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Editor’s note

Part 1: The implications of the paper

Varun Sahni

Yakov Borisovich Zeldovich was a very versatile and remarkably gifted physicist.
His noted contributions are in areas as diverse as combustion theory, nuclear and
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1558 V. Sahni, A. Krasiński

elementary particle physics, general relativity, astrophysics and cosmology. This
influential review on the cosmological constant presents an early attempt to under-
stand the “�-term” (introduced by Einstein in 1917) in terms of fundamental physical
ideas such as vacuum energy.1 Zeldovich’s versatility is demonstrated by the fact that
during the period when he was developing his ideas on vacuum energy (1967) he was
also engaged in other fundamental pursuits including the relevance of the neutrino
rest mass for cosmology (1966), the topology of the universe (1967), gravitational
instability (the “Zeldovich approximation”) and fluctuations in the cosmic microwave
background (1969).

Although Zeldovich’s inspiration for writing this review appears to have been
observations of a quasar excess at low redshifts, which could be better understood
within the framework of a universe with a cosmological constant, his main results
transcend these observations (whose relevance decreased subsequently). Zeldovich
attempted to relate the cosmological constant issue to several ideas prevalent at the
time, including Dirac’s views on small numbers in cosmology, Sakharov’s limiting
momentum hypothesis and Zeldovich’s own ideas on vacuum energy.

Zeldovich also laid to rest some popular misconceptions regarding the cosmologi-
cal constant problem, according to which the only value of the �-term consistent with
a field theory prescription was zero. By contrast, in appendix VIII of this excellent
review, Zeldovich convincingly demonstrates that a relativistically-invariant regular-
isation procedure, when applied to vacuum fluctuations, yields an equation of state
pvac = −ρvac, where the vacuum pressure and energy density are finite.

Zeldovich thereby showed that a finite value of the cosmological constant not only
did not contradict any observational findings, but was also fully consistent with a
field theoretic understanding of zero-point (vacuum) fluctuations. By providing a
strong physical rationale for the cosmological constant (and hence for a universe
that could be accelerating), Zeldovich’s insights paved the way for future theoretical
advances, notably inflation in the 1980s and dark energy in this century. As he so aptly
put it “The genie has been let out of the bottle, and it is no longer easy to force it
back in”.

Part 2: Historical and editorial comments

Andrzej Krasiński

Zeldovich’s interpretation of the cosmological constant in terms of quantum field the-
ory remains his uncontested achievement. However, the article reprinted here is in large
part a review of elementary cosmology, and that part requires historical comments.
The author presented most of his statements without references to papers by other

1 The existence of a zero point energy for the vacuum (and the associated ultra-violet divergence) was
known to earlier physicists most notably Pauli, who showed that the radius of a static Einstein Universe
sustained by vacuum energy with an ultra-violet cutoff set equal to the classical electron radius “would not
even reach to the moon” [1].
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Republication of: The cosmological constant and the theory of elementary particles 1559

authors, thereby suggesting that they might have been new findings in 1968. In fact,
they had been known much earlier. The present note fills this gap.

The discussion in Section IV of the Appendix, in less detail and by a different
method, had been done already in the original Friedmann paper [2]. The perturbations
of homogeneity that the author disregards were discussed in 1934 by Tolman [3] and
by Sen [4]. The model with a plateau, shown in Fig. 4 and attributed by Zeldovich to
Kardashev (his Ref. 3) was briefly considered by Lemaître in 1927 [5], who called the
plateau “a stagnation process”, and applied the model to the description of formation
of condensations.

The “exceptional complexity” of models that would take into account inhomo-
geneities in the Universe, mentioned at the beginning of Sect. VI of the Appendix, did
not scare away other researchers: exact solutions modelling an inhomogeneous Uni-
verse (albeit with rather simple types of inhomogeneity) were introduced by Lemaître
[6] and McVittie [7] in 1933, and by Kustaanheimo and Qvist [8] in 1948. The Lemaître
model was then investigated in numerous works, most notably by Tolman [3], Sen [4],
Bondi [9] and Bonnor [10] (see a complete list of references in Ref. [11]).

The statement following Eq. (VI.1), that entropy should increase from one cycle
of evolution of the Universe to the next one, thus causing the elongation of the cycles
and an eventual change to unlimited expansion, is a speculation that goes beyond
classical (nonquantum) relativity. Even so, a similar, entirely classical, idea appeared
in a paper by Tolman and Ward in 1932 [12], and was then summarised in Tolman’s
book [13].

The considerations of isotropy and homogeneity of the Universe in the 2nd and
3rd paragraph of Sect. VII of the Appendix are outdated today. Fluctuations of the
temperature of the cosmic microwave radiation were positively detected at the level
of �T/T ≈ 10−5, and this apparently high level of isotropy does not really force the
matter in the Universe to be distributed with as high isotropy as cosmologists would
have liked it in the 1960s. This is because the theory indicates that the interaction of
the radiation with matter inhomogeneities is rather weak, and in fact nothing greater
than the �T/T ≈ 10−5 should ever have been expected (see references in Ref.
[11]). Inhomogeneities in large-scale matter distribution were positively observed as
well, beginning with Gregory and Thompson [14], and their investigation is a large
branch of today’s cosmology. Zeldovich repeats here one of the myths of earlier
cosmology.

The wide discrepancy between the large expected value of the cosmological con-
stant, calculated from quantum field theory, and the tiny value implied by astronomical
observations, remains an unsolved problem until today. What has changed between
1967 and today is only the numerical value of the discrepancy; by today’s calculations
it is much greater than Zeldovich said in the last section of the Appendix.

Some passages of the original American translation were changed toward a better
consistency with the Russian original. These changes are marked in the text by
editorial footnotes. A few insignificant typos were corrected without marking. Several
references in the original paper were to the Russian translations of foreign literature; in
the Soviet Physics translation they were replaced by references to the original editions.
The differences between the Russian text and the US version were also marked and
explained in editorial footnotes.
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Yakov Borisovich Zeldovich—brief biography

Andrzej Krasiński (compiled from Refs. [15,16])

Yakov Borisovich Zeldovich was born in Minsk, then Russia—now Belarus, on 8
March 1914. From the middle of 1914 to August 1941 he lived in St. Petersburg (later
re-named Petrograd and still later Leningrad, now again St. Petersburg), then, until
the summer of 1943 in Kazan, and since 1943 in Moscow.

In 1924 he began his education by entering the third year class of a secondary
school, and finished the school in 1930. From the autumn of 1930 until May 1931 he
studied and worked as a laboratory assistant at Mekhanobr—an institute of mechanical
processing and enrichment of minerals. In 1931 he was transferred to the Leningrad
Physico-Technical Institute. Then, in May 1931, he became a laboratory assistant at
the Institute of Chemical Physics of the Academy of Sciences of the USSR (ICP) that
separated from the LPTI. He was connected with the ICP till his very last days.

Since he began to work in the ICF without high education, he used to spend much
time on self-education. From 1932 to 1934 he studied as an extra-mural student at the
Phys-Math department of the Leningrad State University, but did not receive any degree
there. Later, he listened to lectures at the Phys-Mech department of the Polytechnical
Institute.

In 1934 he joined the ICF as a post-graduate student and in 1936 received his Ph.D.
degree, then in 1939 he received the degree of doctor of science in phys-math sciences.

From 1938 on he was a head of a laboratory at the ICF. At the end of August 1941
the Institute was evacuated to Kazan. In 1943, together with the laboratory, Ya. B.
Zeldovich came back to Moscow. From 1946 to 1948 he was the head of the theory
department at the ICF. At the same time, until 1948, he worked as a professor at the
Moscow Institute of Physics and Engineering.

From February 1948 to October 1965 he worked on military problems (the Nuclear
Project). For the results in that field he was awarded the Lenin award and, three times,
the Gold Star of the Hero of Socialist Labour (the greatest distinction in peace time).
During that period he was the head of a division and co-head of the whole project.
His main scientific achievements of that period include contributions to the theory of
burning, explosions and shock waves, nuclear physics and energetics, and the physics
of elementary particles.

In 1946 he was elected a corresponding member of the Academy of Sciences of
the USSR, and in 1958 an actual member.

From 1965 to January 1983 he was the head of a division at the Institute of Applied
Mathematics of the Academy of Sciences of the USSR. From 1965 on he was a
professor at the Department of Physics of the Moscow State University, and the head of
the division of Relativistic Astrophysics at the State Sternberg Astronomical Institute.
At that institute, from 1966 on, he was the chairman of the astrophysics seminar.
Shortly before his death the seminar had its 374th meeting, during which he gave
his last talk. From 1983 on he was the head of a division at the Institute of Physical
Problems of the Academy of Sciences of the USSR, and at the same time a consultant
of the director of the Space Research Institute. From 1977 on he was the head of the
Scientific Council on Fusion at the Academy of Sciences of the USSR.
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Republication of: The cosmological constant and the theory of elementary particles 1561

After 1965, Ya. B. Zeldovich started to do research in gravitation theory, cosmol-
ogy and relativistic astrophysics. This was a period following several fundamental
discoveries in astronomy—quasars, pulsars, cosmic relic radiation and X-ray sources
were all discovered in the 1960s. Zeldovich contributed to the understanding of these
discoveries. He created the theories of formation of supermassive stars and compact
stellar systems. He also investigated the gravitational collapse leading to the formation
of black holes and neutron stars and the physical processes in the neighbourhood of
collapsed objects. It was his idea to look for black holes in tight binary systems, by
detecting strong X-ray emission from the inspiralling matter being accreted on the
black hole. He contributed to the theory of gravitational instability, which should lead
to the formation of “pancakes”—seeds of galaxy formation.

