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In previous papers it was shown that gamma rays with characteristics similar to those of the
gamma-ray bursts (GRBs) observed by astronomers may arise from suitably shaped nonuniformi-
ties in the Big Bang in a quasi-spherical Szekeres (QSS) model. The gamma radiation arises by
blueshifting the light emitted by hydrogen atoms at the end of the last scattering epoch along pre-
ferred directions that exist in QSS models. However, the durations of the gamma flashes and of their
afterglows implied by the model were much longer than those of the observed GRBs. In this paper
it is shown that durations of the correct order result if the blueshifted radiation, on its way to the
present observer, passes through another QSS region where it is deflected. The angle of deflection
changes with time because of the cosmological drift mechanism, so the high-frequency ray will miss
the observer after a while. It is shown by explicit numerical calculation that a gamma-ray flash will
no longer be visible to the present observer after 10 minutes.
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I. MOTIVATION AND BACKGROUND

In previous papers by this author [1–3] it was shown
that flashes of gamma radiation with characteristics sim-
ilar to those of the gamma-ray bursts (GRBs), now rou-
tinely observed by astronomers [4], may arise from a non-
simultaneous Big Bang (BB) in a quasi-spherical Szek-
eres (QSS) model [5–7]. The gamma radiation arises by
blueshifting the light emitted by hydrogen atoms at the
end of the last scattering epoch along preferred directions
existing in QSS models [2, 3] (for the first discussions
of blueshifting see Refs. [8, 9]). With the BB profile
tB(r) chosen suitably, the blueshift is sufficiently strong
to move the observed frequency of the radiation to the
gamma range. A multitude of sources can be created by
distributing small QSS regions over a Friedmann back-
ground [3]. However, the durations of the gamma flashes
and of their afterglows implied by the model were much
longer than those measured for the GRBs.

In this paper it is shown that durations of the correct
order result if the blueshifted radiation, on its way to
the present observer, passes through another QSS region,
where it is deflected. The angle of deflection changes with
time in consequence of the cosmic drift [10–12], so the
high-frequency ray will miss the observer after a while.

Sections II – IV are partly repeated after Ref. [3]; they
present the QSS model used in this paper (Sec. II), the
null geodesic equations and properties of redshift along
them (Sec. III) and the definition of the extremum red-
shift surface (ERS, Sec. IV).

In Sec. V, the configuration of the QSS regions is pre-
sented, and the time-dependent deflection of light rays
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in them is demonstrated on a numerical example. In
Sec. VI the rate of angular drift of the deflected rays
is calculated. In Sec. VII it is shown by explicit nu-
merical calculation that in the configuration of Sec. V
the present observer who registered a gamma-radiation
flash at time to will no longer see it after 10 minutes.
Instead, the radiation coming from the same direction a
short while later will have its frequency in the ultraviolet
range. (The 10 minutes were chosen as an exemplary du-
ration of an observed GRB [4], but the gamma-ray flash
is, in this model, instantaneous; see Sec. IX.)

In Sec. VIII it is shown that the brief duration of
the gamma-ray flash is preserved if the initial point and
direction of the later-arriving ray are slightly perturbed.
Thus, the result of Sec. VII is not overly sensitive to
numerical inaccuracies. Section IX is a summary of the
results and of the problems that remain to be solved. The
appendices present some details of the computations.

II. THE QUASISPHERICAL SZEKERES (QSS)
SPACETIME USED IN THIS PAPER

The signature and labelling of coordinates will
be (+,−,−,−) and

(
x0, x1, x2, x3

)
= (t, r, x, y) or

(t, r, ϑ, φ).
The metric of the QSS spacetimes is [5–7, 13]

ds2 = dt2− (Φ,r −ΦE ,r /E)2

1 + 2E(r)
dr2−

(
Φ

E

)2 (
dx2 + dy2

)
,

(2.1)
where

E def
=

S

2

[(
x− P

S

)2

+

(
y −Q

S

)2

+ 1

]
, (2.2)

P (r), Q(r), S(r) and E(r) being arbitrary functions such
that S ̸= 0 and E ≥ −1/2 at all r.
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The source in the Einstein equations is dust (p = 0)
with the velocity field uα = δ0

α. The surfaces of con-
stant t and r are nonconcentric spheres, and (x, y) are
the stereographic coordinates on each sphere. At a fixed
r, they are related to the spherical coordinates by

x = P + S cot(ϑ/2) cosφ,

y = Q+ S cot(ϑ/2) sinφ. (2.3)

The functions (P,Q, S) determine the centres of the
spheres in the spaces of constant t (see illustrations in
Ref. [2]). Because of the non-concentricity, the QSS
spacetimes in general have no symmetry [14].
With Λ = 0 assumed, Φ(t, r) obeys

Φ,t
2 = 2E(r) +

2M(r)

Φ
, (2.4)

where M(r) is an arbitrary function. We will consider
only models with E > 0, then the solution of (2.4) is

Φ(t, r) =
M

2E
(cosh η − 1),

sinh η − η =
(2E)3/2

M
[t− tB(r)] , (2.5)

where tB(r) is an arbitrary function; t = tB(r) is the
time of the BB singularity, at which Φ(tB , r) = 0. We
assume Φ,t > 0 (the Universe is expanding).
The mass density implied by (2.1) is

κρ =
2 (M,r −3ME ,r /E)
Φ2 (Φ,r −ΦE ,r /E)

, κ
def
=

8πG

c2
. (2.6)

This is a mass-dipole superposed on a spherical monopole
[15], [6]. The dipole vanishes where E ,r = 0. The density
is minimum where E ,r /E is maximum and vice versa [16].
The arbitrary functions must be such that no singular-

ities exist after the BB. This is ensured by [16]:

M,r
3M

≥ P
S
,

E,r
2E

>
P
S

∀ r, (2.7)

where P def
=

√
(S,r )2 + (P,r )2 + (Q,r )2. (2.8)

These inequalities imply [16]

M,r
3M

≥ E ,r
E

,
E,r
2E

>
E ,r
E

∀ r. (2.9)

The extrema of E ,r /E with respect to (x, y) are [16]

E ,r
E

∣∣∣∣
ex

= ε2
P
S
, ε2 = ±1, (2.10)

with + at a maximum and − at minimum; they occur at

x = P +
SP,r

P + ε2S
, y = Q+

SQ,r
P + ε2S

. (2.11)

The Lemâıtre [17] – Tolman [18] (L–T) models are con-
tained in (2.1) – (2.2) as the limit of constant (P,Q, S).

The Friedmann limit is obtained from QSS when E/M2/3

and tB are constant (then (P,Q, S) can be made constant
by a coordinate transformation). QSS and Friedmann
spacetimes can be matched at any constant r.

Because of p = 0, the QSS models can describe the
evolution of the Universe no further back in time than to
the last scattering hypersurface (LSH); see Sec. V.

We will consider such QSS spacetimes whose L–T limit
is Model 2 of Ref. [1]. The r-coordinate is chosen so that

M = M0r
3, (2.12)

and M0 = 1 (kept in formulae for dimensional clarity)
[19]. The function E(r), assumed in the form

2E/r2
def
= − k = 0.4, (2.13)

is the same as in the background Friedmann model.
The units used in numerical calculations were intro-

duced and justified in Ref. [20]. Taking [21]

1 pc = 3.086× 1013 km, 1 y = 3.156× 107 s, (2.14)

the numerical length unit (NLU) and the numerical time
unit (NTU) are defined as follows:

1 NTU = 1 NLU = 9.8× 1010 y = 3× 104 Mpc. (2.15)
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FIG. 1: Parameters of the bang-time profile in the quasi-
spherical Szekeres region; see text for explanation.

The BB profile is the same as in Ref. [1], see Fig. 1. It
consists of two curved arcs and of a straight line segment
joining them. The upper-left arc is a segment of the curve

r6

B1
6 +

(t− tBf −A0)
6

B0
6 = 1, (2.16)

where

tBf = −0.13945554689046649 NTU ≈ −13.67×109 years.
(2.17)

The tBf is the asymptotic value of tB(r) in the L–T model
that mimicked accelerating expansion [19, 20]. This dif-
fers by ∼ 1.6% from (−T ), where T is the age of the
Universe determined by the Planck satellite [22]

T = 13.819× 109 y = 0.141 NTU. (2.18)
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The lower-right arc is a segment of the ellipse1

(r −B1 −A1)
2

A1
2 +

(t− tBf −A0)
2

A0
2 = 1. (2.19)

The straight segment passes through the point where the
full curves would meet; its slope is determined by x0.
The free parameters are A0, A1, B0, B1 and x0. In

Fig. 1 the values of x0 and A1 are greatly exaggerated
to improve readability. The actual values are [3]

A0

B0

A1

B1

x0

 =


0.000026 NTU
0.000091 NTU
1× 10−10

0.015
10−11

 , (2.20)

and this BB profile is shown2 in Fig. 2.
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FIG. 2: The real BB profile. The horizontal strokes are at the
ends of the straight segment. The lower arc from Fig. 1 looks
like a short vertical straight line. “The ray” is one with the
smallest 1+z; it intersects the last scattering hypersurface at
the dot. ERS is the extremum redshift surface, see Sec. IV.

