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GW data analysis:
parameter estimation
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General schedule

? History

? Introduction to general relativity

? Detection principles

? Detectors

? Binary black-hole system

? Bursts and continuous waves

? Rates and populations & cosmology

? Stochastic GW background. Tests of general relativity using GWs

? Data analysis: signal processing

? Data analysis: parameter estimation
? Frequentist vs Bayesian
? Bayesian inference
? Samplers, hyper-parameters, marginalization
? Fisher information matrix
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After detection

(detection of something other than just
noise in the data)

(establishing confidence that the
signal is astrophysical and has certain
parameters)
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Binary system waveform: 15+ parameters

Searching for the best fitted waveform→ calculating the likelihood at
sufficiently dense grid in 15-dimensional space→ ”the curse of
dimensionality”
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Statistical approaches: frequentist vs Bayesian

? Probability is the limit of the relative frequency of an event after many
trials N:

P = n/N

where n is the number of desired outcomes,

? only data from the current experiment when evaluating outcomes,

? Establishing significance: p-value - evidence against a null hypothesis
(the smaller the p-value, the stronger the evidence the null hypothesis
should be rejected). Essentially the probability of a false positive based
on the data in the experiment,

? Null hypothesis: a default hypothesis that the given observation is not
extraordinary,

? P-values are (objective) probability statements about the data sample
not about the hypothesis itself.

Notable figures in 20th century: Roland Fisher (1890 – 1962), Jerzy Neyman
(1894 – 1981), Egon Pearson (1895 – 1980).
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Statistical approaches: frequentist vs Bayesian

Thomas Bayes (1701-1761): ”probability is orderly opinion, and that
inference from data is nothing other than the revision of such opinion in the
light of relevant new information”

? probability expresses a degree of belief in an event,

? as opposed to the frequentist approach, bayesian method expresses
the chance of an event happening (based on available data),

? conditional concept of probability: uses prior knowledge and current
data to predict the posterior.
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Statistical approaches: frequentist vs Bayesian

Frequentist:

? never uses/gives the probability
of a hypothesis (no prior or
posterior),

? depends on the likelihood
P(data|hypothesis) for both
observed and unobserved data,

? does not require a prior (”events
occur with frequency”),

? dominated statistical practice
during the 20th century,

? computationally feasible.

Bayesian:

? uses probabilistic language for
both hypotheses and data,

? depends on the prior and
likelihood of observed data,

? requires one to know or
construct a ”subjective prior”,

? dominated statistical practice
before the 20th century,

? may be computationally
intensive (due to integration over
many parameters).
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Statistical approaches: frequentist vs Bayesian
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Bayes’ theorem

p(θ|d ,M)︸ ︷︷ ︸
posterior

=

likelihood︷ ︸︸ ︷
p(d |θ,M)

prior︷ ︸︸ ︷
p(θ|M)

p(d |M)︸ ︷︷ ︸
evidence

with
? d: the data (e.g. time series from LIGO-Virgo detectors),
? M: the model (e.g. the binary inspiral waveform)
? θ: parameters of the model (e.g. the 15 parameters of the

waveform, location in the sky etc.)
Sometimes written as

p(θ|d) = p(d |θ) p(θ)
p(d)

=
p(d |θ) p(θ)∫
p(d |θ) p(θ)dθ

=
L(d |θ) π(θ)

Z .
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Bayes’ theorem: posterior distribution p

We would like to obtain the posterior distribution,

p(θ|d)

i.e. the probability density function for the continuous variables
θ given the data d . Probability that the true value of θ is
between (θ′, θ′ + dθ) is given by p(θ′|d)dθ′. The posterior is
normalized: ∫

p(θ|d)dθ = 1.

We want to learn the p(θ|d) not only for the values of θ but also
to construct credible intervals for these values→ estimate the
errors of the measurement.
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Bayes’ theorem: likelihood L
L(d |θ) is the likelihood function of the data given the parameters θ.

? Can be chosen according to the nature of the observation,

? Is related to our assumed/known model of the noise,

? In GW astronomy, we typically assume Gaussian noise
likelihood function:

L(d |θ) = 1
2πσ2 exp

(
−1

2
|d − µ(θ)|2

σ2

)
.

with µ(θ) a template for the GW waveform given θ, and σ is the
detector noise. Likelihood is typically not normalized w.r.t θ∫

dθL(d |θ) 6= 1.

