(bed) = Zxm \ 5yB aye ayd ki T 5ypa,0h,d
SO
co = OyFOXkOX OX" (.
bed ~ Hbed) = g5m 55 gy oyd ( Kin — (kln))

If there is a non-symmetric part of ']}, then it cannot be removed by
a choice of coordinates. Note however, that the above looks like a
transformation law for a tensor!
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Curvature tensor

In an arbitrary inertial frame, the curvature tensor is
Kk% = r;gn - rfr;dn) = 5,7”(7 — (9(,,FZ})

If it is non-zero in some inertial frame, then it cannot be zeroed in
another — the spacetime is not flat!
Useful properties:
* Symmetric in first two 'downstairs’ indicies: K[, = K],
+ Completely symmetric part vanishes (first Bianchi identity):
Kikiny = 3 (K + Koy + Kimie) = 0.
In an arbitrary non-inertial frame, KJ, equals

Kt = T = Thimy + ThT oy — Tl -

non-inertial part
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Riemann tensor

An equivalent measure for the "departure from flatness” is the
Riemann tensor, which exploits the anti-symmetric properties of K/7:

Rl,<7n = _2KI?[7ln] = _KIZZ? + KkmnI’
Useful properties:
* Anti-symmetric in last two ‘downstairs’ indicies: R}, = —R},,

+ Completely anti-symmetric part vanishes (first Bianchi identity):
Rin = 3 (R, + Ry + R = 0.

In an arbitrary non-inertial frame, Ry}, equals

m _ rm m j m j m
Riin = Ui — Tin + Tinlf — DT
— —

non-inertial part
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Riemann = curvature

The two notions are equivalent:

2
Rkin = _2Klg?ln]7 Kiin = _gR(nIZI)n?

although each one is suited for specific purposes:

Curvature tensor: Riemann tensor:

A measure of "obstruction” against A measure of how a vector
“flattening” the coordinates in the changes in a process of parallel
neighborhood of a point. transport along a closed curve.
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Of course, general relativity is much more than connection &
curvature, but these two concepts are sufficient to describe
motion of test masses in curved spacetime (— detect the
curvature and its changes).

Other mathematical tools:

*

b R . S S S R

Vectors and forms, co- and contravariant objects,
Manifolds, fibres, bundles,

Metric tensor,

Parallel transport,

Covariant derivative,

Lie derivative,

Symmetries and Killing fields,

Principle of least action.
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Special relativity in Minkowski spacetime

How we evaluate the distance in space in the usual 3D geometry?
Let’s consider spherical coordinates,

X' = rsinfcosq¢
x> = rsinfsin¢
x3 = rcosf

1 0 0
and call such an object, g = [0 r? 0
0 0 r?sin?6

the metric tensor. An infinitesimal distance between (r, 6, ¢) and
(r+dr,0+do, ¢+ do) is then,

ds® = gaﬁdxadxﬁ = dr? + r2de? + r?sin? 9d¢2.
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Special relativity in Minkowski spacetime
Let’s consider now a 4D space, with a following coordinate system:

0 = ct(=tforc=1)
= X

y
= z

N =

X XX X
w
Il

and introduce the following metric tensor

1 00 0
o 100
1o o010

0 0 0 1

that can be used to calculate the distances in an usual way
ds® = napdx®dx? = —dt® + dx® + dy? + dz2.

A manifold with the signature (-+++) - set of points in a topological
space - is called a pseudo-Riemannian manifold: the metric tensor is

not positive-definite. 20/26



Comparing vectors in curved spaces

Consider an infinitesimal change of a vector v along a line
parametrized by ) in a space with a coordinate basis e:

av _d(vie) _dv, . .de
dx dx d\x “ ax’

How the vectors from the coordinate basis change with A\?

% — %diﬁ with dea — r” e
ax ax? d ax?s BT
Connection
so we can write a total derivative
av _ (av* e, dxﬁ e or Dve dv“ e
adx — \dx dax ) e ax  ax sV

In a curved space, the changes are because of
* physical changes of a vector field between points,

* curvilinear coordinates.