The QSS model is axially symmetric, with P (r) =
Q(r) = 0 and

S(r) =
√
a2 + r2 (2.21)

(the same as in Ref. [3]), where a2 = 0.001. This S(r)
obeys (2.7), which, using (2.12) – (2.13), reduces to

1/r > S,r /S. (2.22)

The axis of symmetry is at x = y = 0. At r > rF , where

rF = A1 +B1, (2.23)

1 In further figures it looks like a vertical straight line segment
because A1 is extremely small.

2 Figure 2 here is different from Fig. 2 in Ref. [3] – the latter
showed an intermediate profile before final optimization.

the BB profile becomes horizontal straight, and the ge-
ometry of the model becomes Friedmannian. See Sec. III
for remarks on the choice of coordinates in that region.

The Friedmann background is defined by

ds2 = dt2 −R2(t)

[
dr2

1− kr2
+ r2

(
dϑ2 + sin2 ϑdφ2

)]
,

(2.24)
where k and tBf are given by (2.13) and (2.17), and

Λ = 0 (2.25)

is assumed; t = 0 is the present time, tBf is the BB
time. The scale factor R(t) is determined by (2.5) with
Φ = rR(t), (2.12) – (2.13) and tB(r) = tBf = constant.

The mass-density at the last scattering time in the
now-standard ΛCDM model is [1]

κρLS = 56.1294161975316× 109 (NLU)−2. (2.26)

In the L–T and Szekeres models it is assumed that a light
ray intersects the LSH when the density calculated along
it becomes equal to the ρLS in (2.26).

With (2.24), (2.25), (2.13) and (2.17), the ρLS of (2.26)
occurs at the redshift relative to the present time

1 + zbLS = 952.611615159. (2.27)

This differs by ∼ 12.7% from the ΛCDM value zLS =
1090 [22, 23]. To bring our model to agreement with
this, laborious re-calculations would be required. Since
the model needs improvements anyway, we will rather
stick to (2.25), (2.13) and (2.17), to be able to compare
the present results with the earlier ones.

III. NULL GEODESICS IN THE AXIALLY
SYMMETRIC QSS SPACETIMES

In (2.1) – (2.2) x = ∞ and y = ∞ are at the pole of
the stereographic projection of a sphere. This is a coordi-
nate singularity where numerical integration of geodesics
breaks down. So, we introduce the coordinates (ϑ, φ) by

x = SF cot(ϑ/2) cosφ, y = SF cot(ϑ/2) sinφ, (3.1)

where

SF
def
= S(rF ) =

√
a2 + rF 2 (3.2)

is the value of S at the Szekeres/Friedmann boundary.
This changes (2.1) and (2.2) to

ds2 = dt2 − N 2dr2

1 + 2E(r)
−
(
Φ

F

)2 (
dϑ2 + sin2 ϑdφ2

)
,

(3.3)

F =
SF

2S
(1 + cosϑ) +

S

2SF
(1− cosϑ), (3.4)

where
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N def
= Φ,r −ΦF ,r /F . (3.5)

In general, (ϑ, φ) are not the spherical polar coordinates
because F depends on ϑ. The dipole equator F ,r = 0 is
at cot(ϑeq/2) = S/SF (so ϑeq = π/2 in the Friedmann
region including the QSS boundary, see further in this
section). At r = rF we have F = 1 and (ϑ, φ) become
the spherical coordinates with the origin at r = 0.
Along a geodesic we denote

(
kt, kr, kϑ, kφ

) def
=

d(t, r, ϑ, φ)

dλ
, (3.6)

where λ is an affine parameter. In the (ϑ, φ) coordinates,
the geodesic equations for (3.3) – (3.4) are

dkt

dλ
+

NN ,t
1 + 2E

(kr)
2
+

ΦΦ,t
F2

[(
kϑ
)2

+ sin2 ϑ (kφ)
2
]
= 0,

(3.7)

dkr

dλ
+ 2

N ,t
N

ktkr

+

(
N ,r
N

− E,r
1 + 2E

)
(kr)

2
+ 2

S,r sinϑΦ

SF2N
krkϑ

− Φ(1 + 2E)

F2N

[(
kϑ
)2

+ sin2 ϑ (kφ)
2
]
= 0, (3.8)

dkϑ

dλ
+ 2

Φ,t
Φ

ktkϑ − S,r sinϑN
SΦ(1 + 2E)

(kr)
2
+ 2

N
Φ
krkϑ

+
F ,ϑ
F

[
−
(
kϑ
)2

+ sin2 ϑ (kφ)
2
]

− cosϑ sinϑ (kφ)
2
= 0, (3.9)

dkφ

dλ
+ 2

Φ,t
Φ

ktkφ + 2
N
Φ
krkφ

+ 2

[
cosϑ

sinϑ
− F ,ϑ

F

]
kϑkφ = 0. (3.10)

The geodesics determined by (3.7) – (3.10) are null when

(
kt
)2 − N 2 (kr)

2

1 + 2E(r)
−
(
Φ

F

)2 [(
kϑ
)2

+ sin2 ϑ (kφ)
2
]
= 0.

(3.11)
On past-directed rays kt < 0, and λ along each of them

can be chosen such that at the observation point

kto = −1. (3.12)

(On future-directed rays kt > 0 and a convenient choice
of λ is kte = +1.)
For correspondence with Ref. [1], in the Friedmann

region we choose the coordinates so that

S =
√
a2 + rF 2 = SF . (3.13)

Then, throughout the Friedmann region, F = 1 and
(ϑ, φ) are the spherical coordinates. They coincide with
the coordinates of the QSS region at r = rF .

To calculate kr on nonradial rays, (3.11) will be used,
which is insensitive to the sign of kr. This sign will be
changed at each point where kr reaches zero by the nu-
merical program integrating {(3.7), (3.9) – (3.11)}.

Note that ϑ ≡ 0 and ϑ ≡ π are solutions of (3.9). These
rays intersect every space of constant t on the symmetry
axis; they are called axial rays. As follows from (3.9),
there exist no null geodesics on which kφ ≡ 0 and ϑ has
any constant value other than 0 or π (because with 0 ̸=
ϑ ̸= π, kφ ≡ 0 and kϑ = 0 at a point, Eq. (3.9) implies
dkϑ/dλ ̸= 0). Consequently, in the axially symmetric
case the only analogues of radial directions are ϑ = 0
and ϑ = π; along these geodesics φ is undetermined.

Along a ray emitted at Pe and observed at Po, with kα

being affinely parametrised, we have

1 + z =
(uαk

α)e
(uαkα)o

, (3.14)

where uα are four-velocities of the emitter and of the
observer [24]. In our case, both the emitter and the ob-
server comove with the cosmic matter, so uα = δ0α, and
the affine parameter is chosen so that (3.12) holds; then

1 + z = −ke
t. (3.15)

Equation (3.10) has the first integral:

kφ sin2 ϑΦ2/F2 = J0, (3.16)

where J0 is constant along each geodesic. When (3.16)
is substituted in (3.11), the following results:

(kt)2 =
N 2 (kr)

2

1 + 2E
+

(
Φ

F

)2 (
kϑ
)2

+

(
J0F
sinϑΦ

)2

. (3.17)

At the observation/emission point, (3.12)/(3.15), respec-
tively, apply. Equations (3.17) and (3.15) show that for
rays emitted at the BB, where Φ = 0, the observed red-
shift is infinite when J0 ̸= 0. A necessary condition for
infinite blueshift (1 + zo = 0) is thus J0 = 0, so

(a) either kφ = 0,
(b) or ϑ = 0, π along the ray (note that (3.16) implies

J0/ sinϑ → 0 when ϑ → 0, π).
Condition (b) appears to be also sufficient, but so far
this has been demonstrated only numerically in concrete
examples of QSS models ([2, 3]).