Ya. B. Zeldovich published about 500 scientific papers and more than 20 mono-
graphs. At least 100 scientists consider themselves his scientific pupils. He was a
member of several foreign academies of science. In addition to the honours mentioned
earlier, he was awarded the gold Kurchatov Medal (by the Academy of Sciences of
the USSR), the gold Dirac Medal (by the French Academy of Sciences), and the gold
medal of the Astronomical Society of the Pacific.

He died on 2 December 1987 in Moscow, at the age of 74.
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THE COSMOLOGICAL CONSTANT AND THE THEORY
OF ELEMENTARY PARTICLES

Ya.B. ZEL’DOVICH

Institute of Applied Mathematics, USSR Academy of Sciences
Usp. Fiz. Nauk 95, 209 – 230 (May, 1968)

Interest in gravitation theory with a cosmological constant was revived in
1967. Three papers were published, by Petrosian, Salpeter, and Szekeres in
the USA[1] and by Shklovskii[2] and Kardashev[3] in the USSR, in which evolu-
tionary universe models1 in such a theory (the Λ models) are considered. The
stimulus for the revival of the theory was provided by new observational data
on remote quasistellar sources (quasars and quasags, QSR and QSG in the
English-language literature).∗ It turned out, first of all, that for these objects
the connection between the brightness and the red shift does not fit the simple
models without a cosmological constant (and without assumptions concerning
the evolution of the quasars!). In addition, as noted by the Burbidges[4], in
ten quasars whose spectra have revealed absorption lines the red shift of these
lines z = (λ−λ0)/λ0 lies in the narrow range 1.94 < z < 1.96 or even 1.945 <
z < 1.955. This phenomenon will henceforth be referred to briefly as z = 1.95.

The Λ models were introduced in[1] to explain the observed relation be-
tween the red shift and the brightness; the explanation of z = 1.95 in the ab-
sorption spectrum was touched upon casually. References 2 and 3 are devoted
entirely to the explanation of z = 1.95: the absorption lines are ascribed to
galaxies lying along the path of the light ray arriving from the quasar. The
predominant appearance of one value of z is attributed by the authors to the
fact that with this z2 the expansion of the universe was greatly slowed down
both compared with the preceding period (z > 1.95) and compared with the
succeeding period (z < 1.95 up to z = 0, corresponding to the present time).
The slowed-down expansion leads to an increase of the path traversed by the
ray in the corresponding interval of z, and increases the probability that the
quasar light ray will encounter a galaxy and that absorption lines with pre-
cisely this value of z, i.e. about 1.95, will be imprinted in it.3

An expansion law with a sharp deceleration at a definite value of z is pos-
sible only for the Λ models; it is necessary here to satisfy with great accuracy
the relation between the total amount of matter in the universe and the value
of the cosmological constant Λ. The discussed model is closed in its three di-
mensional geometrical structure. As shown by Kardashev[3], the assumption

1In the Sov. Phys. Uspekhi (SPU) translation: “universe evolution models” (editor).
∗The term Λ model will henceforth be used to designate the solution of the equations of

an expanding universe, in which it is assumed that the cosmological constant is Λ �= 0 (see
Appendices II and III). Quasars are quasistellar (i.e., pointlike) radio sources, and quasags
are quasistellar galaxies, similar to quasars in their optical properties and in particular
having large z, but having no noticeable radio emission.

2In the SPU translation: “in this case” (editor).
3In the SPU translation: “takes into account the probability of encounter between the

light ray from the quasar and the galaxy since that absorption lines with precisely this value
of z, i.e. with z close to 1.95, are recorded.” (editor).

123



Republication of: The cosmological constant and the theory of elementary particles 1563

of a decelerated expansion at a definite value of z (together with the known
value of the Hubble constant) yields perfectly defined values of the density of
matter and of the radius of the world at the present time.

At first glance such an explanation is on the whole unlikely. It must be
borne in mind, however, that other attempts at explaining the predominant
absorption with z = 1.95 are at present no less far-fetched and artificial. In
a paper at the 13th Congress of the Internation Astronomical Union in Prague
(August 1967), Burbidge spoke of z = 1.95 as an argument in favor of the lo-
cal theory of quasars. According to the local theory, the distance from us to
the quasars is less than 100 Mpc4, and the red shift of the emission and ab-
sorption lines is of gravitational origin and is connected with the work of exit5

of the quanta from the gravitational field of the quasar[5]∗. However, no con-
crete model which yields precisely z = 1.95, or at least an equal value of z
for the quasars with different masses during different stages of evolution, was
proposed by Burbidge or anyone else.

Thus, the predominant appearance of z = 1.95 in the absorption is really
an argument in favor of the Λ model of the universe. At the same time, it is
still impossible to regard this argument as final. The Λ model proposed in[3]

raises also unanswered questions (pertaining to the formation of galaxies) and
simply difficulties connected with the observed distribution of the quasars with
respect to the red shift of the emission line zem. This distribution does not re-
veal at zem = 1.95 the concentration that could naturally be expected in the Λ
model. Nor does this Λ model agree with the rather crude estimates obtained
for the law of expansion in the nearest region with z < 0.5 from Sandage’s ob-
servations of ordinary6 galaxies[7]. Even the initial statement itself concern-
ing the predominant value z = 1.95 for the absorption lines should be refined
and verified for a large number of quasars. Thus, the question of the concrete
Λ model with a perfectly determined7 value of Λ remains open at the present
time, and much work must be still done for its solution.

4In the SPU translation: “Mpsec”. The same change was done in all other occurrences
of the “Mpsec” (editor).

5In the SPU translation: “work function”. In the author’s footnote that follows we
changed Mpsec → Mpc, “definition of R” → “determination of R”, “of angular dimension”
→ “the angular size” and “hypothesis concerning” → “hypothesis of” (editor).

∗The universally accepted assumption of the cosmological origin of the red shift, connect-
ing it with the over-all expansion of the universe, yields R = cz/H = 4000z Mpc for nearby
quasars with small z: at large values of z, the determination of R is not unique, but it is clear
that we are always dealing with distances larger by tens and hundreds of times than in the
local theory. A very recent sensational communication[29] concerns a report by Matthews,
that an appreciable change of the optical picture of the quasar 3C-287 with z = 1.055 was
observed over the period of one year, from 1965 through 1966. This fact is interpreted by
Matthews as favoring of the local theory. The conclusion, however, is ambiguous: in accor-
dance with calculations by Rees[6], the particles ejected with relativistic velocity by the ex-

plosion, can change the angular size at a rate dθ/dt = cβ/R
√

1 − β2, corresponding to an

apparent linear velocity v/
√

1 − β2 > c, β = v/c; these considerations have been further de-

veloped and analyzed recently by I. S. Shklovskii. Thus, when 1−β ∼= 10−5 we can reconcile
Matthews’ observations with the cosmological hypothesis of a large distance to the quasars.

6In the SPU translation: “various” (editor).
7In the SPU translation: “defined” (editor).
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However, we can already raise even now another question: to what extent
was the assumption Λ ≡ 0, which was frequently made recently, (for example,
the text book of Landau and Lifshitz[8] or the author’s reviews[9]) justified?
In this connection, the arguments advanced were either esthetic (the theory
with Λ ≡ 0 is more beautiful, simpler, the formulas are more compact, there
exists a particular solution – the flat empty world of Minkowski) or else the
arguments referring to8 the principle of economy of thought (why introduce
an extra parameter Λ so long as it is not really necessary?). Once papers in
which the authors (see[1–3]) are strongly interested in Λ �= 0 appear, the argu-
ments presented above lose their attraction and conviction. It turns out that
many authors[10] always considered precisely the scheme with Λ �= 0 as more
beautiful, by virtue of its greater generality.

The history of the question of the cosmological constant is inseparably con-
nected with the name of Einstein. In the first paper on the application of the
general theory of relativity to cosmology, Einstein’s aim was to construct a
static universe with a finite average density of matter[11], and reached the con-
clusion that to this end it is necessary to introduce into the equations an addi-
tional term, namely the cosmological constant. Following the papers of A. A.
Friedmann[12], who considered nonstationary solutions∗, and particularly af-
ter the red shift was observed, Einstein wrote: “Under these circumstances, it
is necessary to raise the question: Is it possible to describe the experimental
facts without introducing the Λ term, which is clearly unsatisfactory from the
theoretical point of view?”[13]. However, the “unsatisfactory” nature is not ex-
plained further at all. Obviously, this question must be answered on the basis
of objective data.

This leads to a new formulation of the problem: What is known reliably
concerning the quantity Λ? What limits can be assigned to this quantity with
assurance at the present time? What kind of experiments or observations can
refine the value of Λ? The genie has been let out of the bottle, and it is no
longer easy to force it back in. Even if Λ = 0 exactly, it is now necessary to
arrive at this answer with great difficulty, slowly, gradually, by narrowing the
ranges9: today perhaps −10−55 cm−2 < Λ < 10−55 cm−2, in ten years perhaps
−10−56 < Λ < 10−56. Even if it is shown that the value of Λ is sufficiently
small and does not influence noticeably the cosmological evolution (unlike the
aforementioned hypothesis[1–3]), the question still remains whether Λ actually
does vanish exactly and identically. We witness the birth of a new field of ac-
tivity10, namely the determination of Λ. But first let us answer the following
question: how is it possible to visualize the meaning of the cosmological con-
stant? Why is its determination11 interesting for physics as a whole? One ap-
proach to this quantity was already noted above, and is suggested by the di-

8In the SPU translation: “were reminiscent of” (editor).
∗In modern language these solutions are called self-similar: the world expands and re-

mains similar to itself. We note that Friedmann considered equations both with Λ = 0 and
Λ �= 0.

