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GW data analysis: signal

processing

18.1.21, 2.2.21
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General schedule

⋆ History

⋆ Introduction to general relativity

⋆ Detection principles

⋆ Detectors

⋆ Binary black-hole system

⋆ Bursts and continuous waves

⋆ Rates and populations & cosmology

⋆ Stochastic GW background. Tests of general relativity using GWs

⋆ Data analysis: signal processing

⋆ Time and frequency domain

⋆ Useful signal processing methods

⋆ Signal detection

⋆ Data analysis: parameter estimation
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GW data interferometer output

⋆ LIGO/Virgo raw data is uniformly-sampled time series of

calibrated GW strain h(t) = ∆L(t)/L

⋆ Sampling at a sampling frequency fs = 16384 Hz for LIGO,

fs = 20000 Hz for Virgo,

⋆ In addition, ≃200000 auxiliary channels to monitor conditions of

the detectors,

⋆ ≃50 MB of data per hour per detector.



4/45

Raw GW h(t) data time series
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Sampling theorem. Nyquist frequency

⋆ Nyquist frequency fN = fs/2,

⋆ Data can only accurately

represent frequency content

below the Nyquist frequency,

⋆ Higher frequency signals will be

lost (or ”aliased” to lower

frequencies)
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Sampling theorem. Nyquist frequency

this effect is called aliasing

examples abound in digital audio, imaging, and film
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The Fourier Transform
Any function can be represented as a sum of sines and

cosines:

h(t) =

∞∑
n=0

An cos(
nπt

N
) +

∞∑
n=0

Bn sin(
nπt

N
)

!20

When we transform our function or time (or space) into the 
“frequency domain”, we are projecting f(x) onto an 
orthogonal basis of sines and cosines.

Fourier transform

Inverse Fourier 

transform

Another way to think about it: when we take a Fourier 
transform we are decomposing the function into its 
component frequencies.
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Time domain → frequency domain

h(t) – Position as a function of time 

h(t) = 3  * sin(2*pi*120*t) +  
          2  * sin(2*pi*350*t) + 

       1.5* sin(2*pi*720*t)

H(f) – Amplitude as a function of frequency 

|H(120 Hz)| = 3 
|H(350 Hz)| = 2 

   |H(720 Hz)| = 1.5 
                  H(f)            = 0    otherwise

Fourier Transform     

Time (s) Frequency (Hz) 

Slide from J. Kanner
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Filtering specific frequencies and times: convolution

For two signals h and g, a convolution

(h ⋆ g) is an operation that consists of sliding

signals against each other and integrating:

(h ⋆ g)(t) =

∫
∞

−∞

h(τ)g(t − τ)dτ.

In frequency domain (after applying the

Fourier transform) convolution becomes

simple multiplication:

(̃h ⋆ g)(f ) = h̃(f )g̃(f ).

Symmetry of h is the reason g ⋆ h and h ⋆ g are

identical in this example

(en.wikipedia.org/wiki/Convolution)
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Time domain → frequency domain

!17

Amplitude 

spectral 

density

( Hz     vs. 

frequency)

Time 

series 

(strain

vs time)
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Power Spectral Density (PSD)

Units: 

Signal energy per unit frequency (per Hz) 

Signal amplitude per unit frequency (per sqrt Hz) 

    Amplitude spectral density 

(sqrt of power for each discrete frequency) 

Energy spectral density 

(normalize by 1/T to get power)
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Estimating the PSD
Estimating the PSD

Step 0: Take a Fast Fourier Transform (FFT), which is any 

algorithm useful for quickly estimating the Discrete Fourier 
Transform that describes a discrete time series. 

Need to shift our thinking to discretized data; frequency 

bins instead of continuous smooth sinusoids  

(The FFT reduces the computational cost from O(N2) to O(N logN) for a

transform of length N).
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Estimating the PSD

Step 1: Apply a window to your data (if it’s linear! as a time series is) to 

prevent spectral leakage from the assumption the signal is periodic. 

see more at https://en.wikipedia.org/wiki/Window_function
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Estimating the PSD

A single windowed FFT is unbiased (i.e. will give the correct mean 
PSD), but has high variance. 

Solution: average several FFTs!   

Step 2: Divide your data into shorter time segments; take a 
windowed FFT of each, and average these together.  

Note you lose some frequency resolution this way. 

Welch’s method averages the mean value for each frequency 
bin across FFTs, with some overlap in the data analyzed.  
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Estimating the PSD. Averaging FFTs

!28
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Reconstructing time domain from Short-Time FTs

https://www.mathworks.com/help/signal/ref/istft.html,

”Invertivility of overlap-add processing”:

https://gauss256.github.io/blog/cola.html
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Example: averaging FFTs

!29

FFT length = 5 seconds 
Overlap = 2 seconds 

120 averages

FFT length = 5 seconds 
Overlap = 2 seconds 

4 averages
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Common signal processing methods/filters
⋆ windows (https://en.wikipedia.org/wiki/Window_function)

⋆ low- and high-pass filters,

⋆ bandpass,

⋆ notch,

⋆ whitening.
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Low-pass and high-pass filters

!33

Filter “order” 

governs the 

slope

A “low pass” filter
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Decibel

Decibel (dB) is a relative unit of measurement (one tenth of a bel, B).