Condition (a) is not sufficient, and Ref. [2] contains
numerical counterexamples: there exist rays that proceed
in a surface of constant φ, but approach the BB with
z → ∞; the value of ϑ along them changes and is different
from 0, π. For those rays, (3.17) with the last term being
zero implies one more thing

If lim
t→tB

z = ∞ and lim
t→tB

|kr| < ∞

then lim
t→tB

kϑ = ±∞, (3.18)

i.e., such rays approach the BB tangentially to the sur-
faces of constant r. Examples will appear in Sec. VI.
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Consider a ray proceeding from event P1 to P2 and
then from P2 to P3. Denote the redshifts acquired in the
intervals [P1, P2], [P2, P3] and [P1, P3] = [P1, P2]∪[P2, P3]
by z12, z23 and z13, respectively. Then, from (3.14),

1 + z13 = (1 + z12) (1 + z23) . (3.19)

Thus, for a ray proceeding to the past from P1 to P2, and
then back to the future from P2 to P1:

1 + z12 =
1

1 + z21
. (3.20)

IV. THE EXTREMUM REDSHIFT SURFACE

Let a null geodesic stay in the surface {ϑ, φ} =
{π, constant}. Then kr ̸= 0 at all its points, see (3.11).
Assume it is past-directed and has its initial point at
r = 0. Thus, r has to increase along it and can be used
as a parameter. Using (3.15), we then obtain from (3.7)

dz

dr
=

NN ,t
1 + 2E

kr. (4.1)

Since N ̸= 0 from no-shell-crossing conditions [16] and
kr > 0, the extrema of z on such a geodesic occur where

N ,t ≡ Φ,tr −Φ,t F ,r /F = 0. (4.2)

Since ϑ = π was assumed, the set defined by (4.2) is 2-
dimensional; it is the Extremum Redshift Surface (ERS)
[2]. Equation (4.2) is equivalent to [2]

χ4 + χ3 = −k3
[

rtB,r

4M0 (1− rS,r /S)

]2
, (4.3)

where

χ
def
= sinh2(η/2) (4.4)

With k < 0, (4.3) is solvable for χ at any r, since its left-
hand side is independent of r, monotonic in χ and varies
from 0 to +∞, while the right-hand side is non-negative.
The right half of the ERS profile with the parameters of
(2.20) is shown in Fig. 2.
In the limit S,r → 0 (which occurs at a → ∞), (4.3)

reproduces the equation of the Extremum Redshift Hy-
persurface (ERH) of Ref. [1].
Equation (4.3) was derived for null geodesics proceed-

ing along ϑ = π, where the mass dipole is maximum,
F ,r /F = S,r /S > 0. With S given by (2.21) we have

F1
def
= 1/ (1− rS,r /S) = (r/a)2 + 1 > 1, (4.5)

so, at a given r, the ERS has a greater η (greater t− tB)
than the ERH of the corresponding L–T model. More-
over, the χ of (4.3) is greater when a is smaller.
Conversely, for a ray proceeding along the dipole min-

imum (where ϑ = 0), the factor F1 is replaced by

F2
def
= 1/ (1 + rS,r /S) =

a2 + r2

a2 + 2r2
< 1, (4.6)

and so the ERS has a smaller t − tB than the ERH in
L–T. Also here, a smaller a has a more pronounced effect.

Extrema of redshift exist along other directions than
ϑ = 0 and ϑ = π (see examples in Sec. VII), but a general
equation defining their loci remains to be derived.

V. THE TIME-DEPENDENT DEFLECTION OF
LIGHT RAYS

From here on we will consider only the rays proceeding
within the surface of constant φ.

For the source of the gamma rays we take the BB hump
of Fig. 3. We assume that the maximally blueshifted
axial ray emitted there (at the big dot in Fig. 2 and
near to the tip of the arrow in the QSS1 circle in Fig.
3) passes, on its way to the observer, through another
axially symmetric QSS region (QSS2 in Fig. 3), where
it is deflected. The parameters of QSS2 are assumed
the same as in QSS1. In general, the angle of deflection
changes with time in consequence of the cosmic drift [10,
12]. Consequently, if the maximally blueshifted ray hits
a given observer at a given time, an axial ray emitted
a while later will miss the observer, apart from a few
exceptional cases (see below). After a short while, the
rays seen by the observer in the same direction will be
coming from other regions of the same source and will
be less blueshifted, i.e., they will form the afterglow. See
Sec. VI for a more detailed description.

A ray that hits QSS2 along the symmetry axis (from
either the dipole maximum or minimum side) is not de-
flected [10]. But the directions in the dipole equator
plane, ϑ = π/2, are also special. If a ray hits QSS2
there having proceeded along ϑ = π/2 in the Friedmann
region, then a deflection will occur, but there will be no
drift.3 For rays that hit QSS2 from other directions, the
time-dependent deflection is to be expected.

In the following, we will use two coordinate charts of
the class (3.3) – (3.5), one centered at the origin of QSS1,
and the other centered at the origin of QSS2. Their t will
be the same, but the r-coordinates will differ. Whenever
confusion may arise, we will denote the r of QSS1 by rS1,
and the other one by rS2.

We consider a ray that was emitted from the LSH at
the symmetry axis of QSS1 on the dipole maximum side,
and proceeds along this axis. The initial point is the one
that gives the maximally strong blueshift. (It is “ray A”
in Sec. 9 of Ref. [3] and “the ray” shown in Fig. 2).
The ray then passes all through QSS1 and emerges into
the Friedmann region (after passing the origin of QSS1
it becomes “ray B” of Ref. [3]). This part of the ray’s
path is not shown in Fig. 3; in the following it will be
called the Upray. On it, we choose the point just behind

3 This effect was verified numerically; its reason is not evident in
the geodesic equations.
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FIG. 3: Projection of Rays 0, 1 and 2 on a surface of constant
t and φ. The coordinates are related to those of (3.3) – (3.4)
by X = −r cosϑ, Y = r sinϑ (ϑ increases clockwise). QSS1 is
the Szekeres region that generates the blueshift, QSS2 deflects
the rays. The arrows inside circles mark the directions of mass
dipole maxima. The rays end at the present time, t = 0. The
insets show the neighbourhoods of the entry and exit points
of the rays to the QSS2 region. More explanation in the text.

the QSS1 region, with

(rS1, t) = (r, t)1 = (5.1)

(0.0150907023847052114,−0.13926900571845113),

z1 = −0.39590497158301252 (5.2)

(these numbers are taken from the numerical tables for
ray B [3]). We take (t1, z1) as the initial data for Ray
0. (Note: z1 is the upward redshift between rS1 = 0 and
rS1 = r1. The true (downward) redshift between these
points is 1 + z1 true = 1/(1 + z1).)

For the initial rS2 on Ray 0 we take

rS2 = ri = 0.02. (5.3)

We assume that the dipole maximum of QSS2 lies on
ϑ = π in Fig. 3, while the angle between the direction of
the ray at (t1, ri) and the dipole equator of QSS2 is

δ = arctan(1/2); (5.4)

see the uppermost inset in Fig. 3. The values of ri and
δ were chosen such that the drift is clearly visible in the
illustrations, while the two QSS regions are not too close
to each other. The angle of deflection becomes larger
when ri is smaller and vice versa. The angle δ is related
to the initial kϑ by

sin δ =
kϑi Φ(ti, ri)

1 + z1
(5.5)

(see derivation in Appendix A), with Φ(ti, ri) calculated
from (2.5) using (2.12) and (2.13), and (2.17) for tB .

The upward redshift to t = 0 on Ray 0 is4

(1 + z)3 up = 7.19256480334251602× 10−3. (5.6)

The z1 in (5.2) is the upward z between rS1 = 0 and
rS1 = r1. Consequently, (5.6) is the upward z between
rS1 = 0 and the present observer. The proper z between
the LSH and rS1 = 0 was calculated in Ref. [3]:

1 + zols3 = 1.11939135405414447× 10−7. (5.7)

So, the proper 1 + z between the last scattering in QSS1
and the present time is

1+z3 =
1 + zols3
1 + z3 up

= 1.55631737031266357×10−5. (5.8)

This is near to 1.553 × 10−5 of Ref. [3]; the difference
arose because in Ref. [3] the intervening QSS2 region was
absent. The 1 + z3 of (5.8) is within the range 1 + z <
1.689×10−5 needed to blueshift the emission frequencies
of hydrogen into the gamma sector [1].

Ray 0 overshot the present time t = 0 in consequence
of numerical errors. The calculation stopped at

tfin = 1.29738987343870121× 10−10 NTU, (5.9)

and the other coordinates of the endpoint were

(rS2, ϑ) = (r, ϑ)fin = (5.10)

(0.85217686701400219, 4.2386753628314251)

(recall: ϑ is counted from the X < 0 direction clockwise).

