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Editor’s Note:
An Example of a New Type of Cosmological
Solutions of Einstein’s Field Equations of
Gravitation.

Kurt Gödel
Institute for Advanced Study, Princeton, New Jersey.
Reviews of Modern Physics 21, 447 (1949).

Rotating Universes in General Relativity Theory

Kurt Gödel
Proceedings of the International Congress of Mathematicians, edited by
L. M. Graves et al., Cambridge, Mass. 1952, vol.1, p.175.

Kurt Gödel became interested in general relativity theory while he and Ein-
stein were both on staff of the Institute for Advanced Studies in Princeton,
and saw a lot of each other (Ref. 25, p.7, Ref. 19, p.157). Gödel’s resultant
two technical papers were highly original, and had a major impact. Indeed
(see Ref. 38, p.111-112, Refs. 29,8) the beginning of the modern studies of
singularities in general relativity in many ways had its seeds in the presen-
tation by Gödel in 1949 [10] of an exact solution of Einstein’s equations
for pressure-free matter, which could be thought of as a singularity-free
rotating but non-expanding cosmological model. This was one of the pa-
pers presented in a special issue of Reviews of Modern Physics dedicated
to Einstein on his 70th birthday. Gödel used this space-time as an exam-
ple helping to clarify the nature of time in general relativity, for it is an
exact solution of the Einstein equations in which there are closed timelike
lines. He shortly thereafter published a further paper [12] discussing a
family of exact solutions of Einstein’s equations representing rotating and
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expanding spatially homogeneous universe models. As these permit non-
zero redshifts, they could include realistic models of the observed universe.
These papers stimulated many investigations leading to fruitful develop-
ments. This may partly have been due to the enigmatic style in which
they were written: for decades after, much effort was invested in giving
proofs for results stated without proof by Gödel.

Gödel’s first paper [10] gave an exact rotating fluid-filled cosmological
solution of Einstein’s gravitational field equations. It is uniquely char-
acterized by its symmetry properties: it is the only perfect-fluid filled
universe invariant under a G5 of isometries multiply transitive on space-
time; it is therefore locally rotationally symmetric [6]. The density µ and
pressure p are the same everywhere, and hence [5,7] it does not expand
(θ = 0) and matter moves geodesically (u̇a = 0). It also has zero shear
(σ = 0), so the matter velocity vector is a Killing vector field but is not
hypersurface orthogonal, and the only non-zero kinematic quantity is the
vorticity. The vorticity vector is covariantly constant. This kinematic de-
scription uniquely characterizes these space-times (Ref. 5, Theorem 1.5.2
and 2.5.4). The matter source in the original solution is pressure-free mat-
ter, but there is a cosmological constant λ of negative sign (the opposite
sign to that usually encountered). More generally one can regard the mat-
ter source as being a perfect fluid. The non-trivial covariant field equations
are then

λ+ 2ω2 = 1
2κ(µ+ 3p), λ = 1

2κ(−µ+ p). (1)

In the pressure-free case (considered in Gödel’s original paper)

λ = − 1
2κµ = −ω2 < 0 . (2)

One can alternatively represent the matter as a fluid or scalar field without
cosmological constant: then

λ = 0 ⇒ p = µ = ω2/κ . (3)

In the introduction to this paper, Gödel says that no solution with rotating
matter source had been known up to that time. This is not quite correct. A
cylindrically symmetric stationary dust solution was found by Lanczos in
1924, and this is the oldest solution with rotating source that the editors
are aware of [21]. Lanczos never mentioned the word ”rotation” in his
paper, and he may not have been aware that the matter in his model
was rotating. Van Stockum [39] rediscovered this solution in 1937, see the
remarks on his paper in Ehlers [5], and was aware it was rotating. Further,
the notion of rotation/vorticity in relativity had been investigated in some
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depth by Synge [35]. Thus solutions with nonzero rotation had existed
since 1924, even though they were not properly understood and were not
generally known; certainly they were not mentioned by Gödel.

Gödel used his exact solution of the Einstein equations to examine
properties of time and causality in general relativity. The essential point he
demonstrated is that the Einstein field equations for a fluid matter source
are compatible with causal violation. Using axially symmetric comoving
coordinates, the light cones tip over more and more the further one moves
out from the origin of coordinates (Figure 31 in Ref. 13), so that for large
enough radial distance from the origin, there are closed circular timelike
lines.