Expresses the ratio of one value of a power or root-power quantity to another,

on a logarithmic scale (analog of astronomical magnitude:

m1 − m2 = −2.5 log10 (I1/I2), where Ii are e.g. intensities in [W/m2])
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Bandpass filter

!34

corner frequency
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Notch filter

!35

Not quite the inverse of the bandpass filter 

Only described by one frequency (and the filter order)

Frequency (Hz)
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Whitening

!36

Credit: LISA data tools

Frequency (Hz)
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Q-transform

 41

S. Chatterji et al. CQG (2010) 

Images: McIver

Q=12; f  = 10 Hz0

A series of filters fk , logarithmically spaced in frequency, with

the k-th filter a spectral width of ∆fk .
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Time-frequency spectrogram, Q-transform

LIGO-Hanford h(t) 

see more at https://gwpy.github.io/docs/stable/examples/timeseries/qscan.html
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Detecting GW150914: raw h(t)

To paraphrase my grandmother: 
Raw data is dominated by the low-frequency content (mostly

anthropogenic and seismic origin).



28/45

Detecting GW150914: ASD

GW150914 signal is an inspiral and merger of two massive BH → restricted

frequency range → bandpass filter (range indicated by vertical dashed lines).

Additionally, applying the notch filter(s) to remove constant-frequency lines

(calibration etc.), indicated by arrows.
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Detecting GW150914: applying a transfer function

Removing specific frequencies using a sum of notch filters (transfer

function).
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Detecting GW150914: bandpassed and notched data



31/45

Detecting GW150914: bandpassed, notched and

whitened time domain data
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Detecting GW150914: signal coherence

Comparison of two detectors’ data: there is a coherent signal in both detector

streams at the same time.
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Real-life data quality

In practice, LIGO-Virgo data

differs from what is expected

from an idealized interferometer

(stationary, Gaussian noise):

⋆ sensitivity curves contain ”lines”

and broadband features (almost

stationary),

⋆ temporary features: changes in

various times (hours, seconds),

⋆ transient f − t phenomena:

”glitches”, many of them have

unknown source.

(GWTC-2 arXiv:2010.14527)
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”Glitches zoo”: transient instrumental noise

Excess power (glitches) represented as spectrograms -

time-frequency maps - suitable for human-eye inspection:

⋆ Main problem for the sensitivity of transient searches,

⋆ Citizen science: Gravity Spy, Reinforce (preparation of training data

for machine learning).
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Binary system waveform: 15+ parameters
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Matched filtering

⋆ With the data s(t) = n(t) + h(t),

⋆ signal template ht(t) and

⋆ one-sided amplitude spectral

density of the noise Sn(f ),
defined as

〈ñ(f )ñ⋆(f ′)〉 = 1
2
Sn(|f |)δ(f − f ′),

the matched filter is an inner product

(s|h) = 2

∫
∞

−∞

s̃(f )h̃⋆
t (f )

Sn(f )
df

Allen et al. Phys. Rev. D 85 122006 (2012)
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Matched filtering

The matched filter output

(s|h) = 2

∫
∞

−∞

s̃(f )h̃⋆
t (f )

Sn(f )
df

expresses the signal-to-noise (SNR) of the best-matched signal buried in the

data.

Allen et al. Phys. Rev. D 85 122006 (2012)
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Impact of parameters on the waveform

(see the pyCBC tutorial:
http://pycbc.org/pycbc/latest/html/waveform.html#plotting-frequency-evolution-of-td-waveform)
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Simplistic signal model (for detection only)

⋆ components are black

holes (→ no tidal effects),

⋆ No in-plane spins (→ no

precession, spin coupling

etc.),

⋆ Restrict to the dominant

mode of the signal

(quadrupole).
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Template bank
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Signal consistency
Allen, Phys. Rev. D 71, 062001 (2005): ”The χ2 test first arose from considering a set
of matched filters in different bands, and testing to see if the filter outputs all peaked at
the correct time.”

Power distribution vs time: Final frequency:
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Signal consistency in unmodelled searches

With one or more detectors observing at the same time, one

can use the coincidence of similar signals without knowing the

precise model of the signal:

(e.g. Coherent Wave Burst: https://gwburst.gitlab.io, Abbott et al. Phys. Rev. D 93 122004, 2016)
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Establishing significance: time shifts
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Ranking and detection statistic: signal vs background

Events are ranked according to the
detection statistic
ηc =

√

2Ec/(1 + En/Ec), with

⋆ Ec : coherent signal energy obtained by
cross-correlating the two reconstructed
waveforms,

⋆ En : residual noise energy after the reconstructed
signal is subtracted from the data.

Matched filter signal-to-noise ρ reweighted
by taking into account the χ2

r statistic
(consistency of the signal with the model in
several frequency bands):

ρ̂c = ρ/((1 + (χ2
r )

3)/2)1/6.

(B. P. Abbott et al. Phys. Rev. Lett. 116 061102, 2016)
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Literature / resources

⋆ GW Open Science Center https://www.gw-openscience.org/about

⋆ GW Open Science Center Tutorials

https://www.gw-openscience.org/tutorials

⋆ LIGO - Virgo Collaboration GW Open Data Workshop #3

https://www.gw-openscience.org/s/workshop3

⋆ GWpy, a python package for gravitational-wave astrophysics

https://gwpy.github.io

⋆ PyCBC, free and open software to study gravitational waves

https://pycbc.org