4 For reproducibility of the results, the numbers are quoted up to
17 decimal digits. Such precision was needed to capture time
differences of ≈ 10 min at the observer – see Secs. VI – VII.
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Rays 1 and 2 have their initial points at the same
rS2 = ri = 0.02 as Ray 0, and the initial direction still
determined by δ of (5.4), but the initial t later by 0.00002
NTU (Ray 1) and 0.00004 NTU (Ray 2). The angle
δ being the same means that the initial directions are
parallel-transported along the world line of the emitter;
see Appendix B for more on this.
As seen in Fig. 3, each ray is deflected by a different an-

gle when passing through QSS2. This is the cosmic drift
(non-repeatability of light paths) of Refs. [10–12]. On
comparing the two upper insets in Fig. 3 one sees that the
projections of Rays 0 and 2 intersect at the edge of QSS2:
Ray 0 goes further than Ray 2 around the BB hump.
Similarly, the projections of Ray 0 and Ray 1 intersect at
point P of coordinates (X,Y ) ≈ (0.019987,−0.02143).
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Although the projections of Rays 0 and 1 on the
(X,Y )-surface intersect at P, the rays do not intersect in
spacetime, as is seen from their projections on the (X, t)
and (Y, t) coordinate surfaces in Figs. 4 and 5, respec-
tively. The intersecting (X,Y )-projections imply that an
observer at P would register both Ray 0 and (suitably
later, from a different direction) Ray 1.

Figures 6 and 7 show [1 + z(r)]× 105 along Ray 0. In
short segments near the borders of QSS2, 1+ z decreases
when followed along the ray to the future. However, the
times of flight of the rays through QSS2 are made longer
by the deflections. The net result is that the ray spends
more time in the redshift-generating region, and the final
1+ z is larger than it would be in the absence of QSS2 –
see (5.8) and the remark under it.
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0.02067
0.020672
0.020674
0.020676
0.020678
0.02068

0.020682
0.020684

0.
01

49
99

9

0.
01

49
99

9

0.
01

5

0.
01

5

0.
01

50
00

1

0.03085
0.030852
0.030854
0.030856
0.030858
0.03086

0.030862
0.030864
0.030866

0.
01

49
99

9

0.
01

49
99

9

0.
01

5

0.
01

5

0.
01

50
00

1

FIG. 7: Closeup views on the curve from Fig. 6 around the
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VI. RATE OF ANGULAR DRIFT OF THE RAYS

Now we calculate the average rate of the angular drift
of the rays applying a few approximations. As the first
approximation, we take the angles between the images
of the future-end segments of the rays in Fig. 3 for the
real angles in spacetime. Since these angles are small,
the departure from the exact result should be tolerable.
As shown in Appendix C, the angle between the end
segments of Rays 2 and 0 is

∆β = 1.79491638375138503◦. (6.1)

The time difference between rays 0 and 2 at their initial
points at rS2 = ri is, from (2.14) and (2.15),

∆t = 0.00004 NTU = 39.2× 105 y

= 2.06192× 1012 min. (6.2)

This implies the average rate of angular drift, with re-
spect to the source time
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dβ

dt
= 4.57886832589639038× 10−7 ◦/y

= 8.70507286292089426× 10−13 ◦/min

= 0.15193218308397861× 10−13 rad/min. (6.3)

In (6.3), the time is counted between the initial points
of Rays 0 and 2, at (r, ϑ)S2 = (ri, π/2), with ri given
by (5.3). The upward redshift on Ray 0 from rS1 = 0
to the present time is the z3 up given by (5.6). Hence,
the proper redshift on Ray 0 between rS2 = ri and the
present time is

1 + zip =
1 + z1

1 + z3 up
= 83.98881969561866230, (6.4)

where z1 is given by (5.2). So, the time difference ∆t at
(ri, t1) results in the time difference (1+ zip)×∆t at the
observer. The rate of angular drift at the observer is thus

dα

dt

∣∣∣∣
observer

=
dβ

dt

/
(1 + zip)

= 1.80895723543432844× 10−16 rad/min. (6.5)

As a curiosity, in Ref. [10] (an off-center observer in a
spherical void, observing galaxies around her) the cosmic
drift was ≤ 10−6 arcsec/y ≈ 9.22 × 10−18 rad/min, i.e.
≈ 19.6 times smaller than (6.5).
The observed GRBs typically last from less than a sec-

ond to a few minutes [4]. Let 10 minutes be the reference
time. Imagine a ray in our model reaching the observer
10 minutes later than Ray 0 from the same direction.
Will it still be a gamma ray?
A direct answer would require emitting a ray from the

observer position back in time later by

τ = 10 min = 1.93993947388841468× 10−16 NTU (6.6)

(from (2.14) – (2.15)) than the tfin of (5.9), in the direc-
tion opposite to Ray 0. But a ray having its initial point
so close to the endpoint of Ray 0 could be numerically
distinguishable from Ray 0 only at very high precision
that is inaccessible to this author.5 Therefore, we shall
again resort to an approximate estimate.
Ray 2 was sent from its initial point later by 0.00004

NTU than Ray 0. This translates, by (6.4), to

∆t2 ≈ 0.00335955278782475 NTU (6.7)

at the present time, t = 0. So, we send a ray (call it
Backray 0) from the observer position given by (5.9) –

5 Such a ray would travel through nearly the whole lifetime of the
Universe. To capture time differences counted in seconds, the
numerical time-step would have to be of the order of 1 s. Using
(2.14) and taking 13.819× 109 y for the age of the Universe [22],
the calculation would require ≈ 43× 1016 steps.

(5.10) backward in time, with the initial t = tfin + ∆t2,
and with the initial direction opposite to the final direc-
tion of Ray 0. There were difficulties with assigning the
correct number to the initial direction, see Appendix D.
The number finally chosen was

µ
def
= kϑ/kr = 0.0107412585641537794 (6.8)

With this value, at the first contact with the edge of QSS2
Backray 0 and Ray 0 coincide to better than 10−8 in both
X and Y ; see Appendix D again (but the coincidence is
not as good all the way).
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FIG. 8: Projections of Ray 0 and Backray 0 on a surface of
constant t in a vicinity of QSS1. The line OL is orthogonal
to the projection of Ray 0 at its initial point S; Backray 0
was stopped where its projection crossed OL, at point F in
spacetime. The thin arc tangent to OL at S is concentric with
QSS1 and has the radius r1 given by (5.1). The other arcs
are borders of the QSS regions.

The integration of Backray 0 was stopped at the 2-
surface Sb in spacetime given by the equations

r =
ri

sinϑ+ tan δ cosϑ
≡ ri cos δ

sin(δ + ϑ)
,

φ = constant. (6.9)

This surface is orthogonal to Ray 0 at its initial point S.
It intersects the plane of Fig. 8 along the straight line
OL, which has the equation

Y = ri +X tan δ, (6.10)
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where ri and δ are given by (5.3) – (5.4) and (X,Y ) are
the coordinates in Fig. 8. The point where Backray 0
hit Sb will be denoted F. Stopping Backray 0 there was
convenient for prolonging it into the QSS1 region.6

The surface Sb and the line OL are at the same time
tangent at S to the circle of radius rS1 = r1, where Ray
0 took over from Upray; see Fig. 8.
The following parameters of Backray 0 at F will be

needed for further calculations:

rb = 0.0196597503597857326, (6.11)

tb = −0.13922666531999014, (6.12)

ϑb = 1.5348829837350006, (6.13)

1 + zb = 74.080313337692317, (6.14)

R(tb) = 0.00617900818769279159. (6.15)

Imagine a family of past-directed rays, all emitted from
(r, ϑ) = (r, ϑ)fin of (5.10), in the direction opposite to
the final direction of Ray 0, with their emission instants
continuously increased from t = tfin of (5.9) to tfin+∆t2 of
(6.7). Call this family G (for “geodesics”). The earliest of
these rays is the time-reverse of Ray 0, the last coincides
with Backray 0. Their intersections with the surface Sb

form an arc connecting point S to point F. The arc SF
represents the spatial drift of the endpoint of Backray 0
with respect to the initial point of Ray 0.
The angle γ between the tangent vector to the arc SF

at F and the direction vector of Backray 0 at F is

γ = 1.5137231069990575 rad

= 86.729945382475933◦ =⇒
γ̃

def
= π/2− γ = 0.0570732197958390142 rad

= 3.2700546175240777◦. (6.16)

see Appendix E. The (X,Y ) coordinates of F are

Xb = −rb cosϑb = −7.05895596023793498× 10−4,

Yb = r sinϑb = 0.0196470734618825471, (6.17)

where rb and ϑb are given by (6.11) and (6.13). The
time-coordinates of points S and F in spacetime differ by

∆t1 = tb − t1 = 4.234039846099× 10−5 NTU. (6.18)

Now take a ray of family G (call it Backray N) that
was emitted back in time from (r, ϑ)fin by U∆t2 later
than the tfin of (5.9), where U is small and ∆t2 is given
by (6.7). The point of intersection of Backray N with
the surface Sb, denoted PN , lies on the arc SF near to
the point S. Quantities referrring to PN will carry the
subscript N. We make two more approximations:

6 The discontinuity in the slope of Backray 0 at the edge of QSS2
in Fig. 8 resulted from interpolation – only 1 in 600 calculated
points is used by the drawing program.

