GW data analysis:
parameter estimation
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Introduction to general relativity

Detection principles

Detectors

Binary black-hole system

Bursts and continuous waves

Rates and populations & cosmology

Stochastic GW background. Tests of general relativity using GWs
Data analysis: signal processing

Data analysis: parameter estimation

Frequentist vs Bayesian

* Bayesian inference

* Samplers, hyper-parameters, marginalization
* Fisher information matrix

*
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After detection
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Binary system waveform: 15+ parameters

» Intrinsic:

» masses S
» spins

» tidal deformability

» Extrinsic:

» Inclination, distance, polarisation

» Sky location

Credit: LIGOIrgo » Time, reference phase

Searching for the best fitted waveform — calculating the likelihood at
sufficiently dense grid in 15-dimensional space — "the curse of
dimensionality”
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Statistical approaches: frequentist vs Bayesian

*

*

*

Probability is the limit of the relative frequency of an event after many
trials N:
P=n/N

where n is the number of desired outcomes,
only data from the current experiment when evaluating outcomes,

Establishing significance: p-value - evidence against a null hypothesis
(the smaller the p-value, the stronger the evidence the null hypothesis
should be rejected). Essentially the probability of a false positive based
on the data in the experiment,

Null hypothesis: a default hypothesis that the given observation is not
extraordinary,

P-values are (objective) probability statements about the data sample
not about the hypothesis itself.

Notable figures in 20th century: Roland Fisher (1890 — 1962), Jerzy Neyman
(1894 — 1981), Egon Pearson (1895 — 1980).
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Statistical approaches: frequentist vs Bayesian

Thomas Bayes (1701-1761): "probability is orderly opinion, and that
inference from data is nothing other than the revision of such opinion in the
light of relevant new information”

* probability expresses a degree of belief in an event,

* as opposed to the frequentist approach, bayesian method expresses
the chance of an event happening (based on available data),

* conditional concept of probability: uses prior knowledge and current
data to predict the posterior.
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Statistical approaches: frequentist vs Bayesian

Frequentist: Bayesian:

* never uses/gives the probability * uses probabilistic language for

of a hypothesis (no prior or
posterior),

both hypotheses and data,

* depends on the prior and
depends on the likelihood likelihood of observed data,
P(data| hypothesis) for both * requires one to know or
observed and unobserved data, construct a "subjective prior’,
does not require a prior ("events * dominated statistical practice
occur with frequency”), before the 20th century,
dominated statistical practice * may be computationally

during the 20th century,
computationally feasible.

intensive (due to integration over
many parameters).
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Statistical approaches: frequentist vs Bayesian

Frequentist statistics

Bayesian statistics

Definition of the p value

Large samples needed?

Inclusion of prior
knowledge possible?
Nature of the parameters
in the model
Population parameter
Uncertainty is defined by

Estimated intervals

The probability of observing
the same or more extreme
data assuming that the null
hypothesis is true in the population
Usually, when normal theory-based
methods are used
No

Unknown but fixed

One true value
The sampling distribution based on

the idea of infinite repeated sampling
Confidence interval: Over an infinity

of samples taken from the population,

95% of these contain the true population value

The probability of the (null) hypothesis

Not necessarily
Yes
Unknown and therefore random

A distribution of values reflecting uncertainty

Probability distribution for the population parameter

Credibility interval: A 95% probability that the
population value is within the limits of the
interval
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Bayes’ theorem

likelihood prior
——
p(d|6, M) p(6|M)

0|d, M) =
@Q,__l p(d|M)
posterior N——
evidence

with
* d: the data (e.g. time series from LIGO-Virgo detectors),
* M: the model (e.g. the binary inspiral waveform)

* 0: parameters of the model (e.g. the 15 parameters of the
waveform, location in the sky etc.)
Sometimes written as
p(d|6) p(9) p(d|o) p()  _ £(d|) =(0)

POD=""p@)  ~ Tode)po)as ~ =
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Bayes’ theorem: posterior distribution p