Various paradoxes ensue.1 Furthermore by traveling far enough away,
any observer can reach an arbitrarily distant event in the past on her own
world line, and so influence events in her own past history at an arbitrary
early proper time in that history. Because the universe is space-time homo-
geneous, there are closed timelike curves through every event (the causal
violation is not localized to some small region). It must be emphasized that
this breakdown of causality does not occur because of multiple-connectivity
of the space-time. The Gödel universe is simply connected (indeed it is
homeomorphic to R4), so the closed timelike lines are essential in that they
cannot be removed by going to a covering space.

A necessary condition that causal violation can occur is that there
exist no cosmic time, that is, no time function which increases in the future
direction along every (timelike) world line. Gödel demonstrated that no
such time function exists in these models, indeed he showed there are no
inextendible spacelike surfaces at all in this space-time (on attempting to
extend them, they necessarily become null and then timelike). This is
possible because of the cosmic rotation signaled by the non-zero vorticity
(for if the vorticity were zero, there would be a potential function for the
fluid flow vector field that would provide a cosmic time function). However
not all rotating universes admit causal violation; it occurs here because of
the uniform extent of the rotation (it does not die away at infinity).

Gödel did not describe the geodesic properties of this space-time, but
may have investigated them (see pp.560-1 and footnote 11 in Ref. 11).
Later investigations by Kundt [20] and Chandrasekhar and Wright [2] ex-
plicitly showed that there are no closed timelike geodesics in the Gödel uni-
verse. This is compatible with Gödel’s results because the closed timelike
lines he found are non-geodesic. The past null cone of each point on the co-

1 See The Matricide Paradox in Ref. 37, pp.508–9, and the related but simpler billiard
ball paradoxes, pp.509–515.
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ordinate axis, generated by the null geodesics through that point, diverges
out from there to a maximum radius rm where closed (non-geodesic) null
lines occur and it experiences self-intersections, and then reconverges to the
axis [13]. No timelike or null geodesic ever reaches further from its starting
point than rm. This study of geodesics also showed that these space-times
are geodesically complete (and so singularity-free). This means that this
universe is an example of an Anti-Mach metric (see Refs. 17,24,32,1).

At the end of his paper, Gödel related his solution to the rotation of
galaxies, comparing observed rotation rates in a paper with the vorticity
in his solution. He acknowledged that his solution was not a realistic
universe model, in that it does not expand (and so cannot explain the
observed galactic redshifts). Nevertheless it is interesting that he made
some attempt to relate it to astrophysical observations of galactic rotation
by E. Hubble, estimating ω and a value of 10−30gm/cc for the density
of matter, presumably also obtained from Hubble’s data. This section
clearly shows Gödel functioning in the mode of an applied mathematician
(comparing observational data with model parameters to check the validity
of a universe model) rather than logician.

Some while after the publication of this solution, Heckmann and
Schücking showed there is an exact Newtonian analogue of the solution
[15], characterized by rigid rotation, provided one drops the usual New-
tonian boundary conditions for the gravitational potential. Clearly there
is in this case no implication of causal violation, which is not possible
in Newtonian space-time; but this does give a Newtonian example of an
anti-Mach cosmology.

Gödel’s stationary rotating universe is not a viable model of the real
universe because in it the galaxies show no systematic redshifts [10]. Ap-
parently Gödel must now have put a great deal of effort into examining
properties of more realistic universe models that both rotate and expand.
The results were presented at an International Congress of Mathematics
held at Cambridge (Massachusetts) from 30th August to 5th September
1950 [12]. This represents the first explicit construction of spatially ho-
mogeneous expanding and rotating cosmological models. They are invari-
ant under a non-abelian G3 of isometries simply transitive on spacelike
surfaces. These are now called Bianchi universes [17,9,22], because the
classification of the 3-dimensional symmetry group transitive on the ho-
mogeneous 3-spaces is derived from that introduced much earlier by L.
Bianchi, based on the structure constants of the symmetry group.