9In the SPU translation: “decreasing the limits” (editor).
10In the SPU translation: “In our opinion, a new field of activity arises” (editor).
11In the SPU translation: “definition” (editor).

123



Republication of: The cosmological constant and the theory of elementary particles 1565

mensionality of Λ, namely cm−2. This is the curvature of empty space. But
the theory of gravitation connects the curvature with energy, momentum, and
pressure of matter. By transferring in the gravitation equations the terms with
Λ to the right hand side, we obtain Rik− 1

2gikR = 8πG
c4 Tik−gikΛ. The assump-

tion Λ �= 0 means12 that the empty space produces the same gravitational field
as when the space contains matter with mass density ρΛ = c2Λ/8πG, energy
density εΛ = c2Λ/8πG, and pressure PΛ = −εΛ. In this sense we can speak of
an energy density of the vacuum and a pressure (stress tensor) of vacuum.

We note that the assumptions concerning εΛ and PΛ were formulated in
such a way that the relativistic invariance of the theory is not violated: εΛ
and PΛ are the same for all coordinate systems moving relative to one another
(Lorentz transformed). These quantities εΛ and PΛ never appear in experi-
ments with elementary particles, nor in atomic or molecular physics: the vac-
uum energy of the vessel in which the experiment is performed plays the role
of the constant term that cancels out in the energy-conservation law (for de-
tails see Appendices I and II).

The only type of phenomena in which εΛ and PΛ appear are gravitational
phenomena. In this case εΛ and PΛ “work” not only in vacuum space: as seen
from the formula, they enter as full-fledged terms also in the presence of ordi-
nary matter. This means that in principle it would be possible to determine
and measure εΛ and the corresponding ρΛ = εΛ/c2 in the Cavendish experi-
ment: the attraction of a lead sphere depends on the sum of the density of
lead (11 g/cm3) and the density of vacuum (|ρΛ| smaller than 10−28 g/cm3)
in the investigated volume.

In practice it is impossible to measure the influence of ρΛ and εΛ in ei-
ther a laboratory experiment or even in observations of the motion of planets
in the solar system or the motion of stars in the galaxy: in fact, the aver-
age density of matter in the solar system is ρ̄ = 10−7 in a sphere whose ra-
dius equals the distance from the earth to the sun. The average density in the
galaxy is of the order of 10−24 g/cm3. The influence of ρΛ is strong only in
the largest scale – in the scale of the entire universe, i.e., in cosmology. It is
precisely from cosmological considerations that we can now impose the limits
|ρΛ| < 5 × 10−28 g/cm3, corresponding to |Λ| < 10−54 cm−2.

Scientific predictions are always risky; nevertheless we can propose that
the concrete model[3] with ρΛ = 5× 10−29 and with a halt at z = 1.95 will be
accepted or rejected within 2 – 3 years. But if this model is rejected, then fur-
ther progress, namely proof that |Λ| is smaller than a certain value, calls for
much more time. In particular, with a large negative value of ρΛ, factors enter
into play that limit the maximal value of density of arbitrary kind of matter13:
we can write for the time elapsed from the instant of the singularity ρ = ∞
to the present time the inequality T <

√
3π/32G|ρΛ|. But it is obvious that

12In the SPU translation: “denotes” (editor).
13In the SPU translation: “Actually, the same factors which limit the maximum value of

the density of any type of matter enter into consideration at large negative values of ρΛ”
(editor).
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T > 3 × 109 years, since even the geological age of the earth is of the order of
5 × 109 years. From this we get ρΛ < 5 × 10−28 g/cm3.

The situation is different in the case of positive ρΛ > 0. Given the density
of ordinary matter at the present time ρ0 and given the rate of expansion of
the universe (the Hubble constant H0), large positive ρΛ > 2(3H2

0/8πG) +
ρ0 leads to cosmological solutions in which the universe had never passed
through a high-density period (the presented expression is approximate; for
details see Appendix VII). The presence in the universe of thermal radiation
corresponding to 3◦ K makes such a solution unlikely (see, for example,[9]).

In principle, exact measurement of the brightness and of the red shift of
several remote bodies (not fewer than two) with exactly known absolute lumi-
nosities would be sufficient to determine both the Hubble constant and the dif-
ference ρ0 − 2ρΛ, in terms of which the so-called acceleration parameter of the
cosmological model is expressed. In practice it is necessary to perform a large
statistical investigation of far bodies, since their properties can be equated to
the properties of nearby bodies only in the mean. This raises new kinds of
difficulties connected with the need for taking into account the evolution of
galaxies and quasars, i.e., the difference between the properties (average, dis-
regarding individual fluctuations) of far objects which have emitted light long
ago, and the properties of nearby objects at the present time. It is necessary
furthermore to refine the magnitude of the average density of all types of mat-
ter (stars, inter-galactic gas, quanta, neutrinos, gravitons) in the universe.

We now turn to a different aspect of the situation, namely to the close con-
nection between the question of Λ and the theory of elementary particles. The
very first attempts of quantizing the electromagnetic field led to the paradox-
ical conclusion that vacuum energy has infinite density. Vacuum was thus de-
fined as the lowest energy state of the considered system whose characteristics
are given by Maxwell’s equations. The particles – in this case photons – are el-
ementary excitations of the system. In the analogous problem of quantum the-
ory, concerning the motion of atomic nuclei in a crystal lattice, the situation is
similar: there exist elementary excitations – phonons (quanta of sound), and
there exists a zero-point energy of a state in which there is not a single phonon,
at absolute zero temperature, i.e., a state that can be likened to vacuum.

In the case of a crystal, the zero-point energy has a fully defined finite
value and can be measured. In particular, the difference between the zero-
point energies of different isotopes of the same element leads to a dependence
of the heat of evaporation of the crystal on the atomic weight of the isotope.
In field theory – in the simplest variant – the zero-point energy is infinite. It
is, however, possible to reformulate the theory in such way that the zero-point
energy of the free field is exactly equal to zero. In Maxwell’s classical theory,
the energy density is ε = (E2 + H2)/8π, where E is the electric field and H
the magnetic field. As emphasized in[14], there is no formulation of quantum
electrodynamics in which the mean value E2 or H2 in vacuum vanishes (far
from charges or in the absence of real quanta). Consequently, when formulat-
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ing the theory (with the aid of normal products of operators∗) in such a way
that in vacuum we have identically ε ≡ 0, we pay for this by losing the classi-
cal relation between ε and the fields.

A second source of vacuum energy arose in the electron theory developed
by Dirac: the concept of filled levels with negative energy leads literally to
infinite negative energy density. In this case, too, the theory was soon refor-
mulated in such a way that ε was identically equal to zero for the “vacuum of
noninteracting particles.” This, however, did not guarantee at all that the en-
ergy of vacuum remains equal to zero when account is taken of particle inter-
action. A peculiarity14 of modern theory is that the particle interaction comes
into play not only in the presence of the real particles that should take part
in the interaction.

It must be recalled first that the very term “interaction” is not used in the
sense of classical physics. In school we speak of interaction between two col-
liding bodies, or of interaction (Coulomb) between a proton and an electron.
In quantum field theory we speak, in particular, of four-fermion interaction
when the neutron decays and is transformed into a proton, electron, and neu-
trino, or we speak of an interaction between an electron and a quantum, when
the electron emits (produces) a quantum.

A free electron traveling by inertia cannot emit a real quantum that can
be seen or registered far from the electron. But it can be said that a free
electron emits quanta and immediately absorbs them – and this changes its
properties (for example, mass, magnetic moment). The change of mass cannot
be observed, since there is no experiment capable of giving the mass of an
electron that does not juggle with quanta. However, the change of the magnetic
moment of the electron has been confirmed with all the accuracy of modern
experiment. But in this very sense there can occur in vacuum the processes of
creation of the triplet e+, e−, γ and annihilation of these particles, and many
similar processes. In modern theory, the question of the state and properties of
vacuum is not as simple or as obvious as in the pre-quantum times of Newton
or Maxwell.

It is possible to distinguish here between several possible points of view.
The first consists in the assumption that the energy of the vacuum is identically
equal to zero so long as we do not take into account any fields or interactions.
When these are taken into account, the energy of the vacuum is not equal to
zero, but when we consider processes with real particles, the energy of vacuum
enters as an additive constant. The problem of particle theory is formulated as
a calculation of observable processes with real particles, and the technique of
calculation should be such that the answer does not depend on the unknown or
undetermined or even infinite energy of the vacuum. This is how the problem
was formulated by Feynman, who successfully performed this program. During
the course of the calculation there are performed, for example, the following
operations: the amplitude A12 of the transition (particle in the first state +

∗The definition of the normal product is given in numerous books on the theory of
quantized fields ([14] and earlier).

14In the SPU translation: “feature” (editor).
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vacuum) → (particle in the second state + vacuum) is divided by the amplitude
Avac of the transition (vacuum) → (vacuum), and only the ratio A12/Avac is
a quantity that is real and pertains to the particles.

This way of getting around the question of the energy of vacuum∗ is sat-
isfactory everywhere except in the theory of gravitation! The energy density
of vacuum, as already mentioned, appears in the gravitation problem as a real
observable quantity that does not cancel out. In the theory of elementary par-
ticles, there exists another, so-called axiomatic trend.