We would like to obtain the posterior distribution,
p(0]d)

i.e. the probability density function for the continuous variables
6 given the data d. Probability that the true value of 0 is
between (¢, 6" + db) is given by p(6’'|d)d¢’. The posterior is

normalized:
/p 0|d)d

We want to learn the p(6|d) not only for the values of 6 but also
to construct credible intervals for these values — estimate the
errors of the measurement.
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Bayes’ theorem: likelihood £
L£(d|0) is the likelihood function of the data given the parameters 6.
* Can be chosen according to the nature of the observation,
* Is related to our assumed/known model of the noise,

* In GW astronomy, we typically assume Gaussian noise
likelihood function:

£(d|9) =

1 1)d— w9
2702 &P <_2 o2 ’

with 1(6) a template for the GW waveform given 6, and o is the
detector noise. Likelihood is typically not normalized w.r.t 6

/de £(d|6) £ 1.

(however, it is normalized w.r.t the data d, and describes the chance
of getting data d. £ is a probability density function with units of
inverse data: integrated over all possible d gives 1).
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Bayes’ theorem: prior distribution =

Like £, the prior is a choice: it incorporates our belief in 6
before observation.
* sometimes easy to chose e.g. for sky localisation
(isotropic),
* sometimes it depends on unknown astrophysics, e.g. mass
of the primary component in the BBH system =(m;).
In case of no knowledge on certain 6;, we usually assume an
uniform or log-uniform distribution (the later if we don’t know the
order of magnitude of a quantity).

Of course, for the next measurement, previous posterior
becomes prior (— building on previous knowledge).
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Example: coin flip

Updading posterior probability of py (coin flip results in heads)

Bayesian updating of posterior probabilities

observe 0 tosses,
0 heads ]

observe 1 tosses,
1 heads

i |
00 02 04 06 08 10 00 02 04 06
». probability of heads

i observe 2 tosses, _
! 2 head: -
|

observe 3 tosses, _
2 heads

__ observe 4 tosses, _ ;
3 heads 3

__ ohserves tosses, _

3 heads

) observe B tosses,
| = 5 heads

00 0z 04 06 08 10

T
observe 50 tosses, |
23 heads

observe 15 tosses,
10 heads

10

observe 500 tosses,
252 heads

00 02 04 06 08 10 00 02 04 06

». probability of heads

"Bayesian methods for hackers”, https://camdavidsonpilon.github.io/

Probabilistic-Programming-and-Bayesian-Methods-for-Hackers
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Binary system waveform: prior on extrinsic parameters

8D

Uniform in
Dy volume
On Uniform in
N the sky
0r, Uniform in
oL direction
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Binary system waveform: prior on intrinsic parameters

mq Uniform in
mo some range
5 Uniform in
Sa direction and
g magnitude in
! [0, m?]
A1 Uniform in
A2 (0,5000)
er

(In practice, sometimes non-trivial choices to be made).
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Bayes’ theorem: marginalizing the posterior

Parameters 6 is usually a large set of parameters. How to study
a specific one?

Marginalizing (integrating "away”) the parameters we are not
interested in (the "nuisance parameters”) to get a marginalized

posterior
e - | (TLon ) o - 220

K#£i

L£(d|0;) is the marginalized likelihood:

£(d|0) /(Hdek) (06) £(d)0).

K#£i
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Bayes’ theorem: marginalizing the posterior

Example:

* Marginalization over variable 6, to obtain a posterior on 6y:
— means calculating the best guess for 6, given uncertainty in 6.

* If 6, and 6 are covariant, marginalization over 6, introduces its
uncertainty into the posterior for 6p.

— The marginalized posterior p(6»|d) is broader than the conditional
posterior p(8p|d, 62) (=a slice through the p(6,|d) posterior at a fixed
value of 6,).