The models examined by Gödel belong to the Bianchi IX family, in-
variant under the group SO(3), and consequently with compact spacelike
surfaces of homogeneity. The matter content is taken to be pressure-free
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matter (‘dust’). The space-times are rotating solutions (ω �= 0) with the
usual space-time signature, satisfying the further conditions I–III in his
paper. The last condition implies that the models are expanding. In order
that vorticity be non-zero, the models are tilted , i.e. the matter flow lines
are not orthogonal to the surfaces of homogeneity [18]. The paper argues
that these conditions allow only the Type IX group as the group of isome-
tries, and introduces a decomposition of the metric tensor into projection
tensors along and perpendicular to the fluid flow lines, that has become
fundamental in later work, as well as the idea of an expansion quadric
(what is now called the expansion tensor). Gödel stated, mainly with-
out proof, a number of interesting properties of these space-times, which
remain interesting cosmological models today.

On the one hand, he developed relations between vorticity and the
local existence of time functions determining simultaneity for a family of
observers: ω = 0 implies the local existence of a time function defining
simultaneity for all fundamental observers [5,7], and so ω �= 0 implies tilt
[18] and an anisotropy in source number counts. He estimated the size of
this anisotropy and went on to develop vorticity conservation relations,2

and gave the condition for the vorticity vector to be parallel propagated
along the matter flow lines (it must be an eigenvector of the shear tensor,
cf. Ref. 5), relating this to the axes of rotation of galaxies. Further, he
linked these local studies to the global topology and the existence of closed
timelike lines: provided the matter flowlines themselves do not close up,
spatial homogeneity precludes closed timelike lines, but if the surfaces of
homogeneity are timelike then closed timelike lines will occur (because
these surfaces are compact).

On the other hand, he gave some dynamical results that are deeper in
that they involve a detailed study of the Einstein field equations (rather
than just the kinematic identities that are the basis of the vorticity con-
servation results, see Ref. 5). First, he considered the locally rotationally
symmetric (‘lrs’) cases, showing there exist no lrs cases satisfying the
stated conditions. Second, he stated that there are no expanding and
rotating spatially homogeneous type IX universes with vanishing shear.
Third, he stated existence of stationary homogeneous rotating solutions
with finite space, no closed timelike lines, and positive cosmological con-
stant (λ > 0), in particular such as differ arbitrarily little from Einstein’s
static universe; but that there exist no stationary homogeneous solutions
with λ = 0. These results however are almost an afterthought; the reason
is that such models are unrealistic, for they cannot expand on average.

2 Partly implied in previous work by Synge [35].
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Gödel gave only the briefest of hints as to how he proved the dynamic
results. Because of the symmetry of these space-times, the Einstein field
equations reduce to a system of ordinary differential equations. He did not
give those equations, but he gave a Lagrangean function from which they
could be derived, and stated an existence theorem.

This paper by Gödel is enigmatic, because the proofs of some of the
major results are only sketched in the briefest manner; the material is
presented in a somewhat random order; and it is sparse on references.3

Nevertheless it was a profound contribution to theoretical cosmology.
These papers lead to an in-depth reconsideration of the nature of

time and causality in relativity theory, developed particularly by Penrose,
Carter, Geroch, and Hawking, that were crucial in the later studies of
causality and singularities: specifically, the following emerged:

(i) the idea of causal domains,
(ii) a series of causality conditions of increasing strength generalizing

and completing Gödel’s statement on the relation between time functions
and causality,

(iii) the broad idea of null boundaries of causal domains, and an un-
derstanding of their properties.
These ideas are discussed in broad outline in [38]; they are presented in
technical detail in [27,28] and [13].

The papers also resulted in a series of studies that greatly expanded
our understanding of the dynamics of universe models, extending and in
many cases completing the work initiated by Gödel. They initiated system-
atic analysis of the family of Bianchi universe models. Taub [36] developed
the equations for empty Bianchi universes with arbitrary group type, and
gave an enlightening study of their properties. Heckmann and Schücking
[17] extended the equations to a study of fluid-filled Bianchi models, ini-
tiating the systematic study of this class of models. This has become an
important topic of study in terms of providing a parametrized set of alter-
native models to the standard Friedmann–Lemâıtre models of cosmology
[40]. These analyses were extended to the case of Newtonian cosmology
by Heckmann and Schücking [15,16], see also Raychaudhuri [31]. An inter-
esting aspect is that the particular family of models investigated by Gödel
(Bianchi Type IX) were shown by Misner [23] to exhibit strongly oscilla-
tory behaviour at early times; an ongoing debate has considered if these
models are truly ‘chaotic’ in the mathematical sense as understood today
(see Hobill in Ref. 40 and Ref. 4).