1. The arc SPN coincides with the straight line seg-
ment SPN , tangent to SPN at S, where PN is the pro-
jection of PN on the plane of Fig. 8.

2. The XN coordinate of PN , the angle γ̃N between
Backray N and the normal to the arc SPN at PN , the

∆tN
def
= tN − t1 and the redshift difference zip − zN are

related to Xb, γ̃, ∆t1 and zip − zb all by the factor U .

It is not obvious how precise these approximations are
because, as was seen in Fig. 3, the directions of the rays
do not necessarily change uniformly: the projections of
some rays intersect. We leave the problem of verifying the
correctness of these assumptions (and possible improve-
ments upon them) for the future. The approximation
should be better, the shorter SPN is.

We wish to calculate by how much the past endpoint
PN and the direction of Backray N at PN will differ from
those of Ray 0 at S when U = 10 minutes/∆t2, i.e.,

U = 5.77439795236701905× 10−14 (6.19)

from (6.6) and (6.7). Then we obtain at PN

XN
def
= −Urb cosϑb

= −4.07612208426468965× 10−17, (6.20)

YN
def
= ri +XN/ tan δ = ri + 2XN

= 1.99999999999999185× 10−2, (6.21)

γ̃N = Uγ̃

= 3.29563483524085620× 10−15 rad,(6.22)

∆tN = U∆t1 (6.23)

= 2.44490310175544341× 10−18 NTU,

1 + zN = 1 + zip − U (zip − zb)

= 83.988819695618090. (6.24)

From (6.20) – (6.21), the (r, ϑ)S2 coordinates of PN are

ϑN = arctan [YN/ (−XN )]

= 1.5707963267948946 rad, (6.25)

rN = YN/ sinϑN

= 1.99999999999999185× 10−2. (6.26)

The program that calculated this does not see the differ-
ence between YN and rN . This is because π/2 − ϑN =
2.03806104213235315× 10−15, and the Fortran program
finds sinϑN = 1 up to 16th decimal place. (The differ-
ence π/2− ϑN is not to be confused with γ̃N . The ϑN is
the value of ϑS2 at the endpoint of Backray N, while γ̃N
is the angle between the direction of Backray N at the
endpoint and the normal to SF there.)

The point PN , lying on OL very near to the point S, lies
very nearly on the circle of radius rS1 = r1 surrounding
the QSS1 region. So, we make one more approximation
and assume that PN lies on that circle. The error in r
committed thereby is smaller than 10−17.
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VII. ACCOUNTING FOR THE
SHORT-LIVEDNESS OF THE GAMMA-RAY

FLASH

We now send a new ray (call it Downray 1), back-
ward in time, in prolongation of Backray N. What is the
blueshift or redshift on this ray when it crosses the LSH?
The numbers in (6.20) and (6.22) allow us to calculate

the initial direction for Downray 1 in terms of the (r, ϑ)S1
coordinates; see the sketch in Fig. 9. It has its initial
point at rS1 = r1 given by (5.1), shifted by

H
def
= |XN | / cos δ =

√
5 |XN | /2

= 4.55724303250198597× 10−17 (7.1)

toward YS1 > 0 with respect to the symmetry axis. Its
initial direction is inclined at the angle γN = π/2 − γ̃N
to the OL line. The ϑS1 of its initial point is ε given by

tan ε = H/r1 = 3.01990120560648060× 10−15. (7.2)

The Fortran 90 program sees no difference between ε and
tan ε up to the level of 10−17.
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FIG. 9: Sketch of Backray N near its past endpoint and of
Downray 1 that continues in the same direction into the QSS1
region. The values of H, r1, ε and π/2− γN = γ̃N are much
exaggerated. The origin of the (X,Y ) coordinates in this
graph coincides with the origin of QSS1.

The tangent vector to Downray 1 at the point
(t, r, ϑ) = (t1 +∆tN , r1, ε) is

krN =

√
1− kr12 (1 + zN )

RND
×
(
− tan ε sin γ̃N −

√
1− kr12 cos γ̃N

)
, (7.3)

kϑN =
1 + zN
r1RND

×
(
−
√
1− kr12 sin γ̃N + tan ε cos γ̃N

)
, (7.4)

D def
=
√
1− kr12 + tan2 ε, RN

def
= R(tN ); (7.5)

see calculation and discussion in Appendix F. In the
numerical calculations the factor (1 + zN ) was omitted
– because smaller values of kr and kϑ result in smaller
numerical steps of r and ϑ which improves the numerical
precision. The actual value of 1 + z at the endpoint of
Downray 1 was then calculated using (3.19).

The initial t on Downray 1 is

tN = t1 +∆tN = −0.013926900571845113 NTU. (7.6)

Note that this is the same as t1 of (5.1) – with ∆tN ≈
10−18, the Fortran program does not see the difference.
This confirms the remark made under (6.6) – if deter-
mined by direct numerical calculation, the path of Back-
ray N would become, at some point along the way, indis-
tinguishable from that of Ray 0.

Summarizing, the initial point of Downray 1 is
(t, r, ϑ)S1 = (tN , r1, ε), with the numbers given in (7.6),
(5.1) and (7.2), respectively, while its initial direction is
determined by (7.3) – (7.5).
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FIG. 10: Comparison of the (t,X) profiles of Downray 1 and
Upray. Explanation in the text.

If continued from these initial data without correc-
tions, Downray 1 would have the (t,X) profile shown
in Fig. 10. The t-coordinate along it disagrees with that
of the Upray by much more than should be expected, see
Appendix G for details. This happens in consequence of
a numerical instability at the outer branch of the ERS,
which this author was not able to overcome. Therefore,
somewhere along the way the t-coordinate of Downray
1 had to be hand-corrected. This was done as follows.
At the point of closest approach of Downray 1 to the
r = 0 line (see Appendix G), the tangent vector to the
ray was parallel-transported from the actual time calcu-
lated along the ray (to = −0.13932447906821049 NTU)
to the initial time of the Upray,

t′o = −0.13932991589546649, (7.7)

which is by 5.43682725598348959 × 10−6 NTU earlier.
The parallel transport was done as in Appendix B: z
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was thereby unchanged, while kr and kϑ were multiplied
by R(to)/R(t′o) = 1.3849964189634454. From there on,
the ray was continued as Downray 2, see Figs. 11 – 12.
Consequences of other possible modifications of Downray
1 will be discussed in Sec. VIII.
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The operation described above was done under two as-
sumptions: (1) that the the point of closest approach to
r = 0 and the direction of Downray 1 there were deter-
mined correctly, and (2) that the parallel transport could
be done by the Friedmannian rule of Appendix B.
The first assumption is justified by the fact that Down-

ray 1 proceeds close to the ϑ = 0 axis, with |Y | <
4.404 × 10−17 all the way between PN and X = 0, see
Fig. 13. This means that any departure from this path
is smaller than the accuracy of the numerical code.
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FIG. 13: Closeup view on Fig. 12 in the range X ∈
[−0.016, 0.001]. In this range Downrays 1 and 2 coincide.

The second assumption is justified by the fact that
at the closest approach to the origin r ≈ 2.23 × 10−22,
E ,r /E ≈ 2.23× 10−19 and Φ ≈ 2.15× 10−25, so the term
in (2.1) that is responsible for the difference between the
QSS and Friedmann geometries is ΦE ,r /E ≈ 4.79×10−44.
The Friedmann term Φ,r is at this location 9.62× 10−4.
The non-Friedmannian correction is thus too small to
show up at the level of accuracy assumed here.

Near the origin some quantities become indeterminate
of the type 0/0 [2], so the integration of the ray equations
had to include certain precautions: (1) The numerical
step had to be gradually decreased on approaching the
origin. (2) Downray 1 aimed at r = 0 with high precision,
and at a certain step its r-coordinate shot to r < 0. This
had to be taken care of. See Appendix G for details.