In the GW context of a binary system: covariance between the
luminosity distance D, and the inclination angle 6 .
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Credible intervals

Credible interval: region of parameter space containing fraction of posterior
probability (in frequentist approach: confidence intervals),

* highest posterior density interval
(HPDI): * Relation to o levels, e.g. 20

credible region includes 95% of
posterior probability,

l * Symmetric credible intervals:

o with a cumulative distribution
- vey LA S NN, function
o o5 oh o6 0;7 os 09 1o P(X) — fjoo dX/ p(X/),
the X% symmetric credible
: region is
g 5% HDI (split)
g 1 X 1 X
3 067 244 388 55 _ 1 _ P _ 1 R .
5 il = : N 2( 100)< (X)<2( +100)
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GW170817 joint posterior for distance-inclination
angle
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Bayes’ theorem: evidence Z

The "evidence” Z is usually treated as a normalization factor
z= / doL(d|0) =(6) = £(d).

but it also plays an important role in model selection and can be
viewed as completely marginalized likelihood.
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Model selection: signal vs noise

Evidence Z is useful to select a better model (=the one which is
statistically preferred by the data), and quantify by how much it is
better.

Example: "signal model” (described by M(#)) vs "noise model” (no
parameters).

Let’s define signal evidence Zg and a noise evidence Zy ("null
likelihood” £(d|0)):

_ _ _ 1 1]dP
Z= /dez(d\e)w(e), 2 = L£(d)0) = 5 exp <_202> .
The ratio of the evidence for two different models is the Bayes factor.
BFy = é7 usually used: log (BFﬁ) = log(Zs) — log(Zn).

ZN
(strong evidence when | log BF| = 8).
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Model selection: same model, different priors
* Let’s compare two identical models employing different priors, e.g.

BH waveform with uniform spin prior vs zero-spin prior. — Bayes
factor should select which version is preferred by the data:

Zspin = /d@ﬁ(d|9) 7(9) Zno spin = /dﬁﬁ(dm) Thno spin(a).
The spin/no spin Bayes factor is

BFSpin

no spin =
* different models Ma(6) and Mg(v) with priors () and = (v):
Za— / dOL(dlo, Ma) 7(8),  Zg— / dv£(d|v, Mg) 7(v).

The A/B Bayes factor is of course

Za
BFg = 22
Zp
Question: what if the number of v parameters is different from 6
parameters?
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Bayes’ odds

Formally, the correct metric to compare two models is not the
Bayes factor, but rather the Bayes’ odds
ZaT
A_ “ATA

Op = Zpns
=the product of the Bayes factor with the prior odds 74/7g
(which describes our prior belief about the relative likelihood of
hypotheses A and B).
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Evidence and "Occam’s razor” factor

* Likelihood £ describes how well the model M(#) fits the data d,
* marginalization describes the size of the parameter space volume,

* We want the best fit (highest likelihood) with the smallest prior volume
(smallest model).

* It's possible that model with a decent fit and small prior volume yields a
greater evidence than a model with an excellent fit and a huge prior
volume. In these cases, the Bayes factor penalizes the more
complicated model.
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Solving practical problems: samplers

Searching for the best fitted waveform:

* Since we (more or less) know how to produce precise-enough GW
waveforms ("aproximants”) given parameters 6, it easy to predict how d
looks given 6 (a forward problem).

* Calculating the posterior p(6|d), the probability of parameters 6 given
the data d is an inverse problem.

* Solution: stochastic sampling
* Markov-chain Monte Carlo (MCMC) (Metropolis et al., 1953;
Hastings, 1970)
* Nested sampling (Skilling, 2004)
* Result: a list of posterior samples {6} drawn from the posterior
distribution such that the number of samples on the interval
(6,6 + A6) x p(9)
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Samplers: MCMC

* A Markov chain is a stochastic model describing a sequence of possible
events in which the probability of each event depends only on the state
attained in the previous event:

Markov state diagram of a child behaviour

102 0% 0%

0
2

* Particles (walkers) randomly walk through the parameter space, where
the probability of moving to a new location is governed by the proposal
density function, evaluating the likelihood,

* Suitable proposal density is e.g. a Gaussian centered on the current
location,

* Burn-in period before the walkers “forget” their starting positions.

* Adjacent samples in a chain are correlated (chain thinning by the
integrated autocorrelation time to obtain the correct posterior

distribution).
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Samplers: nested sampling
While MCMC methods probe the posterior distribution p(6|d), nested
sampling calculates the evidence Z — posterior samples are actually
by-products, because Likelihood x Prior = Evidence x Posterior

1 parameter space populated with ”live points” drawn from the prior
distribution,

2 At each iteration, the lowest likelihood point is removed, new point with
higher likelihood drawn,

3 evidence is evaluated by assigning each removed point a prior volume
and then computing the sum of the likelihood multiplied by the prior
volume for each sample,

— Points are moving to higher likelihood values — estimate of evidence
volume by assuming that the entire remaining prior volume has a
likelihood equal to the highest likelihood "live point”.
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Hyper-parameters, hierarchical modeling

» What if we want to study a population of sources?