It is assumed by the way of an axiom that the energy density of vacuum is
identically equal to zero in accordance with the definition of the vacuum[28],
Sec. 3.1). When such a statement is proclaimed openly as one of the possibil-
ities, there are no objections. However, frequently one encounters the state-
ment that this assumption is necessary, and that it is the only one that agrees
with the relativistic invariance of the theory. Such a statement is simply in
error. We have already noted above that the characteristic relation between
the pressure and the energy density PΛ = −εΛ relativistically invariant. We
shall demonstrate below with a concrete example how the theory of particles,
given a definite choice of formulation of the theory, yields a nonzero εΛ, with
relativistic invariance strictly observed.

In[28] they consider the energy and momentum of the vacuum as a whole.
We could, by specifying a definite normalization volume V , speak roughly of
an energy E = V ε. The (three-dimensional) momentum p of the vacuum,
obviously vanishes, since there is no preferred direction for it. The energy
and momentum form a four-dimensional vector {E,p}, in this case {E, 0}.
Obviously, such a combination is not invariant and yields p �= 0 in another
system of coordinates, provided we do not put E = 0 (meaning also ε = 0).

The error in this reasoning lies in the fact that a definite volume was taken,
thereby violating the invariance. A medium of infinite extent, and particularly
vacuum, it is characterized by just an energy density, which represents T00,
a component of a second-rank tensor – the energy-momentum tensor. The
entire tensor includes components of the type T0α = Tα0 (where α = 1, 2, 3
labels the spatial axes), characterizing the energy fluxes and simultaneously
the momentum density in space.

Finally, the components Tαβ determine the stress tensor, in principle the
same as in elasticity theory. In the particular case of a gas or a liquid (without
account of shear stresses) Tαβ = δαβP .

These generally known facts are repeated here only to emphasize that the
question is not whether vacuum has an energy-momentum vector, but whether
vacuum has an energy-momentum-stress tensor. A relativistically-invariant

∗See, for example, the good old text book[27], p. 48: “H0 is called the zero-point energy
of the field; it is infinite. . . but as an additive constant H0 has no physical meaning.”
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vector does not exist (equals zero), but a nonzero relativistically-invariant
tensor is quite possible: it has the form

const ·

⎡

⎢
⎢
⎣

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎤

⎥
⎥
⎦ ,

and this is precisely the tensor referred to in the case Λ �= 0. It cannot be
excluded a priori. The following questions remain:

1) Are there any other principles by virtue of which it is necessary to put
Λ ≡ 0?

2) Is it necessary to regard Λ �= 0 as a new independent world constant?

3) Is it possible to construct a likely value of Λ (at least in order of magnitude)
from the known world constants?

We shall attempt below to answer just the third question, leaving the first
two unanswered. If the observations confirm Λ �= 0, then this answer (based
only on dimensionality theory and on a comparison of orders of magnitude of
quantities) will perhaps be useful in the construction of a genuine logically-
consistent theory.

We use here the remarks of Eddington[15], Dirac[16], and other authors con-
cerning the curious numerical relations in cosmology. At the same time, it is
possible to impart these relations a new meaning, and to eliminate the con-
tradiction with general theory of relativity. The relations of the aforemen-
tioned authors are constructed in the following manner. We take the ratio of
the world’s radius R to the characteristic length from the theory of elemen-
tary particles h̄/mc or the ratio of the age of the world (from the instant of
the singularity) T ∼= 1/H ∼= R/c to the characteristic time h̄/mc2. These ra-
tios are of the order of 1042. On the other hand, the dimensionless quantity
characterizing the gravitational interaction is h̄c/Gm2 ∼ 2× 1038 (m – proton
mass). The logarithms of the two dimensionless numbers coincide within less
than 10%.∗ It is assumed that this agreement is not an accident. However, in
an evolving world, the former ratio, which contains the radius or the age of
the world, does not remain constant. It was concluded from this[16] that the
second ratio h̄c/Gm2 also varies, or specifically that the gravitational constant
varies in inverse proportion to the world time T . Dirac notes clearly and dis-
tinctly that the variability of G does not agree with general relativity theory
(GRT), but the physical significance of the agreement between the large num-
bers appears to him more significant than the logical harmony of GRT.

∗It is possible to consider the ratios e2/Gm2 = 1.2 × 1036 and T/τ = 3 × 1037, where
τ = e2/m0c3. In this connection, Gamow[17] advanced the hypothesis that the charge e and
the dimensionless quantity e2/h̄c are variables. Soon after this hypothesis was advanced,
concrete objections were raised[24–26].
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How does the situation change with the coincidences of the large numbers
in a theory with a cosmological constant, i.e., in the Λ model of the universe?

Let us write down the analogous relation, replacing the world radius R by
the quantity Λ−1/2, which has the same dimensionality. This yields the ratio[18]

Λ−1/2 :
h̄

mc
=

h̄c

Gm2
, or Λ ∼= G2m6

h̄4 ;

ρΛ =
Gm2

h̄c
m
(mc

h̄

)3
.

(1)

On the other hand, let us assume that the world radius is of the order of Λ−1/2:

R

Λ−1/2
= n ∼ 1. (2)

Taken together, these two premises contain the same magic feature of large
numbers, which struck Dirac.

But let us consider these assumptions in greater detail, each separately.
The first assumption (1) has the character of a “external” relation between the
world constants Λ, G, m, h̄, and c. In principle it could be verified by labo-
ratory experiments and, what is most important, it agrees with the constancy
of all the quantities and with GRT.

The second hypothesis has an entirely different character, and pertains to
evolutional astronomy.

The world’s radius R0 during the halt time (corresponding to z = 1.95) is
simply connected with Λ−1/2 in the Λ model. It can be assumed that it is pre-
cisely in this period that the majority of the galaxies were formed15. In order
for them not to evolve too far it is necessary to have R/R0 = n not too large; in
the concrete Λ model it is assumed that n = 1+z = 2.95, but it is not assumed
that this number is constant! During the course of the further expansion, n
should increase, for example to n = 3.3 after 109 years. The relations in which
the present-day R enters are treated as approximate, therefore the variability
of R does not contradict the constancy of G and of other world constants.

We note, however, that the exact relation between the total amount of mat-
ter and the cosmological constant, which is necessary in order to realize a Λ
model with a prolonged halt, still remains a puzzle. This puzzle has no bear-
ing on the variability of the constants. It concerns those initial conditions with
which it is necessary to supplement the equations of cosmology in order to ob-
tain a definite solution. It is possible to search for an evolutional approach to
the resolution of the puzzle.

Let us dwell also briefly on the differences between the theory with a cos-
mological constant Λ �= 0 and the hypothesis[19] of the presence of a definite
concentration of weakly interacting particles (neutrinos or gravitons). Such
particles, by virtue of their large penetrating ability, should fill space practi-
cally uniformly and to produce an energy density ε1 that does not depend on
the spatial coordinates. There, however, ends the similarity. The energy den-
sity εΛ, by definition, does not depend on the time and ε1 decreases like R−4

15In the SPU translation: “produced” (editor).
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during the course of the expansion of the universe. The quantity εΛ corre-
sponds to PΛ = −εΛ, but ε1 corresponds to P1 = +ε1/3. Thus, the particles
(neutrinos, gravitons) determine16 a definite rest system in which they move
on the average chaotically. It is easy to verify that when Λ = 0, by virtue of
the connection between P1 and ε1, the particles do not lead to cosmological
solutions with a halt in the expansion (see the Appendix below).

Finally, and most importantly, no matter how weak the interaction between
the particles and ordinary matter, in principle the presence of particles in
vacuum can be observed.

Yet in the theory with the cosmological constant, εΛ �= 0 is ascribed pre-
cisely to the lower energy state – vacuum. Thus, the indicated two hypotheses
(εΛ and ε1) actually differ greatly.

In the foregoing review we considered in most general form the phenomena,
in connection with which the Einstein equations with the cosmological term
are again being considered17, as well as the questions faced by observational
astronomy and theoretical physics in this connection.

In the Appendix we consider in greater detail, and with a large number of
formulas and references18, individual questions touched upon in this general
exposition.

APPENDIX

I. VARIATIONAL PRINCIPLE AND GRT EQUATIONS

To take into account the cosmological term, formulas (93.1) and (95.5) of
“Field Theory” by Landau and Lifshitz∗ should be replaced by

δSg =
c3

16πG
δ

[∫
R
√−gdΩ +

∫
2Λ

√−gdΩ
]

, (I.1)

Rik − 1
2
gikR − Λgik =

8πG

c4
Tik. (I.2)

In the local-Euclidean (Minkowski) metric with g00 = 1, gαβ = −δαβ , intro-
duction of Λ is equivalent to an addition to the material tensor Tik such that

T ′
ik = Tik +

c4

8πG
Λ

⎛

⎜
⎜
⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞

⎟
⎟
⎠ , (I.3)

so that T ′
00 = T00 + εΛ and T ′

αβ = Tαβ + δαβPΛ, where εΛ = −PΛ = c4Λ/8πG.

16In the SPU translation: “define” (editor).
17In the SPU translation: “phenomena that call for a review of the Einstein equations

with a cosmological term” (editor).
18In the SPU translation: “and references” was missing (editor).
∗I am citing the Fifth Edition (1967). The gravitational constant is denoted G in place

of k, and Λ is the cosmological constant; it must not be confused with the Lagrangian of
the physical system in formula (94.1).
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II. PROPERTIES OF εΛ AND PΛ

We shall prove the relativistic invariance of the combination εΛ and PΛ. For
ordinary matter at rest (a liquid with isotropic Pascal pressure P and density
ρ, ε = ρc2, Tαβ = δαβP ), on going over to a coordinate system in which the
liquid moves with a velocity Vx = βc, we get

ε′ =
ε + β2P

1 − β2
, T ′

0x =
β(ε + P )
√

1 − β2
, T ′

xx =
P + β2ε

1 − β2
,

T ′
yy = T ′

zz = P, T ′
0y = T ′

0z = T ′
xy = T ′

xz = T ′
yz = 0.