Figure 11 shows the (t,X) profiles of Downrays 1 and
2 across the full diameter of the BB hump. Only the left
half of the ERS is shown. Downray 1 at first goes along
the steep slope of the BB hump, but then turns away and
crosses the LSH in the Friedmann region at

t
r
ϑ
1 + zP
1 + zo


D1LSH

=


−0.13945067585653098 NTU
0.0522717572229775690
3.1415926411632658
3.9974477620254634
335.740919327408696


(7.8)

(ϑD1LSH = 179.999999288◦ ≈ π). The zP is relative
to the point PN , zo is relative to the present observer
calculated from 1 + zo = (1 + zN )(1 + zP ) using (6.24).

Downray 2 never leaves the QSS1 region and finally
hits the BB at the steep slope – tangentially to a surface
of constant r, as predicted in (3.18). It crosses the LSH
at the point marked with the small square in Fig. 11 and
with the dot in Fig. 12, at

t
r
ϑ
1 + zP
1 + zo


D2LSH

=


−0.13939573683235620 NTU
0.0149934194406606183
3.6918768830001061
0.0268536489146646434
2.2554062768632145161

 .

(7.9)
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Figure 12 shows the projection of Downrays 1 and 2
on the (X,Y ) coordinate plane. At this scale, both rays
seem to proceed across the QSS1 region along the sym-
metry axis. Figures 13 and 14 show details of the rays’
paths. Downray 1 proceeds along a nearly straight line at
the angle ε of (7.2) to the Y = 0 line and intersects it at
X ≈ −0.0030588. At (X,Y ) ≈ (−4.322714809677376 ×
10−5, −1.02236722643458 × 10−17) it turns upwards
and aims at r = 0. After reaching (X,Y ) ≈
(−2.230943471939892× 10−22,−1.07257712221974956×
10−25), the Fortran program finds the next r to be neg-
ative, see Appendix G to see how this problem was han-
dled. On the other side of the origin, the two rays pro-
ceed at different angles. Downray 1 stays within the
0 ≤ Y < 2.5 × 10−10 strip up to the boundary of the
QSS1 region; see the upper panel of Fig. 14. Downray
2 is initially inclined to the Y = 0 line at an angle that
is ≈ 1012 times greater than in the X < 0 sector. On
approaching the boundary of the QSS1 region, it bends
around and becomes nearly tangent to a constant-r sur-
face. It continues this way up to the intersection with
the BB; see the lower panel of Fig. 14 and Fig. 12.
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Finally, Fig. 15 shows the {X, z} relation along Down-
ray 2, with z relative to the present observer. The ob-
server would see blueshift if the light sources were placed
between X ≈ 0.0135 and X ≈ 0.0149, but will not
see any blueshift in the light emitted at the LSH. For
z at LSH given by (7.9), and with the parameters of the
spatially flat ΛCDM model (H0 = 69.6 km/(s × Mpc),
Ωm = 0.286, ΩΛ = 0.714 [26]) the Cosmology Calculator
of Refs. [25, 26] says the source of Downray 2 would be
8.726 Gyr to the past of the present observer. In the
model used here, it is ≈ 0.139 NTU = 13.622 Gyr to
the past. With 1 + zo given by (7.9), the whole range of
visible light is moved into near ultraviolet.
Assuming that the approximations were all valid, Eqs.

(7.9) and (5.8), and Fig. 15 prove that 10 minutes after
seeing a gamma-ray flash the present observer will see
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FIG. 15: The redshift along Downray 2 seen by the present
observer. Inset: Closeup view on the neighbourhood of the
minimum of z. The vertical strokes mark z at the intersection
with the last scattering hypersurface, see the last line of (7.9).

radiation coming from the same direction with frequency
(1+zo)D2LSH/(1+z3) ≈ 1.449×105 times smaller. This
will be in the ultraviolet range.

VIII. PERTURBATIONS OF DOWNRAY 2

Since the numerical calculations involved approxima-
tions, and they proceeded at the borderline of numerical
accuracy, it is useful to investigate the redshift along rays
propagating in proximity of Downray 2. For each ray
described below, the numerical step on approaching the
minimum r and the jump through r = 0 were handled in
the same way as described in Appendix G.

Four sets of rays were considered:
1. Downrays 3 and 4 had the same initial (t, r, ϑ =

ε) and the same initial direction as Downray 2, but the
corrected t at closest approach to r = 0 larger (ray 3)
and smaller (ray 4) than the t′o of (7.7).

In the next three sets, the corrected t at closest ap-
proach to r = 0 was (7.7).

2. Downrays 5 – 7 had the same initial (t, r, ϑ = ε) as
Downray 2, but γ̃N zero, minus that of Downray 2 and
twice that of Downray 2, respectively (γ̃N = 0 means
that the initial direction is parallel to the Y = 0 line).

3. Downrays 8 – 10 had the same initial (t, r) as Down-
ray 2, but ε twice as large, and the same values of γ̃N as
Downrays 5, 6 and 2, respectively.

4. Downrays 11 – 13 had the same initial (t, r) as
Downray 2, but half the value of ε, and the same set of
values of γ̃N as in point 3.

For Downray 3 trial time-intervals τn = 10−n NTU
were added to the t′o of (7.7) to verify the effect. With
n = 18 the effect was invisible, as expected. With
n = 17, 16, . . . , 8 the changes in (t, r, ϑ, 1 + zP ) at the
LSH compared to those of Downray 2 were small and
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qualitatively insignificant. Only at n = 7 a substantial
change occurred. The ray hit the BB at the boundary of
the QSS1 region at earlier t than Downray 2, but the pro-
gram could not detect its intersection with the LSH. The
ray with τ7.2 = 2×10−7 NTU (Downray 3 in the figures)
flew over the BB hump and intersected the LSH in the
Friedmann region, with (r, 1 + zo) ≈ (0.03724, 8.0629).
For Downray 4, the trial intervals added to t′o were

τ̃n = −10−n NTU. Similarly to Downray 3, a noticeable
difference occurred only at n = 6: the ray hit the LSH
well before reaching the edge of the QSS1 region, with
(r, 1 + zP ) ≈ (0.0145, 182.256).
The conclusion is that the value of 1 + z at the LSH

is not sensitive to the values of τn and τ̃n as long as
τ ≤ 10−8 NTU = 980 years, i.e., it is not sensitive to
numerical errors smaller than 10−8 NTU.
Details of the other results are described in Appendix

H. Here is just a short summary:
On rays 5 to 9 and 12, 1+zo was sufficient to move the

whole visible light range into the ultraviolet; see Table
II in Appendix H and Ref. [27] for the numbers. On
Downray 10, the visible range was moved into the near
ultraviolet just adjacent to the visible range. On rays
11 and 13, the visible range was slightly shifted toward
violet (Downray 11) or toward red (Downray 13), but
most of it remained visible.
The final conclusion is that the result calculated in Sec.

VII remains valid for past-directed rays that reach the
neighbourhood of the point PN with directions close to
that of Downray N: on all those rays, the present observer
would see redshift or only weak blueshift (1 + z ≈ 0.91
on Downray 11). A strong blueshift 1 + z ≈ 10−5 would
only be seen on Ray 0 that goes along the symmetry axis
of the QSS1 region.
In fact, this result was to be expected on the basis of

the comments to eq. (3.17), but it is instructive to have
it confirmed by explicit computations.

IX. CONCLUSIONS AND PROSPECTS

The present paper is a continuation and development
of Ref. [3]. In that paper, it was shown that if a light ray
is emitted at the last-scattering hypersurface in an ax-
ially symmetric quasispherical Szekeres region (denoted
QSS1) along the symmetry axis, with the frequency in
the visible range, then it will follow this axis all through
QSS1 and might be blueshifted by so much that the
present observer will see it as a gamma ray. The axial di-
rection is unstable, and rays proceeding in a close neigh-
bourhood of the symmetry axis will be now observed in
the ultraviolet range.
In the present paper, it was investigated what hap-

pens to the maximally blueshifted ray (MBR) if, on its
way between the emission point and the present observer,
it passes through another QSS region (denoted QSS2).
Both QSS regions are matched into a Friedmann back-
ground of negative spatial curvature, and the observer is

in this background.

The QSS metrics and some of their properties were
introduced in Secs. II – IV. In Sec. V, it was shown that
if the MBR passes through QSS2 along a generic path,7

then is deflected by a continuously changing angle via
the cosmic drift effect [10, 12]. Therefore, any observer
can find herself in this ray’s path only at a single instant
of time. At all other times, the rays coming from the
same direction will have lower frequencies (i.e. will be
redshifted or only slightly blueshifted), while the MBR
will miss the observer. The rate of angular drift of the
MBR was calculated in Sec. VI. Using this result, in Sec.
VII it was demonstrated by a numerical calculation that
an MBR that reached a present observer at some instant
will no longer be visible to her after 10 minutes. Instead,
the ray coming from the same direction will be in the
ultraviolet range. Finally, in Sec. VIII (with numerical
details in Appendix H) it was shown that the result of
Sec. VII is not sensitive to perturbations smaller than
10−8 NTU = 980 years of the instant when the rays cross
the origin of the QSS1 region, and smaller than ≈ 3.3×
10−15 rad = 1.89×10−13 ◦ of their direction on exit from
the QSS1 region.