. ax?

o
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Comparing vectors in curved spaces

S (affine connection, Christoffel, Levi-Civita symbols) describe the
effects of parallel transport in curved spaces; they are functions of the
metric gag:

1 ag 0gss  004s
a . ~af By B 2
=39 (c‘)x5 T ox 8x5)

’
= EQO‘B (95v.6 + sy — Gro8)

(symmetric in lower indices, %5 = T%5,).
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Comparing vectors in curved spaces

The total derivative, similar like in hydrodynamics, is

Dve  dve _ _dxP

Dv
- 2 vY—— orinvector notation — = Vv
Dx ~ax gy oy o py T Ve

with u® = dx®/d), the 4-velocity/tangent vector to the curve.
Often called the covariant derivative:

Q

DX

- Y — vey®
Vi = Vi +T55v7 or = VU

Covariant derivative acting on the metric return 0 (metric
compatibility):
Jopiy = 07 goz[f —
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Riemann curvature tensor

In the language of covariant derivatives along vector directions,
R(u,v)w =V,V,w - V,V,w — V|, ,)w measures a failure of
derivatives to commute.

* Constructed from g,,, and its first and second derivatives,

* Imagine transporting a vector V around a closed loop by dx?,
dx* and then dx”; the vector will change its components w.r.t.
the original ones by AV'.

Transport of a vector parallel to the
connection.

The Riemann tensor is roughly

Re ., = AV'/(dxdx"dx")

ouv
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Riemann curvature tensor
In the language of covariant derivatives along vector directions,
R(u,v)w =V, Vyw - V,V,w — Vi, ,w measures a failure of
derivatives to commute.

* Constructed from g,,, and its first and second derivatives,

* Measures the intrinsic curvature — Gauss curvature, "rotation”
of parallel-transported vectors (R =0 < space is flat),

* Measures the tidal forces acting on a body moving on the
geodesic — relative acceleration between nearby bodies
(geodesic deviation),

* in 3+1 spacetime, A5, has 256 components, only 20
independent (because of the following symmetries):

Rpo‘pl/ = *Rpa'v,u = *Ra'p,ul/y
Rpouu - Ruupa’a
Rpfwv + Rppwu + waou = 0.

Useful second Bianchi identity: V,R,;,.,+V, R,;.,+V.R

poyu = 0.
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Ricci tensor and Ricci scalar
* Ricci tensor is a contraction of the Riemann tensor:

— P
HLLV - H;lpl/

R,.. is kind of average curvature. It quantifies the amount by which a
test volume differs from one in flat space,

In the vicinity of a given point, g, = 7. + O(x%).

The difference in volume element: dV = (1 - % X XY +(9(x3)) dViar

* Ricci scalar (scalar curvature) is contracted Ricci tensor:

R=R,
used e.g., to compare areas of circles with those from flat space in n
dimensions: s -
_q4_ 1o 4

dSha 1 6’7r +o(r)
in 2D, R = 2K (twice the Gauss curvature).

. . . 1

Useful second Bianchi identity: V"R,, = -V,R

2
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Energy-momentum tensor

The energy-momentum tensor (sometimes called the stress-energy
tensor) contains mass-energy information. Most often used is the
perfect fluid version,

T,uu = (P + p)uuuy + pglLlM

— neglect viscosity and elastic effects. Fluid which is isotropic in its
rest frame (g, u*u” = —1)

—p 000
, o p oo
T 0 0 p O

0 00 p

The conservation laws of T, are analogs of conservation laws for
energy and momenta from hydrodynamics, using the covariant
derivative:

V4T, =0.
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Einstein equations

Using the just defined tensors, we arrive at

1 817G
G;w - R,ul/ - éRg;w - 7 T,ul/

(10 equations in 3+1 dimensions).

Why like that? The equations should conserve energy &
momentum. We would like to have

VAT, =0. ltimplies V*G,, =0.

From the contracted Bianchi identity,

2 2

V'Ruy = AV.R = VP (RW _ 1ng> _o.
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Literature

* Lecture notes of Sean Carroll
(http://preposterousuniverse.com/grnotes)

* Textbooks: Misner-Thorne-Wheeler, Wald,

* Jerzy Kijowski, "Geometria r6zniczkowa jako narzedzie nauk
przyrodniczych”, Monografie CSZ, 2015 (in Polish),

* SageManifolds examples:
http://sagemanifolds.obspm.fr/examples.html

* My old introduction to general relativity lecture slides:
users.camk.edu.pl/bejger/raarcm/intro-gr.pdf
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