(II.1)

Substituting PΛ = −εΛ, we verify that in the new system ε′Λ = εΛ, P ′
Λ =

PΛ = −εΛ, and Tik is diagonal as before. The vacuum can be regarded as
a “substance” with given εΛ and PΛ also in the sense that the general relation

dE = −PdV , (II.2)

is satisfied. In fact, if E = εΛV and εΛ = const, then

dE = εΛdV ≡ −PΛdV when PΛ = −εΛ. (II.3)

III. HOMOGENEOUS AND ISOTROPIC Λ MODEL. EQUATIONS

Let us consider the cosmology of the Λ model, which is determined by
specifying the metric

ds2 = c2dt2 − a2(t)
[
dχ2 + sin2 χ

(
sin2 θdϕ2 + dθ2

)]
; (III.1)

we call a the radius of the world, and the volume of the world is V0 = 2π2a3.
The equations for a(t) have the following form (a dot denotes differentiation
with respect to time)

ä = −4πG

3

(
ρ +

3P

c2

)
a, (III.2)

ȧ2

2
=

4πG

3
ρa2 − c2

2
. (III.3)

The distance between any pair of points moving together with the sur-
rounding matter (having no “random” velocities) is proportional to a, i.e.,
r = r12 = ka. The first equation can be regarded as a “Newtonian” equation
for the gravitational action of a sphere of arbitrary radius r12: point 1 is the
center, and point 2 is on the surface; the matter surrounding the sphere on
the outside is distributed symmetrically and therefore makes no contribution
to the acceleration r̈ = −GM/r2. It turns out here that the role of the mass
is played by (4π/3)r3[ρ + (3P/c2)]; the pressure also has weight. Substituting
r12 = ka and cancelling k, we obtain (III.2).

The second equation fixes the absolute value of the radius of curvature of
the world a, provided we know, the relative rate of expansion ȧ/a = H (H
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– Hubble constant) and the density of matter. When account is taken of the
cosmological constant, it is necessary to use in place of ρ and P for the matter
the quantities ρ′ and P ′, which include the density and the pressure of the
vacuum, i.e., ρΛ and PΛ = −ρΛc2. Thus, taking ρ and P to mean the density
and pressure of the matter, we obtain

ä = −4πG

3

(
ρ +

3P

c2
− 2ρΛ

)
a, (III.4)

ȧ2

2
=

4πG

3
(ρ + ρΛ) a2 − c2

2
. (III.5)

As is well-known, the GRT equations of the gravitational field include
also the equations of motion of the matter that produces this field. The ge-
ometrical identities pertaining to the curvature of space lead to the conser-
vation laws. It was therefore not surprising that the two GRT equations ob-
tained from a consideration of two different components of the tensor equation
Rin − 1/2ginR = κTin contain also a thermodynamic identity connecting19 the
energy and the pressure.

We denote by E the energy contained in a given comoving volume V ; we
put V = ha3. This volume, which varies in proportion to the total volume
of the universe, contains a constant number of conserved particles n. It is
possible to choose n such as to make V the volume per nucleon, and then E
is the energy per nucleon; then

ρ =
ε

c2
=

E

V c2
=

E

ha3c2
. (III.6)

We substitute this equation in (III.3):

ȧ2

2
=

4πG

3c2h

E

a
− c2

2
. (III.7)

We take the derivative with respect to a:

1
2

dȧ2

da
=

1
2

(
d
dt

ȧ2

)
:

da

dt
= ä = − 4πG

3c2h

E

a2
+

4πG

3c2h

1
a

dE

da
(III.8)

Comparing with (III.1) we get

dE

da
= −3ha2P, dE = −Pd(ha3) = −PdV . (III.9)

Thus, the thermodynamic equation (III.3), i.e., the first law of thermodynam-
ics, the energy conservation law, follows from two GRT equations, namely,
(III.1) and (III.2). This statement can be reversed: if we specify one of the
GRT equations and the energy conservation law (III.9), then the second GRT
equation is obtained as a corollary. It need not be considered in explicit form.

19In the SPU translation: “describing” (editor).
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As shown in Appendix II, ρΛ, εΛ and PΛ satisfy the thermodynamic equation
(III.9), and therefore everything stated above is valid also in the theory with
a cosmological constant.

We note, finally, that the equations are valid also for an open, hyperbolic
model. If the metric is

dS2 = c2dt2 − b2(t)
[
dx2 + sh2χ

(
sin2 θdϕ2 + dθ2

)]
(III.10)

then the GRT equations are obtained from (III.1), (III.2) or (III.3), (III.4) by
replacing a with ib (i =

√−1). In this case (III.1) remains unchanged:

b̈ = −4πG

3

(
ρ +

3P

c2
− 2ρΛ

)
b, (III.11)

and the sign of c2 in Eq. (III.3) is reversed:

ḃ2

2
=

4πG

3
(ρ + ρΛ)b2 +

c2

2
. (III.12)

IV. CLASSIFICATION OF SOLUTIONS OF THE Λ MODEL

A complete investigation and classification of the equations of cosmology
with the Λ term can be found in a number of papers and reviews. We note,
in particular, the article by A. L. Zel’manov[10]. However, from pedagogical
considerations it is useful to present simple and intuitive considerations that
make it possible to understand the qualitative properties of the solution with
a minimum number of mathematical transformations.

Let us consider the most interesting case ρΛ > 0 and a closed (spherical)
world. We take as the basis Eq. (III.5). We start with the simplest case, when
the matter consists of resting non-interacting particles:

ρ = nm0, ε = nm0c
2, P = 0. (IV.1)

where n – particle density and m0 – their rest mass.
We denote by N the total number of particles in the universe, n = N/V0 =

N/2π2a3. Substituting in (III.5), we get

ȧ2

2
=

4πG

3
Nm0

2π2a
+

4πG

3
ρΛa2 − c2

2
=

f(a)
2

− c2

2
. (IV.2)

where

f(a) =
αN

a
+ βa2; (IV.3)

the values of the constants α and β are clear from the foregoing. The function
f(a) goes off to infinity both when a → 0 and when a → ∞. It has a minimum
at αN/a = 2βa2; am = (αN/2β)1/3.
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The character of the solution depends essentially on whether this minimum
lies above or below c2 (Fig. 1).

FIG. 1

Regarding not only G but also Λ (and consequently also ρΛ, β and α) as
world constants, we are left with one parameter N , on which the situation
depends. Thus, different curves on the figure correspond to different N . By
increasing N , we obviously go over from the lower curves to the upper ones.
Since the square of the velocity ȧ2 is equal to f(a) − c2, obviously the only
possible values of a are those for which f(a) > c2. Intersection of f(a) corre-
sponds to an instantaneous halt with a reversal of the sign of the rate of ex-
pansion (or contraction) of the universe.

Consequently, the a(t) dependence for N1 (lower curve of Fig. 1) can be of
two types – Fig. 2a and Fig. 2b, comparison of a1 and a2 is shown on Figs. 1

FIG. 2
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and Figs. 2a, b. In this case there is no solution in which a could change20

smoothly from 0 to ∞. Such solutions occur at large values of N , for example,
N4 (cf. Fig. 1 and Figs. 2c, d). The square of the velocity is specified; therefore
either each solution separately is symmetrical with respect to the replacement
of t by −t with change from compression to expansion, or else the solution
describing the expansion (Fig. 2c) corresponds to another solution describing
compression (Fig. 2d).

The intersection f(a) = c2 at a definite angle (f ′(a) �= 0) corresponds to
a halt, i.e., ȧ = 0, but in this case the acceleration ä does not vanish.

In the degenerate case N = N2 (Fig. 1), when f(a) is tangent to the
horizontal c2, it is easy to verify that ȧ = 0, ä = 0, . . . when a = am. Thus,
there exists a formal solution a = am = const(t). In addition to this solution
there are solutions that approach a = am asymptotically from the left or from
the right (Figs. 3a, b). In the solution of the type of Fig. 3b, the deviation
from the stationary solution (a = am) increases exponentially with time: a =

am+const·ewt , where w ∼
√

d2f/da2. In this sense we can speak of instability
of the stationary solution with respect to small perturbations that leave the
universe homogeneous and isotropic.∗

FIG. 3

Finally, the Λ model proposed by Kardashev[3] corresponds to a case close
to the degenerate one (N3 in Fig. 1). At a definite a = am the rate of expansion,
while not equal to zero, is still quite small (Fig. 4). An equation for am is
shown in Fig. 4 near the plateau.

Let N3 = N2(1 + γ), where γ is a small quantity. It is easy to see that at
the critical value N = N2 we have

αN2

am
=

2c2

3
, βa2

m =
c2

3
. (IV.4)

Near the critical state, for N3, we get

ȧ2 =
2c2

3
am

a
+

2c2

3
γ

am

a
+

c2

3
a2

a2
m

− c2 =
2c2

3
γ + (a − am)2

c2

a2
m

. (IV.5)

20In the SPU translation: “move” (editor).
∗We disregard the question of homogeneity perturbations.
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FIG. 4

The solution of this equation, in which we put t = tm and a = am, is

t − tm =
am

c
arcsh
√

3
2γ

(
a

am
− 1
)

∼= am

c
ln

√
G

γ

(
a

am
− 1
)

,
a

am
> 1.

