


1. Motivation 
 
A great body of literature exists on singularities in general relativity (e. g. [1, 2]).  
 

But explicit examples in exact solutions of Einstein’s equations are not many.  
 

The only widely known cosmological singularity is that in the Robertson - Walker 
models [3-5], and it is extremely simple. 

In comoving coordinates, all matter particles 
emerge from the Big Bang simultaneously. 
 

The only physical implication of this singularity is 
high mass-density of matter at early times. 
 

I will show examples of singularities in models less 
symmetric than R-W. 

[1] Tipler, Clarke, Ellis 1980;     [2] J. M. M. Senovilla, 1997;    [3] Robertson 1933;    [4] Walker 1935;    [5] Friedmann 1922, 1924. Detailed data in 
the biblio list at the end 



2. Spherically symmetric inhomogeneous models 
 
The R-W models are derived from Einstein’s equations by assuming spherical 
symmetry and spatial homogeneity. 
 
The simplest generalisations are obtained by dropping one or the other of these 
assumptions. 
 
Dropping the assumption of spherical symmetry one obtains the spatially 
homogeneous Bianchi-type models. 
 
This class is already well-investigated, and still in good hands, so I will not discuss 
it here. 



A different generalisation results when the assumption of homogeneity is dropped, 
while that of spherical symmetry is retained. 
 
The most general spherically symmetric metric is: 
 
d s2 = eC(t, r) dt2 - eA(t, r) dr2 - R2 (t, r) (dθ2 + sin2θ d φ2).                                               (2.1) 
 
Assuming a perfect fluid source in the Einstein equations, the coordinates of (2.1) 
may be made comoving without loss of generality: 
 
uα= e-C/2 δα 

0.                                                                                                                     (2.2) 
 
We will further assume that the source is dust (p = 0). Then C = C(t) and a simple 
transformation of t results in C = 0. 



With (2.1) – (2.2) the Einstein equations become (we allow Λ ≠ 0 for a while): 

d s2 = dt2 - eA(t, r) dr2 - R2 (t, r) (dθ2 + sin2θ d φ2).             (2.1)                                       uα= δα 
0.              (2.2) 

p = 0 



d s2 = dt2 - eA(t, r) dr2 - R2 (t, r) (dθ2 + sin2θ d φ2).                       (2.1) 

3. The Lemaître - Tolman (L-T) model 
 
Equation G1

0 = 0 (see above) can be written as follows: 

One solution of this is R,r ≡ 0. This leads to the model found by V. A. Ruban [6,7] 
which is a generalisation of Kantowski – Sachs. So far it has not been related to any 
observed object. 
 

When R,r ≠ 0, eq. (3.1) leads to 

where E(r) is an arbitrary function.  
 
 
[6] Ruban 1968;    [7] Ruban 1969 

(2.4) 

(3.1) 

(3.2) 



With (3.2), excluding the case R,t = 0 (which leads to the static Einstein model), the  
remaining Einstein equations are equivalent to the following two: 

(3.2) 

(3.4) 

where M(r) is one more arbitrary function, and: 

d s2 = dt2 - eA(t, r) dr2 - R2 (t, r) (dθ2 + sin2θ d φ2).                       (2.1) 

which defines the mass density. The final metric is 

(3.3) 

(3.5) 



The mass density becomes infinite where R = 0 ≠ M,r and where R,r = 0 ≠ M,r. 
 
The first set is the Big Bang. 
 
The second one is the shell-crossing singularity.  
 
On it, the radial geodesic distance from {t0, r0, θ0, φ0} to {t0, r0 + dr, θ0, φ0} becomes 
zero → shells having the r-coordinates r0 and r0 + dr coincide. 

(3.4) d s2 = dt2 - eA(t, r) dr2 - R2 (t, r) (dθ2 + sin2θ d φ2).                       (2.1) 



The Big Bang is inevitable when Λ = 0.  
 
Shell crossings do not exist when M(r), E(r) and tB(r) obey simple differential 
inequalities [8] (dM/dr > 0 and dtB/dr < 0, one more depends on the sign of E). 
 
In most applications of (3.5) one prefers to have no shell crossings.  
 
I will return to them later. 
 
The solution (3.5) was first found and interpreted by Lemaître in 1933 [9], then 
investigated by Tolman in 1934 [10] and Bondi in 1947 [11]. I will call it the Lemaître 
- Tolman (L-T) model. 
 
 
 
 
 
[8] C. Hellaby, K. Lake ,1985. 