« Example: what is the distribution of primary masses for binary
black holes?

» The model for the population distribution is called the hyper-
prior:  7w(@|A) where @ are the original parameters, and 4 are
the hyper-parameters

» Example: parameterize the primary mass distribution as a

1
power law 7T(m1|a) o m?
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Hyper-parameters, hierarchical modeling

The new likelihood is the original likelihood marginalized over the original

parameters:
L(dA) = / d0L(d0, A)r(0|A)- T Al
. Original likelihood (doesn’t 4 *"
P depend on hyper-parameters) A E
= / d0L(d|0)m(0|A) |

Original evidence

/depwo'?gf" (6]A)

1 ODW3

Original prior

(Talbot & Thrane, 2018)
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Hyper-parameters, hierarchical modeling

» Hyper-parameter likelihood for a population is the product of
individual-event likelihoods:

N
£({ay|A) = [T £ds1n)

» Complications arise due to selection biases — more likely to
detect more massive systems that are close by

* Need to account for probability of detecting signals across the
parameter space of interest
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Additional errors: calibration

Detector’s calibration is yet another source of uncertainty:

p(d|f) o< exp | —

hk(g) —

k

hi.(0)

55 0) — il (6) — i)

Calibration

[1 + 514/;;] exp [Z(quk]
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Additional errors: calibration

h — LK

B — b1 4 5A)e"? Marginalize over
an amplitude and

a phase uncertainty
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Additional errors: calibration

5A(f) Zps(f; {fi>5Ai})
do(f) = ps(f; {fi>5¢i})

10 20 50 100 200 500 1000 2000 5000

Interpolate with
cubic splines and
marginalize over
— HiBmr == HlloUne | the calibration error

5100 50 100 200 500 1000 2000 5000
Frequency [Hz]

Farr+ LIGO Document T1400682-v1
Cahillane+ (PRD:96, 102001)
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Fisher information matrix
An amount of information that observable data carries about an unknown
parameter 6, specifically about the measurement errors of 6.
Fisher information matrix (FIM):
/9% InL(d|0)
Fi= _< 0000 >
with £(d|6) o exp(— 4O

* FIM quantifies information on 6; including the correlations between 6;
and 6;,

* The inverse of FIM gives a lower bound on the covariance matrix for the
parameters (asymptotically the covariance matrix):

—1
F; = Covj

* In the high SNR regime, diagonal elements Cov;; provide estimates for
errors o; on parameters 6;,

* (see however arXiv:gr-qc/0703086 for general case and
complications).
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Literature / resources

* E. Thrane, C. Talbot, "An introduction to Bayesian inference in gravitational-wave
astronomy: parameter estimation, model selection, and hierarchical models”,
arXiv:1809.02293

* ”Probabilistic Programming & Bayesian Methods for Hackers”,
https://camdavidsonpilon.github.io/
Probabilistic-Programming-and-Bayesian-Methods-for-Hackers

* J. Orloff, J. Bloom, "Comparison of frequentist and Bayesian inference”,
https://ocw.mit.edu/courses/mathematics/
18-05-introduction-to-probability-and-statistics-spring-2014/
readings/MIT18_05S14_Reading20.pdf

* D. Wittman, "Fisher Matrix for Beginners”
http://wittman.physics.ucdavis.edu/Fisher-matrix-guide.pdf

* A. Ly et al,, "A Tutorial on Fisher Information”
https://arxiv.org/pdf/1705.01064.pdf

* J. Skilling, "Nested sampling for general Bayesian computation”
https://projecteuclid.org/euclid.ba/1340370944

* Bilby, a user-friendly Bayesian inference library
https://lscsoft.docs.ligo.org/bilby

* TensorFlow Probability https://www.tensorflow.org/probability
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