(IV.6)
In order to obtain a long stay (compared with the characteristic time am/c)
near am, it is necessary to choose γ exponentially small, i.e., it is necessary to
have (− ln γ) large!

In the example considered in[3] (am = 5 × 109 light years), it is assumed
that the stay from a = 0.9am to a = 1.1am lasts 6× 1010 years; it is necessary
to have here γ ∼= 10−5.

It is precisely in connection with the smallness of γ i.e., in connection with
the fact that we assume that N is quite close to the critical N2 but not equal
to it, that referred to the proposed solution as a puzzle at the end of the main
part of the article.

V. GEOMETRICAL PROPERTIES AND EVOLUTION OF Λ MODELS

In cosmological models with Λ ≡ 0 there was a simple connection between
the geometrical properties of the model (closed or open space) and its evolu-
tion.

These properties can be readily understood from the point of view of Fig. 1:
Let us put Λ = 0 and f(a) = αN/a → 0 as a → ∞, meaning that in the case
of a closed world there must be such an a for which f(a) = c2 and f(a) < c2

when a > am; a closed world should go over from expansion to contraction in
accordance with Fig. 2a. In exactly the same manner, when Λ ≡ 0 an open
world must evolve monotonically to a = ∞, say expand without limits, in
accordance with Fig. 2c.

In the presence of the cosmological term Λ �= 0, there is no longer such
a simple connection: we have seen in the preceding Appendix IV that when
ρΛ > 0 a closed world can either evolve in accordance with Fig. 2a, or expand
without limit, depending on the number of nucleons N . If ρΛ > 0, then the
open world evolves monotonically, as in Figs. 2c, d. But if ρΛ < 0 (incidentally,
the astronomical data give no hint of such a possibility), then the expansion
must give way to contraction in both open and closed worlds. Thus, when Λ �=
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0 the simple connection between the geometrical and evolutional properties of
the world disappears.

In a closed model close to critical, during the time of the slow expansion, at
a radius close to critical, light has time to traverse the entire universe several
times. The same remote astronomical object can be seen several times. In the
ideal case we shall see it from the earth in one direction in the rays traversing∗

the distances χ0, 2π + χ0, 4π + χ0, . . ., and in the opposite direction on the
celestial sphere in rays traversing the paths 2π−χ0, 4π−χ0, . . .. Different paths
correspond here to different times of passage of the rays, and consequently, we
shall see the same object at different ages, at different instants of its existence.
For this reason, if the object glows brightly for only a small fraction of the
time, we shall see the object in only one of the rays: this is probably the
situation with quasars. Therefore the absence of quasar twins (visible at21 the
opposite points on the celestial sphere) cannot be regarded as a contradiction
of the closed cosmological model with decelerated expansion. The ratio of
the visible brightness of the object to its absolute luminosity at the instant of
the emergence of the ray does not decrease with increasing path covered by
the ray. This ratio is maximal for bodies located in the “anti-center” of our
galaxy, i.e., for χ0 = π. Petrosian and Salpeter[21] present a subtle analysis
of the question of defocusing of rays as a result of the inhomogeneity of the
universe, connected with the existence of separate galaxies and their clusters
and with the gravitational deflection of light by these inhomogeneities.

VI. EVOLUTION WITH PASSAGE THROUGH A SINGULARITY
WITH ACCUMULATION OF ENTROPY

The question of the possibility of the passage of the cosmological solution
through a singular state with ρ = ∞ remains open at present. We assume
that it is possible to join the solutions in which contraction takes place to
the solutions with expansion. We can imagine that certain corrections to the
GRT equations[23], which are insignificant under ordinary conditions, limit

FIG. 5

∗Here the distance is given by the coordinate χ, the definition of which is given by the
metric (III.1). Near the halting point, the unit of χ is am = a0/(1 + z0) units of length.

21In the SPU translation: “from the opposite points” (editor).
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the maximum density and the minimum radius (Fig. 5). In addition to the
general physical laws (baryon conservation, growth of entropy), it is necessary
to have one more assumption, namely the smoothing of the inhomogeneities.
This latter assumption cannot be regarded as convincing. If we disregard it,
then it is necessary to solve the general22 asymmetrical and inhomogeneous
problem of motion, and furthermore in modified GRT equations. Bearing
in mind the exceptional complexity of this problem, we shall disregard the
question of inhomogeneities. It is known, that when homogeneous matter goes
through a singularity at an observable entropy, matter of any composition is
transformed into a standard mixture of 70 – 75% H +30–25% He4 (by weight).
The question of antibaryons and of the excess of baryons near the singularity
is solved in natural manner: formation of antibaryons is a consequence of the
increase of the temperature upon compression of the system which initially
contained only baryons. For more details concerning these questions see the
1965 review[9]. Let us turn to the picture of the evolution in the whole23. We
assume that the universe is closed, the total number of the baryons is smaller
than the critical value, and the entropy is small. According to Appendix IV,
the evolution proceeds in this case cyclically. However, the entropy increases
from one cycle to the other. Taking the entropy into account, it is possible to
show that

ρ =
Nm0

2π2a3
+ δ

h̄

c

N4/3S4/3

a4
, (VI.1)

where δ is a number of the order of unity and S is the dimensionless specific
entropy per baryon. Consequently, buildup of system motion takes place with
increasing S; at a definite value of S, a transition takes place from the cyclic
regime to the unbounded expansion (Fig. 6).

FIG. 6

From this point of view, the system goes over into the characteristic regime
of expansion with a delay when N < N2 just the same.

In the general case, however, if N is not specially close to N2, the radiation
density (corresponding to the entropy term δh̄N4/3S4/3/ca4) is not small24

compared with the density of the baryons. The puzzle referred to above as-
sumes the following formulation: why is the number of baryons such that the
transition to the unlimited expansion occurs at a small ratio of the radiation
density to the density at rest?

22In the SPU translation: “usual” (editor).
23In the SPU translation: “as a whole” (editor).
24In the SPU translation: “is small” (editor).
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The unlimited increase of the radiation energy during the course of the cy-
cles should not frighten anyone, since it does not contradict the law of energy
conservation: the mass and the energy of the entire closed word as a whole
are identically equal to zero! (See Landau and Lifshitz[8]).

It can be stated illustratively that the growing radiation energy is exactly
offset by the growing absolute value of the negative energy of the gravitational
interaction between the particles and masses of the universe. At first glance
such a remark seems promising: the excess of density, necessary for a deceler-
ated expansion in the Λ models, is precisely of the order of density of the ra-
diation in our world. This coincidence can be understood by referring to the
evolution scheme in Fig. 7.

FIG. 7

At t = −∞ we take cold baryons in the critical amount: S = 0, N = N2.
Then, formation of stars takes place in this system under the influence of
the fluctuations, and nuclear reactions begin, while the total energy remains
unchanged. The nuclear energy is transformed into the energy of the quanta
and the neutrinos, and a nonzero pressure arises. In the language of the
diagram of Fig. 8 (of the type of Fig. 1), we obtain in place of the curve 1– 1
the curve 2 – 2, which passes through the same point, but with a finite slope.
This leads to contraction of the system. A similar conclusion is arrived at also

FIG. 8

by a direct examination of the equation for ä: the appearance of the pressure
P > 0 while the density is conserved leads to ä < 0. Further contraction
and expansion lead to an increase of the entropy, and after the singularity the
characteristic curve f(a) is given by the line 3 – 3 of Fig. 8, which thus leads
to a right-hand branch of the type shown on the top of Fig. 7 and postulated
in modern Λ models.

What makes this scheme attractive is the fact that it establishes a natural
connection between the density of the radiant energy in the critical state (at
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z = 1.95, Tr = 3◦(1 + 1.95) ∼= 9◦, εr = 6 × 10−11 erg/cm3, ρr = εr/c2 =
6.5 × 10−32 g/cm3 at ρm = 5 × 10−29 g/cm3) and the duration of the delay –
the duration of the stay near the critical state. Besides the general difficulties
involved in any model that includes a transition through25 a singularity, this
model has the following shortcomings:

1) it is necessary to have N ≡ N2;

2) taking into account the finite fluctuations in any state, it is impossible to
assume that the state with N ≡ N2 and small S could have existed for
an infinitely long time (a remark made by A. D. Sakharov). The time of
development of the inhomogeneities is finite albeit large, ∼ 100am/c.

On the whole, it must be admitted that the Λ models, while resolving
one difficulty of modern astronomy (z = 1.95!) at the same time raise new
unsolved fundamental questions. The rather rough considerations advanced
above, of course, cannot be regarded as any “advance in the physical (astro-
nomical) sciences” (I am hinting at the name of the journal). They are more
readily aimed at attracting the reader’s attention to an unsatisfactory condi-
tion in an important branch of physics.

VII. CLASSIFICATION OF Λ MODELS WITH RESPECT TO26 THE
OBSERVABLE QUANTITIES

Observations in the vicinity of our galaxy (more accurately, the cluster or
supercluster in which it is contained) make it possible to determine the Hubble
constant H = ṙ/r, the acceleration parameter q = −r̈/rH 2, and the average
density of matter ρ̄.