(3.5) (3.4) 



When Λ = 0, the solutions of (3.5) can be found explicitly. They have the same 
algebraic form as the Friedmann solutions. For example, when E(r) > 0: 

The tB(r) is a third arbitrary function. 
 
t = tB(r) is the Big Bang → in general it occurs at different t for different r. 
 
This means that in the natural cosmological synchronisation the particles of the 
cosmic medium have different ages at any given t. 

(3.5) 

(3.6) 



The Friedmann models result from (3.5) in the limit 
 

M/r3 = M0,       2E/r2 = - k,                                                                                                 (3.7) 
 

where M0, k and tB  are constant. 

Expansion patterns in the Friedmann (left) and L-
T models (right) 

In the Friedmann models, the expansion 
velocity of each mass shell is propor-
tional to its radius at any fixed time. The 
Big Bang is simultaneous in comoving 
coordinates. 
 
In L-T models, the velocity of expansion 
of each shell is independent of its radius 
(the velocity distribution is an arbitrary 
function of r). The Big Bang is not 
simultaneous. 

A shell crossing occurs when a mass shell of smaller radius expands too fast 
relative to a larger shell. Then, the smaller shell will catch up with the larger one, 
and they will stick together, creating a surface of infinite density. 

(3.5) 



In (3.3) E is seen to play the role of energy of the dust particle per unit mass. 
 
At the same time, E measures the curvature of a 3-space of constant t (call It S3). 
The scalar components of this curvature in an orthonormal tetrad are 
                                                                                                                                
                                                                                                                               (3.8)    
 
 
→ Rijkl = 0 when E = 0 and is constant when E/R2 = const. 

(3.5) 

(3.3) (3.4) 



4. Applications of of the L-T model to cosmology 
 
4.1. Example 1: Explaining away accelerated expansion of the Universe 
 
The hypothesis of accelerated expansion of the Universe arose from observations of 
type Ia supernovae. 
 
Their spatial distribution, inferred from comparing their observed luminosities with 
the calculated absolute luminosities, was inconsistent with the Λ = 0 Friedmann 
models.  
 
Using other Friedmann models, the best fit to observations was when [12]: 
 
spatial curvature index k = 0, 
 
Ωm = 32% of the energy density comes from matter (visible or dark), 
 
ΩΛ = 68% comes from ``dark energy'', a cosmological-constant-like entity. 
 
 
[12] Planck 2013, part XVI 



→ The accelerated expansion is not an observed phenomenon.  
 
It is a model-dependent element of interpretation of observations. 
 
It follows from the assumption that the model must be in the Friedmann class. 
 
The example presented below [13-16] shows how the spurious accelerated 
expansion is reproduced in an L-T model using only tB(r). 
 
This is the simplest method, but not the only one existing. 

[13] Iguchi, Nakamura, Nakao 2002;    [14] Yoo, Kai, Nakao 2008;    [15 and 16] Krasiński 2014. 



Example 
 
The observer sits at r = 0 in an L-T model with E/r2 = const — the same as in 
the Friedmann models, and tB(r) defined via 

(this relation holds in the now-standard ΛCDM model; DA is the angular 
diameter distance to an object with redshift z). 
 
The trick is that H0 = 67.1 km/(s×Mpc), Ωm = 0.32 and ΩΛ = 0.68 are taken 
from observations [12], but 
 

DA (z)= R(t,r(z))|on the past light cone                                                                                                                 (4.2) 
 

is taken from an L-T model. 
 
Equation (4.1) can be numerically solved for tB(r) which is hidden in R(t,r); the 
r(z) relation is [11]: 

(4.1) 

(4.3) 



         The t(r) graph of the L-T past light cone that imitates accelerated expansion 

 
The thin black curve is the past light cone of the ΛCDM model. 
 

X = the instant when the world line of the observed particle intersects the 

observer's past light cone. 

(4.1) 



The L-T Big Bang occurs progressively later when the position of the observer 
is approached. 
 

→ The difference between the Friedmann age and the L-T age of the particle 
at X increases on approaching the observer. 
 

→ The expansion velocity at X is greater in L-T than in a Friedmann model 
with Λ = 0 = k, and the difference is increasing toward the observer. 
 

→ Instead of increasing with time, the expansion velocity decreases with 
distance even when Λ = 0. 
 

→ Had we used an L-T model to interpret the observations, the 
``accelerated expansion'' would not be implied, and there would be no 
need for ``dark energy''. 



4.2. Example 2: Modelling the gamma-ray bursts (GRBs) 
 
In R-W models, a light ray emitted at the Big Bang reaches every observer with 
infinite redshift. 
 

In an L-T model with nonconstant tB(r), a light ray emitted radially from the BB at a 
point where dtB/dr ≠ 0 reaches every observer with infinite blueshift (z = -1). 
 