(however, it is normalized w.r.t the data d , and describes the chance
of getting data d . L is a probability density function with units of
inverse data: integrated over all possible d gives 1).
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Bayes’ theorem: prior distribution π

Like L, the prior is a choice: it incorporates our belief in θ
before observation.
? sometimes easy to chose e.g. for sky localisation

(isotropic),
? sometimes it depends on unknown astrophysics, e.g. mass

of the primary component in the BBH system π(m1).
In case of no knowledge on certain θi , we usually assume an
uniform or log-uniform distribution (the later if we don’t know the
order of magnitude of a quantity).

Of course, for the next measurement, previous posterior
becomes prior (→ building on previous knowledge).
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Example: coin flip
Updading posterior probability of pH (coin flip results in heads)

”Bayesian methods for hackers”, https://camdavidsonpilon.github.io/

Probabilistic-Programming-and-Bayesian-Methods-for-Hackers
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Binary system waveform: prior on extrinsic parameters
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Binary system waveform: prior on intrinsic parameters

(In practice, sometimes non-trivial choices to be made).
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Bayes’ theorem: marginalizing the posterior

Parameters θ is usually a large set of parameters. How to study
a specific one?

Marginalizing (integrating ”away”) the parameters we are not
interested in (the ”nuisance parameters”) to get a marginalized
posterior

p(θi |d) =
∫ ∏

k 6=i

dθk

p(θ|d) = L(d |θi)π(θi)

Z .

L(d |θi) is the marginalized likelihood:

L(d |θi) =

∫ ∏
k 6=i

dθk

π(θk )L(d |θ).
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Bayes’ theorem: marginalizing the posterior

Example:

? Marginalization over variable θa to obtain a posterior on θb:

→ means calculating the best guess for θb given uncertainty in θa.

? If θa and θb are covariant, marginalization over θa introduces its
uncertainty into the posterior for θb.

→ The marginalized posterior p(θb|d) is broader than the conditional
posterior p(θb|d , θa) (=a slice through the p(θb|d) posterior at a fixed
value of θa).

In the GW context of a binary system: covariance between the
luminosity distance DL and the inclination angle θJN .
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Credible intervals

Credible interval: region of parameter space containing fraction of posterior
probability (in frequentist approach: confidence intervals),

? highest posterior density interval
(HPDI): ? Relation to σ levels, e.g. 2σ

credible region includes 95% of
posterior probability,

? Symmetric credible intervals:
with a cumulative distribution
function

P(x) =
∫ x
−∞ dx ′ p(x ′),

the X% symmetric credible
region is

1
2

(
1−

X
100

)
< P(x) <

1
2

(
1 +

X
100

)
.
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GW170817 joint posterior for distance-inclination
angle
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Joint posterior for
luminosity distance and
inclination angle for
GW170817.
Blue contours: 90%
credible region using GW
data alone, purple contours
obtained with EM
observation.
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Bayes’ theorem: evidence Z

The ”evidence” Z is usually treated as a normalization factor

Z ≡
∫

dθL(d |θ)π(θ) = L(d).

but it also plays an important role in model selection and can be
viewed as completely marginalized likelihood.
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Model selection: signal vs noise

Evidence Z is useful to select a better model (=the one which is
statistically preferred by the data), and quantify by how much it is
better.

Example: ”signal model” (described by M(θ)) vs ”noise model” (no
parameters).

Let’s define signal evidence ZS and a noise evidence ZN (”null
likelihood” L(d |0)):

ZS ≡
∫

dθL(d |θ)π(θ), ZN ≡ L(d |0) =
1

2πσ2 exp

(
−1

2
|d |2
σ2

)
.

The ratio of the evidence for two different models is the Bayes factor.

BFS
N ≡

ZS

ZN
, usually used: log

(
BFS

N

)
≡ log(ZS)− log(ZN).

(strong evidence when | logBF| = 8).
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Model selection: same model, different priors
? Let’s compare two identical models employing different priors, e.g.
BH waveform with uniform spin prior vs zero-spin prior. → Bayes
factor should select which version is preferred by the data:

Zspin =

∫
dθL(d |θ)π(θ) Zno spin =

∫
dθL(d |θ)πno spin(θ).

The spin/no spin Bayes factor is

BFspin
no spin =

Zspin

Zno spin
.

? different models MA(θ) and MB(ν) with priors π(θ) and π(ν):

ZA =

∫
dθL(d |θ,MA)π(θ), ZB =

∫
dνL(d |ν,MB)π(ν).

The A/B Bayes factor is of course

BFA
B =

ZA

ZB
.

Question: what if the number of ν parameters is different from θ
parameters?
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Bayes’ odds

Formally, the correct metric to compare two models is not the
Bayes factor, but rather the Bayes’ odds

OA
B ≡

ZA

ZB

πA

πB
.

=the product of the Bayes factor with the prior odds πA/πB
(which describes our prior belief about the relative likelihood of
hypotheses A and B).