It follows that, in the present model, the gamma-ray
flash is instantaneous. As any model, this one is an ide-
alisation. In reality, mechanisms should exist that will
stretch the instant of observation of the gamma ray to
a short but finite interval. Modelling them may require
using more general metrics and other BB profiles than
those used here. Refs. [1–3] and the present paper pro-
vided a proof of existence of a mechanism that can shift
the range of visible light frequencies to the gamma range,
and that will ensure short-livedness of the high-frequency
flash.

The two QSS regions were assumed axially symmetric
for simplicity. Then the MBR must follow the symmetry
axis in the QSS1 region, so in the numerical calculations
it can be kept on this path, even though this direction
is unstable [2, 3]. But strong blueshifts are generated
also by fully nonsymmetric QSS regions [2]. In the non-
symmetric case, the MBR will be changing its direction
with time in consequence of the cosmic drift within the
source [10, 12], even in the absence of the deflecting re-
gion. This process is a more difficult numerical challenge:
the maximally blueshifted ray must be identified by nu-
merics alone [2].

The model presented here does not solve the problem
of too-long-lasting afterglows. This will be the subject of
a separate paper.

7 Non-generic paths are along the symmetry axis and in the plane
of the Szekeres dipole equator.
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APPENDIX A: CALCULATING δ IN (5.5)

The unit vector tangent to the line (t, ϑ, φ) =
(t1, π/2, constant) in the Friedmann region is, using (3.3):

nα
2 =

(
0,

√
1 + 2E

N
, 0, 0

)
. (A1)

The unit direction vector of a null vector kα is [24]

nα
1 = uα − kα

kρuρ
. (A2)

In our case uα = δα0 . Consequently, at the initial point
of the ray, using (3.15), eq. (A2) becomes

nα
1 =

(
0,

kri
1 + z1

,
kϑi

1 + z1
, 0

)
, (A3)

where z1 is given by (5.2) (account was taken of kφ = 0).
From (3.17) with J0 = 0 we have, again using (3.15)

kri = ±
√
1 + 2Ei

Ni

√
(1 + z1)

2 −
(
Φikϑi
Fi

)2

. (A4)

So, the angle between nα
1 and nα

2 is given by

cos δ = −gαβn
α
1n

β
2 =

√
1−

[
kϑi Φi

Fi (1 + z1)

]2
. (A5)

Since the initial point of Ray 0 is in the Friedmann region,
where F ≡ 1, the above is equivalent to (5.5).

APPENDIX B: PARALLEL TRANSPORT ALONG
uα IN A FRIEDMANN REGION

In a Friedmann region a vector kµ parallel-transported
along uα = δ0

α obeys kt = constant, kiR = constant,
i = 1, 2, 3, i.e., the ratio kϑ/kr stays constant. Then

ktℓt = ktet, (B1)

(kr, kϑ)et =
R(tℓt)

R(tet)
(kr, kϑ)ℓt, (B2)

where ℓt and et denote “at a later time” and “at an earlier
time”, respectively. If kµ is a null vector and we wish to
reset z from zℓt to zet, then (B2) is modified as follows:

(kr, kϑ)et =
R(tℓt)

R(tet)
(kr, kϑ)ℓt ×

1 + zet
1 + zℓt

. (B3)

APPENDIX C: CALCULATING THE ANGLES
FOR (6.1) – (6.5)

The direction of Ray 0 in the (X,Y ) surface at the
future endpoint can be read off from the table of values

of X and Y found by the same program that calculated
the path of the ray. The last two pairs in this table are

(X,Y )1

= (0.38875803859076119,−0.75833536622992936),

(X,Y )2 (C1)

= (0.38875804873013375,−0.75833538643402199).

Hence the final direction of Ray 0 in the (X,Y ) surface
is inclined to the Y = 0 line at the angle β0, where

|tanβ0|
def
=

∣∣∣∣dXdY
∣∣∣∣
rfin

=
X2 −X1

|Y2 − Y1|
= 0.50184745960551459,

=⇒ β0 = 26.64966989421893587◦. (C2)

In the same way we find for Ray 2:

β2 = 28.44458627797032091 (C3)

So, ∆β = β2 − β0 is as given by (6.1).

APPENDIX D: CORRECTING THE DIRECTION
OF BACKRAY 0 IN SEC. VII

The value of µ = kϑ/kr at t = tfin of (5.9), as calcu-
lated by the program that determined Ray 0, was

µ
def
= kϑ/kr = 0.0100796385641537794. (D1)

But when the initial direction of Backray 0 had this µ,
its path at entry to QSS2 visibly differed (at the scale of
the insets in Fig. 3) from that of Ray 0. This had to
be caused by numerical errors because there is no cosmic
drift in the Friedmann region [10]. Consequently, the µ
in (D1) had to be corrected by trial and error. With µ
given in (6.8) the two rays coincide at the edge of QSS2
up to the level of accuracy8 shown in Fig. 16.

APPENDIX E: CALCULATING THE ANGLE γ
IN FIG. 8

Let ϑ be the parameter along the arc SF. The unit
tangent vector to SF at (r, ϑ) = (rb, ϑb) is

nα
SF =

1

R(tb)ℓ

(
0,

dr

dϑ

∣∣∣∣
ϑ=ϑb

, 1, 0

)
, (E1)

where R(tb) is given by (6.15), and dr/dϑ|ϑ=ϑb
is found

by taking (6.9) at (r, ϑ) = (rb, ϑb):

dr

dϑ

∣∣∣∣
r=rb

= −rb cot(ϑb + δ). (E2)

8 See footnote 6 – the irregularity of Backray 0 at the edge of QSS2
is an interpolation by the drawing program.
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FIG. 16: Left panel: Paths of Ray 0 (red) and of corrected
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The normalizing factor ℓ is

ℓ = rb

√
cot2(ϑb + δ)

1− krb2
+ 1. (E3)

The unit direction vector of Backray 0 at the same point
is calculated by analogy to (A3), it is

nα
ray =

(
0,

krb
1 + zb

,
kϑb

1 + zb
, 0

)
, (E4)

where zb is given by (6.14). Consequently, the angle γ
between nα

SF and nα
ray is given by

cos γ =
rbR(tb)

ℓ (1 + zb)

[
−krb cot(ϑb + δ)

1− krb2
+ rbk

ϑ
b

]
. (E5)

The values given in (6.16) were calculated from (E5).

APPENDIX F: CALCULATING (7.3) – (7.5)

In the coordinates of the QSS1 region, the line OL
obeys the equation X ≡ −r cosϑ = constant, so the
unit tangent vector to it, nα

OL, obeys n
r
OL = r tanϑ nϑ

OL,

nt
OL = nφ

OL = 0 and gαβn
α
OLn

β
OL = −1. The angle γN in

Fig. 9 is between the initial direction of Downray 1 and
the unit tangent vector to OL pointing downward, so

nr
OL = − tanϑ

R(t)ℓOL
, nϑ

OL = − 1

rR(t)ℓOL
,

ℓOL =

√
tan2 ϑ

1− kr2
+ 1. (F1)

The unit direction vector of Downray 1 at PN is, similarly
to (A3) and (E4),

nα
N =

(
0,

krN
1 + zN

,
kϑN

1 + zN
, 0

)
. (F2)

At PN , −gαβn
α
OLn

β
N = cos γN = sin γ̃N , so

tan ε

1− kr12
krN + r1k

ϑ
N = − ℓN

RN
(1 + zN ) sin γ̃N , (F3)

where D is given by (7.5) and

ℓN
def
= ℓOL(r1, ε) =

D√
1− kr12

,

tN
def
= t1 +∆tN , RN

def
= R(tN ). (F4)

The vector kα obeys gαβk
αkβ = 0. Since Downray 1

prolongs Backray N, Eq. (3.15) continues to hold along
it. Consequently, at (r, ϑ) = (r1, ε) we have

(1 + zN )
2 − RN

2

1− kr12
(krN )

2 − (r1RN )
2 (

kϑN
)2

= 0. (F5)

Solving the set (F3), (F5) for krN and kϑN we obtain

krN =

√
1− kr12 (1 + zN )

RND
×
(
− tan ε sin γ̃N ±

√
1− kr12 cos γ̃N

)
, (F6)

kϑN =
1 + zN
r1RND

×
(
−
√
1− kr12 sin γ̃N ∓ tan ε cos γ̃N

)
. (F7)

The double sign in (F6) follows from the ambiguity in
the definition of krN : its direction is given only by the
angle it forms with OL, so it can point away from QSS1
or into QSS1. We need to follow the second possibil-
ity, which corresponds to the lower sign and implies
krN < 0. The upper sign would correspond to krN > 0 be-

cause
√
1− kr12 cos γ̃N ≫ tan ε sin γ̃N . This is because√

1− kr12 > 1, cos γ̃N ≈ 1 while sin γ̃N and tan ε are
both tiny in consequence of (7.2) and (6.22).