The difficulties involved in the physical determination of these quantities
are already indicated by the fact that the quantity H was revised, many times:
500 km/s·Mpc (1 Mpc ∼= 3 × 1024 cm) in 1929, ∼ 200 km/s·Mpc in 1950,
75 km/s·Mpc in 1957, ∼ 100 km/s·Mpc in 1962; at the present time it is as-
sumed that 75 < H < 125 in the same units. The parameter q is expressed in
terms of the relative acceleration r of a remote object (at a distance r), in other
words, from v = ṙ = H r, r̈ = v̇ = Ḣ r+Hṙ = Ḣ r+Hv = Ḣ r+H2r we get q =
−(Ḣ /H 2)− 1. We recall that when speaking of the Hubble constant, we have
in mind the independence of H of the coordinates (of the distance)27; this does
not exclude variability of H as a function of the time. The determination of q is
quite difficult. The latest published estimates by Sandage[7] give q = +1±0.5,
but the estimate of the error can hardly be regarded as objective. As to the
density ρ̄, the part of the problem pertaining to the density of matter in the
galaxies was solved by Oort in 1958. These estimates give ρ̄g = 3×10−31 g/cm3

for the distance scale corresponding to H = 75 km/s·Mpc. The problem of de-
termining the density of the intergalactic gas has come to be considered only

25In the SPU translation: “transition to” (editor).
26In the SPU translation: “in accordance with” (editor).
27In the SPU translation: “dependence of H on the coordinates (on the distance)” (editor).
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in recent years (see, for example,[22]), but so far there is only a rough upper
limit ρ̄ < 3 × 10−29. Thus, with respect to q and ρ, one should speak28 more
readily not of “observable” quantities but of “quantities principally accessible
to observation.” But it is precisely to demonstrate the importance of the ac-
tual performance of these observations that we shall demonstrate below the
dependence of the most general properties of the universe on the quantities H ,
q, and ρ̄. The results that follow pertain to homogeneous isotropic solutions
with a cosmological constant Λ �= 0. We note that the isotropy of the universe
– the equivalence of all directions – was confirmed recently by measurements
at centimeter wavelengths with accuracy better than 0.1 %.

The isotropy of the world indirectly confirms also its homogeneity29: in
an essentially inhomogeneous world, the radiation would be isotropic only for
an observer who occupies specially (accidentally) the center of a spherically-
symmetrical inhomogeneous distribution of matter. Giordano Bruno was not
burned at the stake in 1600 in order that the idea that the earth (our galaxy)
occupies a central position be resurrected in 1967!

Thus, we shall assume the following three quantities to be known: H , q,
and ρ̄. From ρ̄ and H we make up the dimensionless quantity

Ω = ρ̄ : ρc = ρ̄ :
3H 2

8πG
= ρ̄ : 2 · 10−29 g/cm3 (VII.1)

(at H = 100 km/s·Mpc). All the properties of the solution depend on two
dimensionless quantities Ω and q, and it is known reliably that Ω > 0. We shall
not consider all the possible solutions, but only those that can be candidates
for a description of reality, i.e., our presently existing universe and its past
and future. We stipulate here that an expansion (and not a contraction) takes
place at the present time, and that the radiation density is many times smaller
than the density of ordinary matter. We can then neglect, back to a very
remote epoch, the pressure of matter (in particular, of neutrinos and quanta)
in the equations.

FIG. 9

28In the SPU translation: “seek” (editor).
29In the SPU translation: “is indirectly confirmed also by its homogeneity” (editor).
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We shall consider the plane of the variables q (abscissa) and Ω (ordinate)
(Fig. 9). To each point in this plane there corresponds one cosmological solu-
tion satisfying the conditions formulated above. The problem consists in out-
lining the regions and lines characterizing the different solutions on this plane
(half-plane, since Ω > 0).

Each point corresponds to a definite value of Λ. The lines with constant
dimensionless ratio

Λc2

3H 2
=

ρΛ

ρc
= λ (VII.2)

are∗ straight in the (q, Ω) plane:

λ =
1
2
Ω − q. (VII.3)

Several such lines (λ = −0.5, 0, +0.5, +1) are drawn in Fig. 9. In particular,
the line λ = Λ = 0 passes through the origin of coordinates30 (the Milne model)
and through the point A(Ω = 1, q = 1/2) corresponding to the Einstein – de
Sitter flat model.

The topology of the universe as a whole also depends on q and Ω:

world open and infinite at31

Ω <
2
3
(1 + q). (VII.4)

world closed and finite† at

Ω >
2
3
(1 + q). (VII.5)

∗We derive this on the basis of (III.5):

ä = −4πG

3

(
ρ +

3P

c2
+ ρΛ +

3PΛ

c2

)
a,

P = 0,
PΛ

c2
= ρΛ, − ä

aH 2
= q =

4πG

3H 2
(ρ − 2ρΛ)

8πG

3H 2
= ρc, q =

1

2

ρ − 2ρΛ

ρc
=

1

2
Ω − λ.

30The words “passes through the origin of coordinates” were omitted in the SPU transla-
tion (editor).

31In the SPU translation: “ordinate and infinite” (editor).
†We derive this on the basis of (III.5):

ȧ2

2
=

4πG

3
(ρ + ρΛ)a2 − c2

2
,

ȧ2

a2
= H 2 =

8πG

3
(ρ + ρΛ) − c2

a2
<

8πG

3
(ρ + ρΛ),

1 <
8πG

3H 2
(ρ + ρΛ) = Ω + λ = Ω +

1

2
Ω − q,

3

2
Ω > 1 + q.

The preceding formula is obtained analogously from (III.10).
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The separating line Ω = 2(1+q)/3 passes through the point B(q = −1, Ω =
0, λ = 1) and through the point A(q = +0.5,Ω = 1, λ = 0); it corresponds to
flat worlds.‡32

Let us turn to the question of the future of the universe. It can be shown
that the expansion will continue without limit in the region lying to the left
of the straight-line segment OA and the line AC specified by the parametric
equations (α > 1)

q =
α2 + α + 1

(α − 1)(2α + 1)
,

Ω =
2α3

(α − 1)2(2α + 1)
.

(VII.6)

On the segment OA we deal with an open world; in such a world, the expansion
must give way to contraction when λ < 0, and when λ > 0 the expansion
continues without limit, as can be seen from the fact that in the equation

ḃ2

2
=

4πG

3
(ρ + ρΛ)b2 +

c2

2
(VII.7)

all the terms are always positive when λ > 0 and ρΛ > 0. The condition for the
halt of the expansion of an open world coincides with the condition λ = 0, and
near this boundary, but on the right of it (i.e., at ρΛ < 0, λ < 0, but |λ| � 1),
the halt takes place at very large b, and in the limit on the line AC as b → ∞.

A closed world with λ < 0 (region to the right of the continuation of the line
OA upward, segment AA′) will be halted all the more. But a closed world can
be halted also when λ > 0, if the parameters correspond to the region between
AA′ and AC. An asymptotic halt occurs on the line AC, the parameter α has
the meaning of the ratio of the radius of the world at the instant of the halt
to the present-day radius, α = ahalt/a0 > 1. Slightly above AC, at a = αa0,
a sharp deceleration of the expansion occurs. In the entire region to the left
of the line OAC the future of the universe constitutes an unbounded never-
stopping expansion.

Let us turn to the past. In the plane of Fig. 9 we can draw a line BD, the
equation of which is given by the same parametric expressions (VII.6), but
with α < 1. To the right of the line BD, the cosmological solutions would
evolve without stopping, starting with the singular state ρ = ∞.

The solutions to the left and below BD, between BD and the abscissa axis
(including the solutions that expand at the present time), were contracting
at t = −∞ and changed over from contraction to expansion not through
a singularity, but at fully defined finite values of the world radius and the
maximum density∗ – in accordance with Fig. 2b.

‡A flat world is topologically similar to the hyperbolic one.
32The preceding footnote was modified; in the SPU translation it said “A topologically

flat world is similar to a hyperbolic one” (editor).
∗We note that all the solutions near BD (both to the left and to the right of this line)

correspond to a closed world. An open world had to emerge from a singularity in the past.
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Finally, the line BD itself corresponds to a universe that emerges asymp-
totically from the state of rest and (in accordance with the conditions that all
the considered solutions must satisfy) expands at the present time with given
H , ρ and Λ. The parameter α < 1 has in this case the meaning of the ratio of
the radius of the world in the initial state of rest to the radius of the world at
the present time.

The existence of cosmic radio emission corresponding to a temperature
3◦ K (“hot universe”) apparently signifies that the universe was in a singular
superdense state – in a state in which33 thermodynamic equilibrium is estab-
lished at high density. This means that we can expect that the world is actu-
ally in a state above the line BD on Fig. 9 (and with respect to the abscissa
axis, to the right of BD). Near the line BD (but above it) are situated states
in which a delay of the expansion took place in the past at the correspond-
ing α. In particular, the concrete solution proposed by Kardashev[3] lies quite
close to the point E:

α =
1

1 + z0c
=

1
1 + 1.95

= 0.34, Ω = 0.105, q = −1.31, (VII.8)

which is noted on Fig. 9.
It is also possible to indicate on the diagram other lines: the lines of con-

stant age of the universe, and the lines corresponding to single, double etc.
viewing34 of the entire closed universe within the time elapsed from the sin-
gularity. These lines condense near BD, since the line BD itself corresponds
to infinite delay of the expansion. In order not to clutter up the figure, we do
not show these lines.