24/35

Evidence and ”Occam’s razor” factor

? Likelihood L describes how well the model M(θ) fits the data d ,

? marginalization describes the size of the parameter space volume,

? We want the best fit (highest likelihood) with the smallest prior volume
(smallest model).

? It’s possible that model with a decent fit and small prior volume yields a
greater evidence than a model with an excellent fit and a huge prior
volume. In these cases, the Bayes factor penalizes the more
complicated model.
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Solving practical problems: samplers

Searching for the best fitted waveform:

? Since we (more or less) know how to produce precise-enough GW
waveforms (”aproximants”) given parameters θ, it easy to predict how d
looks given θ (a forward problem).

? Calculating the posterior p(θ|d), the probability of parameters θ given
the data d is an inverse problem.

? Solution: stochastic sampling
? Markov-chain Monte Carlo (MCMC) (Metropolis et al., 1953;

Hastings, 1970)
? Nested sampling (Skilling, 2004)

? Result: a list of posterior samples {θ} drawn from the posterior
distribution such that the number of samples on the interval
(θ, θ + ∆θ) ∝ p(θ)
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Samplers: MCMC
? A Markov chain is a stochastic model describing a sequence of possible

events in which the probability of each event depends only on the state
attained in the previous event:

? Particles (walkers) randomly walk through the parameter space, where
the probability of moving to a new location is governed by the proposal
density function, evaluating the likelihood,

? Suitable proposal density is e.g. a Gaussian centered on the current
location,

? Burn-in period before the walkers ”forget” their starting positions.
? Adjacent samples in a chain are correlated (chain thinning by the

integrated autocorrelation time to obtain the correct posterior
distribution).
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Samplers: nested sampling
While MCMC methods probe the posterior distribution p(θ|d), nested
sampling calculates the evidence Z → posterior samples are actually
by-products, because Likelihood × Prior = Evidence × Posterior

1 parameter space populated with ”live points” drawn from the prior
distribution,

2 At each iteration, the lowest likelihood point is removed, new point with
higher likelihood drawn,

3 evidence is evaluated by assigning each removed point a prior volume
and then computing the sum of the likelihood multiplied by the prior
volume for each sample,

→ Points are moving to higher likelihood values→ estimate of evidence
volume by assuming that the entire remaining prior volume has a
likelihood equal to the highest likelihood ”live point”.
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Hyper-parameters, hierarchical modeling
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Hyper-parameters, hierarchical modeling

The new likelihood is the original likelihood marginalized over the original
parameters:

(Talbot & Thrane, 2018)
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Hyper-parameters, hierarchical modeling
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Additional errors: calibration

Detector’s calibration is yet another source of uncertainty:
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Additional errors: calibration
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Additional errors: calibration
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Fisher information matrix
An amount of information that observable data carries about an unknown
parameter θ, specifically about the measurement errors of θ.

Fisher information matrix (FIM):

Fij = −
〈∂2 lnL(d |θ)

∂θi∂θj

〉
with L(d |θ) ∝ exp(− |d−µ(θ)|2

2σ2 )

? FIM quantifies information on θi including the correlations between θi

and θj ,

? The inverse of FIM gives a lower bound on the covariance matrix for the
parameters (asymptotically the covariance matrix):

F−1
ij = Covij

? In the high SNR regime, diagonal elements Covii provide estimates for
errors σi on parameters θi ,

? (see however arXiv:gr-qc/0703086 for general case and
complications).
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Literature / resources

? E. Thrane, C. Talbot, ”An introduction to Bayesian inference in gravitational-wave
astronomy: parameter estimation, model selection, and hierarchical models”,
arXiv:1809.02293

? ”Probabilistic Programming & Bayesian Methods for Hackers”,
https://camdavidsonpilon.github.io/
Probabilistic-Programming-and-Bayesian-Methods-for-Hackers

? J. Orloff, J. Bloom, ”Comparison of frequentist and Bayesian inference”,
https://ocw.mit.edu/courses/mathematics/
18-05-introduction-to-probability-and-statistics-spring-2014/
readings/MIT18_05S14_Reading20.pdf

? D. Wittman, ”Fisher Matrix for Beginners”
http://wittman.physics.ucdavis.edu/Fisher-matrix-guide.pdf

? A. Ly et al., ”A Tutorial on Fisher Information”
https://arxiv.org/pdf/1705.01064.pdf

? J. Skilling, ”Nested sampling for general Bayesian computation”
https://projecteuclid.org/euclid.ba/1340370944

? Bilby, a user-friendly Bayesian inference library
https://lscsoft.docs.ligo.org/bilby

? TensorFlow Probability https://www.tensorflow.org/probability