The situation with the sign of kϑN is less clearcut. The
double sign in (F7) is coupled with that in (F6), and hav-
ing chosen “−” in (F6) we have to choose “+” in (F7) –
but then kϑN might still be positive or negative, depend-
ing on the numerical values of the quantities in it. Since
π/2− γN = γ̃N > ε as seen from (6.22) and (7.2), and ϑ
increases clockwise, the initial direction of Downray 1 is
toward decreasing ϑ, so kϑN < 0 follows. This is qualita-
tively reflected in Fig. 9. The Fortran 90 program,using
(F7), found kϑN = −3.39090742613403823× 10−12.

Equations (7.3) – (7.4) are (F6) – (F7) with the signs
already chosen.

APPENDIX G: NUMERICAL CALCULATIONS
OF DOWNRAYS 1 AND 2

The difference of the t-coordinates of Upray and Down-
ray 1 at the smallest r (≈ 2.23×10−22) is ≈ 5.437×10−6

NTU. Since Downray 1 is supposed to represent the
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ray that reaches the observer 10 min later than Up-
ray, their time-difference at r = 0 should be 10 min
×(1 + z)3 up = 7.19 × 10−2 min = 1.395 × 10−18 NTU,
where (1+z)3 up is the upward 1+z between the origin of
QSS1 and the present observer given by (5.6). So clearly,
the difference found by the Fortran program is unrealis-
tically large. If Downray 1 were continued uncorrected,
it would fly above the BB hump and intersect the LSH in
the Friedmann region with 1+z as given in (7.8); part of
its path is shown in Fig. 11. Formally, this would mean
that the gamma-ray flash is no longer visible on this ray,
but this would not prove the intended point of this paper.
It is known that the high-frequency flash will end if the
observer simply waits long enough, but the time-scale of
this process is too long [1]. What we wish to show here
is that 10 min after the observer saw the gamma flash,
the ray coming from the same direction will be emitted
off the symmetry axis of QSS1 and will have a lower fre-
quency for this reason. Therefore, the t-coordinate along
Downray 1 had to be decreased by hand.

TABLE I: Changes in ∆λ in a vicinity of r = 0.
The initial value was ∆λ = 10−12.
r in the last line is the closest approach to r = 0

At r = ∆λ was multiplied by

0.0149 100

2× 10−6 1/1000

10−10 1/1000

2× 10−13 1/100

2× 10−15 1/100

5× 10−17 1/100

2× 10−19 1/100

≈ 2.23× 10−22 1/1000

Downray 1 runs near to the symmetry axis of QSS1
and is nearly parallel to it. When the ray approaches
r = 0, at a certain step the next r becomes negative.
In an attempt to prevent this, the step ∆λ in the affine
parameter λ was gradually decreased on approaching the
origin. Table I shows the reductions in ∆λ and the values
of r at which they were done. But the jump to r < 0
persisted. So, when the Fortran program reached the
limit of its precision, the jump to r < 0 was interpreted
as the jump from the last (r, ϑ) where r was still positive
to (r, π + ϑ) (see Figs. 17 and 18), and the program
continued from there. (As the ray was receding from the
origin and passed through the values of r from Table I
in a reverse order, ∆λ was multiplied by the reverse of
the factor from the table at each border value of r. In
addition, at r = 0.01 and X > 0, ∆λ was multiplied by
100.) Figures 11 – 14 show the resulting graphs.
In order to locate the intersections of Downray 2 with

the LSH and with the BB with a greater precision, more
modifications of ∆λ were made. It was multiplied by

A

B

r = 0

X = 0

Y

X

FIG. 17: When the ray passes near r = 0, at the point A of
coordinates (rA, ϑA) the numerical program jumps to (rB , ϑB)
with rB < 0. This is interpreted as the jump to point B of
coordinates (r, ϑ) = (−rB , ϑA + π). This graph is a sketch;
for the real situation see Fig. 18.
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FIG. 18: The situation from Fig. 17 in real scale for Downray
2. The segment AB is an interpolation by the plotting pro-
gram. The (X,Y ) coordinates of points A and B are (−2.23×
10−22,−1.073×10−25) and (1.4367×10−21, 1.29×10−24), re-
spectively. The longer vertical stroke marks X = 0.

1/100 at step 114,685,150, and then again by 1/1000 at
step 115,226,000. The LSH and BB were reached in steps
114,698,353 and 115,634,944, respectively, but the last
number is not reliable. Since the ray becomes tangent to
a surface of constant r when approaching the BB, it is dif-
ficult to locate the intersection point – the result strongly
depends on the value of ∆λ. But the exact point where
the ray hits the BB has no physical meaning because the
QSS metric does not apply at times before the LSH.

APPENDIX H: DETAILS FOR SEC. VIII

Table II gives the redshifts/blueshifts on Downrays 5
to 13 between the LSH and the point PN (1 + zP ), and
between the LSH and the present observer (1 + zo).

Figure 19 shows where Downrays 3 to 13 intersect the
LSH; the intersection points are marked with dots. Four
typical examples of the rays are displayed in full. Down-
ray 3 escapes from the QSS1 region and intersects the
LSH in the Friedmann region, beyond Fig. 19. Downray
4 intersects the LSH between r = 0 and the boundary
of the QSS1 region, and hits the BB still inside QSS1.
Downray 7 turns toward Y < 0 near the boundary of the
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TABLE II: Redshift from the LSH on Downrays 5 to 13

ray 1 + zP 1 + zo

5 0.070480436257171 5.91956865287204

6 0.110226238143066 9.25777164112425

7 0.024772171188802 2.08058541944529

8 0.113160537766071 9.50422000309368

9 0.104598722390451 8.7851232352436

10 0.020657768217553 1.73502157013793

11 0.011190786419531 0.939900942842124

12 0.330430215246075 27.7524437702868

13 0.012570655453927 1.05579451437558

QSS1 region, and intersects the LSH near the steep slope
of the BB hump. Downray 12 turns toward Y > 0, and
intersects the LSH near another point of the steep slope
of the BB hump. Downray 13 follows a part of the path
of Downray 7, the other rays follow parts of the path of
Downray 12. They intersect the LSH at various ϑ, but
at r nearly on the boundary of the BB hump.
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FIG. 19: The intersections of Downrays 3 to 13 with the
LSH projected on the (X,Y ) coordinate plane (marked with
large dots). Projections of selected rays are shown in full;
the remaining ones follow parts of the paths of Downray 7 or
Downray 12. Downray 3 intersects the LSH in the Friedmann
region beyond the right margin of the figure.

Figures 20 and 21 show the rays between their initial
points and the neighbourhood of r = 0. In this segment,
they stay within the strip −2 × 10−16 < Y < 6 × 10−16

and pass through r = 0 in ways similar to that shown in
Figs. 17 and 18.

Figures 22 and 23 show the rays between r = 0 and
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FIG. 20: Downrays 3 to 7 in the segment X ∈ (−r1, 0). Near
to r = 0 they all begin to aim at r = 0. The passage through
r = 0 is handled as described in Appendix G. The dotted
horizontal line marks Y = 0.
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FIG. 21: Downrays 8 to 13 in the segment X ∈ (−r1, 0).
Near to r = 0 they behave just as those in Fig. 20. The short
horizontal dash marks the Y coordinate of the point PN .

r = rF given by (2.23). Here they depart from the Y = 0
line much further than in the X < 0 segment: most
stay in the strip −7 × 10−5 < Y < 2 × 10−5, except for
Downray 12 that at the farthest distance from the Y = 0
axis has Y ≈ −1× 10−4. Close to the boundary of QSS1
they bend around and become nearly tangent to surfaces
of constant r. Downray 3 is an exception: it follows the
nearly-constant-r path for a short while, then escapes to
larger r, as seen in Fig. 19. Downray 4 hits the BB at
r distinctly smaller than the rF of (2.23), the remaining
rays hit it at r very close to rF .
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