→ Rays emitted close to the BB can display strong blueshifts to present observers. 
 

Blueshift is accumulated in a short time after the BB. Later-acquired redshift can 
overcompensate it. Whether this happens or not depends on the tB(r) profile. 
 

The CMB rays were emitted at τ ≈ 380 000 years after the BB [17]. 
 

With a suitable tB(r) profile, blueshift along a radial ray emitted at τ will survive the 
journey to the present observer, and z will be sufficiently near to -1 to account for 
the observed GRB energies [18]. 

[17] http://astronomy.swin.edu.au/cosmos/e/epoch+of+recombination;    [18] A. Krasiński 2016 

http://astronomy.swin.edu.au/cosmos/e/epoch+of+recombination


The upper-left arc is a segment of an ellipse-like 4-th degree curve: 
 
 
                                                                                                                                              (4.4) 
 
The lower-right arc is a segment of an ellipse. 
 
The straight segment passes through the point where the full arcs would be tangent 
to each other (it is there to avoid dtB/dr →∞). 
 
The profile has five parameters: A0, A1, B0, B1 and x0.  

This is a model of a single GRB source. 
 

← A spherically symmetric hump is 
matched into a flat Big Bang profile. 
 

The hump consists of two arcs 
connected by a straight line segment.  



The humps drawn in proportion to the age of the Universe and to the radius of the 
past light cone of the central observer 

 
The higher hump models a source of a GRB of the highest observed energy. 
 

The lower one models a source of the lowest observed energy. 
 

It has the height 0.00089 × (the age of the Universe) ≈ 1.23 × 107 years, 
 

and encompasses the mass ≈ 3.1 × 106 masses of our Galaxy 
 

(calculated assuming the ΛCDM model parameters). 



Magnified view on the blueshifted ray in a vicinity of the hump 
 

Followed back in time, z(r) initially increases and has a maximum at the first 
intersection with the ERH (Extremum Redshift Hypersurface). 
 

Further into the past, z(r) decreases (the ray locally acquires blueshift) up to the next 
intersection with the ERH. 
 

The technical problem is to arrange the hump parameters so that the blueshift 
prevails over the redshift generated after the latest crossing of the ERH (z ≈ 103) and 
moves the observed 1 + z  into the range [1.7 × 10-5, 2.5 × 10-8]. 



When local blueshifts are present, redshift fails to be a distance indicator. 
 

The right graph shows z(r) seen by the observer (situated at the green dot) along the 
yellow ray depicted in the left graph. 
 

The redshift first increases to the past, then decreases under the ERH. 
 

The redshift at the red dot is z = 0.598. By the standard formula the source would 
shine 5.9 × 109 years ago [19,20]. 
 

In this model, this source shone 1.37 × 1010 years ago. 
 

The dent in the blue curve appears when the ray crosses the ERH on the other side of 
the center. 
 
[19,20] Wright 2006 



Nonradial rays propagating above the hump toward the same observer (left graph) 
 

Along them, too, z is not monotonic (see right graph for ray 3). 
 

The big dots are where the rays hit the last scattering hypersurface. 
 

The present observer sees all these rays within a 2⁰ cone around the central ray. 
 

This angle may be made still smaller when the model is improved. 
 

The presence of these rays makes the model falsifiable against observations. 



A model of the whole Universe would consist of several L-T humps matched into the 
same Friedmann background. 
 

Models of this type account for [18]: 
 

(1) The observed frequency range of the GRBs, [0.24 × 1019, 1.25 × 1023]  Hz; 
 

      (2) Their limited duration (observed: up to 30 hours);  
 

      (3) The afterglows (observed durations: up to several hundred days);  
 

(4) Their hypothetical collimation into narrow jets; 
 

(5) The large distances to their sources (> 109 ly); 
 

      (6) The multitude of the observed GRBs (observed: a few each day, model says  
             there are up to 10 300 potential sources in the whole sky at present. Whether 
             this is enough or too few is not known). 
 
Properties (2), (3) and (6) are accounted for only qualitatively (the effect is there, but 
the numbers do not agree with observations and the model needs improvements). 



5. How would a shell crossing in an L-T model be seen by observers? 
 
Light rays emitted at the Big Bang in an L-T model are seen by later observers either 
as infinitely redshifted, or as infinitely blueshifted. 
 
Does a shell crossing have any of these properties? 
 
The answer was found as a by-product of investigation of another L-T model [21]. 
 
In this model a shell crossing would come into view of the central observer at ≈ 1000 
× the present age of the Universe to the future from now.  
 