VIII. COSMOLOGICAL CONSTANT IN ELEMENTARY PARTICLE
THEORY. REGULARIZATION OF THE DENSITY AND
PRESSURE

Let us take the expression for the energy density of the vacuum of scalar
particles, obtained with allowance for the zero-point oscillations:

ε =
1
2

1
(2πh̄)3

∫ ∞

0

c
√

p2 + µ24πp2dp =

= K

∫ ∞

0

√
p2 + µ2p2dp = KI(µ),

(VIII.1)

where µ = m0c; the meanings of K and I follow from the formula (VIII.1).
The corresponding expression for the pressure is

Txx = P =
1
2

1
(2πh̄)3

∫
uxpx4πp2dp, u =

cp
√

p2 + µ2
,

uxpx =
1
3
(up), P = K · 1

3

∫
p2

√
p2 + µ2

p2dp = KF (µ).

⎫
⎪⎪⎬

⎪⎪⎭
(VIII.2)

33In the SPU translation: “such that” (editor).
34In the SPU translation: “survey” (editor).
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For fermions occupying the negative-energy states (or, formally, performing
anticommutation in the field-theory expression prior to the transition to the
formal product), we obtain

ε = −4KI(µ), P = −4KF (µ) (VIII.3)

with its own value of µ. The coefficient 4 is obtained from a comparison of
g = 2 for particles with spin 1/2 and the factor 1/2 in the zero-point energy
of the bosons; this coefficient does not play a role in what follows.

Thus, from the consideration of the bosons and fermions, we obtain the
expressions

ε =
∑

i

CiI(µi), P =
∑

i

CiF (µi), (VIII.4)

where the coefficients Ci can have either sign. Generalizing further, we write

ε =
∫

f(µ)I(µ)dµ, P =
∫

f(µ)F (µ)dµ, (VIII.5)

where I and F are diverging integrals.
The last expressions can be regarded as a result of regularization, according

to Pauli and Villars, of the expressions for ε and P , without considering so
illustratively such individual terms as the contributions of the bosons and
fermions.

We shall obtain below the conditions that must be satisfied by the regu-
larizing function f(µ) in order that ε and P be finite. Inasmuch as the reg-
ularization is carried out in a relativistically-invariant manner, the result is
also relativistically invariant. As noted in Appendix II, we should have here
P = −ε; indeed, it will be shown concretely that any f that gives finite values
of ε and P satisfies this condition. To prove this, we shall consider first the
finite quantities

I(µ, p0) =
∫ p0

0

√
p2 + µ2p2dp (VIII.6)

and will take the limit p0 → ∞ only at the end. We break up the integral

I(µ, p0) =
∫ rµ

0

+
∫ p0

rµ

, r > 1, (VIII.7)

in order to expand in the second integral in terms of µ/p < 1/r < 1:

√
p2 + µ2 = p +

1
2

µ2

p
− 1

8
µ4

p3
+ . . .

We then obtain after integration (C1µ
4 =
∫ rµ

0
)

I(µ, p0) = C1µ
4 +

1
4
p4
0 +

1
4
µ2p2

0 −
1
8
µ4 ln
(

p0

µ

)
+ O

(
µ6

p2
0

)
. (VIII.8)
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Analogously we obtain

F (µ, p0) = C2µ
4 +

1
12

p4
0 −

1
12

µ2p2
0 +

1
8
µ4 ln

p0

µ
+ O

(
µ6

p2
0

)
. (VIII.9)

We substitute these expressions in the regularized integrals

ε =
1
4
p4
0

∫
f(µ)dµ +

1
4
p2
0

∫
f(µ)µ2dµ + (VIII.10)

+
(

C1 − 1
8

ln p0

)∫
f(µ)µ4dµ +

1
8

∫
f(µ)µ4 lnµdµ +

C3

p2
0

+ . . . ,

P =
1
12

p4
0

∫
f(µ)dµ − 1

12
p2
0

∫
f(µ)µ2dµ + (VIII.11)

+
(

C2 +
1
8

ln p0

)∫
f(µ)µ4dµ − 1

8

∫
f(µ)µ4 lnµdµ +

C4

p4
0

+ . . .

Let us consider now the limits of these expressions as p0 → ∞. The conditions
ε �= ∞ and P �= ∞ are satisfied simultaneously if we impose on f the conditions

∫
f(µ)dµ =

∫
f(µ)µ2dµ =

∫
f(µ)µ4dµ ≡ 0. (VIII.12)

In this case the first three terms in ε and P drop out. On the other hand,
when p0 → ∞ all the terms with p−2

0 and the succeeding ones drop out, too.
As a result we are left with∗

ε = +
1
8

∫
f(µ)µ4 lnµdµ,

P = −1
8

∫
f(µ)µ4 lnµdµ = −ε,

(VIII.13)

q.e.d.
Thus, we have presented with this example a constructive proof that the

field theory with relativistically invariant regularization does not require at all
a zero vacuum energy and, to the contrary, it leads naturally to the situation
characterized by a cosmological constant.

IX. NUMERICAL VALUE OF Λ

The reasoning of the preceding section leads to a correct tensor form of the
vacuum contribution to the energy and the pressure. However, an estimate of
the order of magnitude of the obtained expression yields

ρΛ ∼ m
(mc

h̄

)3
∼ 1017 g/cm3

, Λ = 10−10 cm−2. (IX.1)

∗L.M. Khalatnikov notes that by integrating I(µ, p0) by parts we obtain – F (µ, p0);
however, in this case the function in the upper limit is infinite, and therefore the longer
procedure presented above seems to be also more convincing.
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and in this case m is taken equal to the proton mass, we have left out the
dimensionless factors, and the logarithms in (VIII.13) were replaced by 1.

It is clear that such an estimate has nothing in common with reality. In
essence, it is just this discrepancy between the value of Λ (IX.1), which can
be obtained from elementary-particle theory, and the value that is admissible
from astronomical considerations, |Λ| < 10−54cm2 and |ρΛ| < 5×10−28 g/cm3,
which served as the reason why many physicists assumed Λ = 0, once it became
impossible to assume the value |λ| = 10−10 that follows from dimensionality
considerations from the values of the constants c, h̄, and m. Eddington and
Dirac noted that the theory of gravitation, together with particle theory, gives
a dimensionless quantity which differs very greatly from unity. Eddington
introduced the ratio of the gravitational interaction of the electron with the
proton to the electrostatic interaction:

Gmpme

r
:

e2

r
=

Gmpme

e2
= 5 · 10−40. (IX.2)

From the present-day point of view, the constants h̄ and c are more funda-
mental than the electron charge. In addition, for uniformity, we shall take the
proton mass wherever a particle mass is involved. We therefore choose as the
quantity characterizing the smallness of the gravitational interaction

Gm2
p

h̄c
= 1.8 · 10−38. (IX.3)

In the note[18] there was advanced the hypothesis that

ρΛ ∼ Gm2

h̄c
m
(mc

h̄

)3
=

Gm6c2

h̄4 , Λ ∼ G2m6

h̄4 . (IX.4)

This quantity is still 107 times larger than the permissible value (ρΛ = 2 ×
10−38 × 1017 = 2 × 10−21 in place of 5 × 10−28). Numerical agreement could
be obtained by replacing m6

p with m4
pm

2
e, or by choosing other powers and re-

placing h̄c with e2; this is essentially what Dirac and Eddington did∗. How-
ever, even a discrepancy of “only” 107 times is an accomplishment compared
with the discrepancy of the estimates by a 1046.

The expression (IX.4) can be intuitively interpreted as follows: virtual par-
ticles with mass m, the distance between which is λ = h̄/mc, are produced
in the vacuum; their self-energy is identically35 equal to zero, but the gravita-
tional interaction of neighboring particles causes the energy density of vacuum
to be

εvac =
Gm2

λ

1
λ2

=
Gm6c4

h̄4 , (IX.5)

corresponding to (IX.4).

∗A hypothesis is advanced in[8] that there enters also a small factor ∼ 10−5, which is
characteristic of the weak interaction.

35In the SPU translation: “exactly” (editor).
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Recently A. D. Sakharov proposed a gravitational theory, or more accu-
rately, a justification of the equations of general relativity theory, based oh the
consideration of vacuum fluctuation[23].

An important role is played in this theory by the hypothesis that there
exists a certain elementary length L or a corresponding limiting momentum
p0 = h̄/L. The theory is not applicable at smaller lengths or at larger mo-
menta. Sakharov obtains an expression for the gravitational constant G in
terms of L or p0:

G =
c3L2

h̄
=

h̄c3

p2
0

. (IX.6)

This expression has been known from Planck’s time, but it was read “from
right to left”: the gravitation determines the length L and the momentum p0.
According to Sakharov, L. and p0 are primary. We substitute (IX.6) in (IX.4)
and obtain

ρΛ =
m6c5

p2
0h̄

3 , εvac =
m6c7

p2
0h̄

3 . (IX.7)

These are precisely the first discarded terms (as p0 → ∞) in formulas (VIII.10)
and (VIII.11). Thus, we can propose the following interpretation of the cosmo-
logical constant: there exists a theory of elementary partieles which would give
(by36 a mechanism which is still undisclosed at present) an identically vanish-
ing vacuum energy37, provided that this theory were applicable without limit,
up to arbitrarily large momenta: there exists a momentum p0 beyond which
the theory is not valid∗; besides other consequences, a modification of the the-
ory gives a nonzero vacuum energy: general considerations make it probable
that the effect is proportional to p−2

0 .
A clarification of the question of the existence and magnitude of the cos-

mological constant will be of tremendous fundamental significance also for the
theory of elementary particles.

Note added in proof. In Appendix III the author follows closely H.Bondi’s
book “Cosmology” (Cambridge University Press, 1961), and in Appendices
IV and VII he follows the paper by R. Stabell and S. Refsdal, (Month. Not
Astron. Soci., 132, 379 (1966)).38
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