Additionally, the local covariant analysis of dynamics of cosmological

3 Indeed the only reference is to his own paper, Ref. 11.



Editor’s Note 1405

models developed from Gödel’s second paper, utilising and extending his
use of the projection tensors and his analyses of vorticity and the expansion
tensor [5,7]. A proof of his theorem on shear-free motion was given for the
general homogeneous case by Schücking [33] and then extended to the
general inhomogeneous dust case by Ellis [6]. Extension to various perfect
fluid cases followed, see Collins [3] for a summary.

Perhaps most significant of all, Gödel’s paper seems to have been in-
fluential in the formulation of Raychaudhuri’s fundamentally important
equation, giving the rate of change of the volume expansion along fluid
flow lines in terms of the fluid shear, rotation, and matter content [30,5].
This and its null analogue, together with topological methods embody-
ing a study of causal boundaries, became a crucial component in the
Hawking-Penrose singularity theorems [26,14,13]. A detailed discussion
of these various influences is given in Ellis [8]. Gödel’s work also led to a
reconsideration of the nature of time in relativity from a more philosoph-
ical viewpoint; see particularly his interchange with Einstein in Ref. 34,
pp. 27–29,65–67,687–688. The discussion continues today in many recent
works on causal violation in relation to wormholes.
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Short biography

Kurt Friedrich Gödel was born on 28th April 1906 in Brno (then
called Brünn), Czech Republic (then part of the Austro-Hungarian em-
pire), the younger son of an Austrian-German couple. He graduated from
the Deutsches Staats-Realgymnasium in Brno in 1924, and then studied at
the University of Vienna. He initially hesitated between mathematics and
physics, but soon chose logic as his main area of activity. He finished his
PhD Thesis in 1929, at the age of 23. In the period 1929–39 he created his
most important works that established his position as the No 1 logician of
the 20th century. His famous incompleteness theorem became the subject
of his Habilitationsschrift in 1932.

In the 1930s Gödel visited the newly-established Institute for Ad-
vanced Study in Princeton three times as a postdoctoral fellow, and in
1940 he moved there to take up permanent residence. His decision to
leave Austria was provoked by the Nazis who had found him politically
unreliable and had put his position at the University under review, but,
nevertheless, found him fit for military service and would very likely have
drafted him. The journey across the Atlantic was too risky at that time, so
Gödel and his wife travelled by railway all through Siberia to Manchuria,
and then by ship to Yokohama and to San Francisco. His position in Vi-
enna was approved three months later, but he never returned to Europe
and he consistently refused to accept any Austrian honours later in his
life (“sometimes for mindboggling reasons”, as one of his biographers re-
marked; Ref. 1). From 1940 he was an Ordinary Member of the Institute
for Advanced Study, and from 1946 a Permanent Member. While there,
he became a personal friend of Einstein’s and briefly engaged in research
on relativity that resulted in the two papers reprinted here. He became
Professor in 1953.

The honours he received include the Einstein Award (1951) and mem-
berships of the National Academy of Sciences of the USA (1955), the
American Academy of Arts and Sciences (1957) and of the Royal Society
(1968).



1408 Ellis

He retired in 1976 and died on 14th January 1978 in Princeton Hos-
pital.

Gödel is best known for his proof of incompleteness of arithmetic
formulated as an axiomatic system: there exists a statement A such that
neither A nor its negation can be proven to be true by working from
the axioms. Impressed by this, John von Neumann once called Gödel
“the greatest logician since Aristotle” [1]. Gödel’s other main subjects of
work were axiomatic set theory, philosophy and metaphysics. His research
in relativity (1947–1951) was just a brief excursion, but the results have
proven to be of durable importance.

Gödel’s life and work are extensively described in Refs. 1–3; in partic-
ular, Ref. 3 is a complete edition of all his works, including the unpublished
notes.
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