This investigation was done as an exercise in geometry, it is not cosmologically 
realistic. 
 
 
 
 
 
 
[21] Krasiński 2014. 



The configuration of the model 
 
       t = 0 – the present time  
       T = 13.8 × 109 y – the present age of the 
       Universe 
        ShCr – the t(r) profile of the shell crossing 
        singularity 
        ERH – the profile of the extremum redshift 
        hypersurface 
        C1, …., C4 – profiles of light cones at 
        characteristic epochs 

The model extends only up to r ≈ 1.05. 
 

C1 does not intersect the ShCr profile 
 

C2 is tangent to the ShCr profile at the minimum of t(r)|ShCr 
 

C3 intersects the ShCr profile at two points 
 

C4 intersects the ShCr profile at one point 
 

Surprise: the intersection of a ray with the ShCr leaves no trace in the z(r) curve. 



On curves C2 – C4, z(r) has a maximum, then decreases up to the edge of the model.  
 
Nothing special happens with z(r) at the intersections of the rays with the ShCr: the 
z(r) curves are smooth and have no extrema there. 
 
→ A shell-crossing would not be noticeable for an observer via z(r). 
 
In a neighbourhood of a shell crossing, z(r) becomes nonmonotonic, and so fails to be 
a distance indicator, just like near a nonconstant tB. 

Along profiles that pass 
below the ERH (like C0) 
dz/dr > 0 all the way. 
 
On C1, which intersects 
the ERH twice, z(r) has 
a maximum and a min-
imum – see inset. 



6. Expression of hope 
 
Astronomers do not take the L-T models seriously, and do not welcome  blueshifts. 
 
In several papers blueshifts were argued to cause assorted disasters that disqualify 
these models. 
 
My aim was to show that L-T models have interesting geometries, and that 
blueshifts imply interesting bits of optics. 
 
History of science teaches us that if a well-tested theory predicts a phenomenon, 
then the prediction has to be taken seriously and verified experimentally. 
 
Perhaps this will happen with the results reported here (but will it during our 
lifetime?). 
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Appendix: 8. The quasi-spherical Szekeres models 
 
The quasi-spherical Szekeres solutions [22] have the metric 

[22] P. Szekeres (1975). 



The source in the Einstein equations is dust. 
 
A general Szekeres metric has no symmetry. The surfaces of constant t and r are 
nonconcentric spheres, x and y are stereographic coordinates on the spheres. 
 
The L-T model is contained here as the limit of constant (P, Q, S) – then the spheres 
become concentric. 
 
The Friedmann limit follows when, in addition, φ(t,r) = rR(t),  2E = - kr2 where k = 
const is the Friedmann curvature index and tB is constant. 



A comparison of the expansion patterns in the R-W models (left) and in the quasi-
spherical Szekeres models (right). 



9. Blueshifts in quasi-spherical Szekeres models 
 
In L-T models, blueshifts may appear only on radial rays. 
 
But when the spacetime has no symmetry, no radial directions exist. Can blueshifts 
appear in the Szekeres models? 
 
When a quasi-spherical Szekeres model is axially symmetric, infinite blueshifts can 
possibly appear only on such rays that intersect every space of constant t on the 
symmetry axis [23]; call them axial rays (this is an exact result). 
 
Numerical calculations confirm that strong blueshifts indeed appear on axial rays 
emitted at a nonconstant BB [23]. 
 
In a nonsymmetric Szekeres model, numerical calculations show that two opposite 
directions exist, along which strong blueshifts are generated [23]. 
 
 
 
 
[23] A. Krasiński, arXiv:1604.02003 



The polar graphs of selected rays (left) and the redshift profiles along them (right) 
in an axially symmetric quasi-spherical Szekeres model 

 
The coordinates of the graph at left are X1 = r cos φ and X2 = r sin φ. 
 
The line X2 = 0 is the projection of the axial rays.  
 
Minimum z becomes near to -1 when the direction of the ray approaches axial; on 
the axial rays 1b and VIII, 1 + z < 10-5. 
 
Nonaxial rays hit the BB being tangent to r = constant surfaces, with z → ∞ (the 
same happens in L-T with nonradial rays). 



The polar graphs of exemplary rays (left and center) and the redshift profiles along 
them (right) in a nonsymmetric quasi-spherical Szekeres model 

 
The graphs show similar patterns to those in the axially symmetric case. 
 
There clearly exist preferred null curves in a general Szekeres model, but their 
interpretation is unknown. 
 
They do not coincide with the two principal null directions of the Weyl tensor [23] 
(the Szekeres metrics are of type D). 


