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Abstract In this article we present a model of formation of a galaxy with a black
hole in the center. It is based on the Lemaitre—Tolman solution and is a refinement of an
earlier model. The most important improvement is the choice of the interior geometry
of the black hole allowing for the formation of Gyrs old black holes. Other refinements
are the use of an arbitrary Friedmann model as the background (unperturbed) initial
state and the adaptation of the model to an arbitrary density profile of the galaxy. Our
main interest was the M87 galaxy (NGC 4486), which hosts a supermassive black hole
of mass 3.2 x 10? M. It is shown that for this particular galaxy, within the framework
of our model and for the initial state being a perturbation of the ACDM model, the
age of the black hole can be up to 12.7 Gyrs. The dependence of the model on the
chosen parameters at the time of last scattering was also studied. The maximal age of
the black hole as a function of the €2, and €2, parameters for the M87 galaxy can be
3.717 or 12.708 Gyr.

Keywords Black holes - Inhomogeneous cosmology - Galaxies

1 Introduction

Recent years brought increasing evidence that large galaxies host massive black
holes at their centers. The best evidence was obtained for the Milky Way, due to the
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proximity of the galactic center located at the distance Ry = 8.33 + 0.35kpc. Analy-
sis of orbits of the S-stars cluster near the galactic core, especially the S2 star, allowed
to conclude that a mass of 4.31 & 0.36 x 10°M¢, is responsible for the apparent
movement of the stars [1-4]. Such mass enclosed in a small volume, of radius less
than 0.01 pc, can only be a black hole. The existence of black holes at the centers of
galaxies calls for construction of models describing their creation and growth. This
work presents improvements to one of such models [5].

It is thought that the currently existing structures in the Universe (like galaxies,
clusters of galaxies and voids) evolved out of small inhomogeneities that are observed
as directional variations (AT /T =~ 1073) of the temperature of the cosmic micro-
wave background (CMB) radiation. The generation of these inhomogeneities is a
problem only when one insists on using models of the Universe that are born spa-
tially homogeneous. In an inhomogeneous model, such as the Lemaitre—Tolman (LT)
model used here, the Universe emerges from the Big Bang being already inhomo-
geneous. The inhomogeneities are generated within the Big Bang and their ampli-
tudes are arbitrary parameters that can be adapted to observational constraints. (But
it must be stressed that the LT model, in which the matter is assumed to be dust,
cannot be applied to epochs earlier than last scattering. A still more general inhomo-
geneous model that includes pressure gradients must be used for the pre-last-scattering
epoch.) It has already been proven in an earlier paper [5], using an LT model, that with
a suitable choice of the velocity profile at last scattering, an object can be created
that has the same density profile at present as the M87 galaxy, and contains a black
hole around the center that has the same mass as the black hole in M87. (For an
exposition of the method used in Ref. [5] see Refs. [6,7] and [8]) The black hole
is created because matter around the center expands more slowly than farther away,
what leads, at a certain moment, to the creation of the apparent horizon surrounding
a trapped region, and soon after to the creation of a Big Crunch singularity at the
center.

In Ref. [5] two particular configurations of the LT model were considered. In one,
the black hole formed around a pre-existing wormhole within a fraction of a second
after the Big Bang. In the other, there was no wormhole or black hole initially, and
it formed during the evolution of the proto-galaxy. The first configuration is some-
what exotic and we will not pursue it here. The problem with the second config-
uration was that the implied age of the black hole was only 4 x 108 years, what
is inconsistent with astrophysical implications [9-11]. The reason for the implied
definite age was that the LT model used there contained too few free parame-
ters.

This paper is an improvement over Ref. [5]. The method of constructing the model
is the same as before. We define a certain density or velocity profile at last scattering,
taking care that the amplitude remains within the limits implied by the measurements
of the temperature distribution of the CMB radiation. We define another density profile
at the present time that agrees with the observationally determined density profile of the
MS87 galaxy [12] and contains a black hole at the center, of mass 3.2 4+ 0.9 x 10° Mg,
equal to the mass of the black hole observed in M87 [13]. The improvement consists
in the LT model having more free parameters. Thanks to this, the age of the black
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hole is no longer determined and can be up to ~12.7 Gyr, in agreement with what
astrophysics tells us [9-11]. !

Our model has certain weaknesses, of which we are aware, but, just as was stated in
Ref. [5], we treat it as an exploratory step into a new territory: we intend to test a new
method that we hope will be improved in the future. The deficiencies to be removed
in the future are the following:

1. No real galaxy is spherically symmetric. The model can be said to apply approxi-
mately to elliptic galaxies (M87 is one), but spherical symmetry leads to the next
problem listed below.

2. Real galaxies rotate. In a spherically symmetric model rotation is necessarily zero.
The presence of rotation influences the time scale of evolution, for example, by
slowing down the collapse it may significantly delay the formation of the black
hole. However, no exact solutions of Einstein’s equations are known that would
describe matter that is expanding and rotating at the same time. All known expand-
ing solutions have zero rotation, all known rotating solutions are either stationary
or unrealistic for other reasons (for more on this see Ref. [8]). So if one wishes
to have an evolving configuration that can be described by the exact formalism of
general relativity, not much is left beyond spherically symmetric models.

3. As was stated in Ref. [5], the perturbation that would evolve into a single gal-
axy would have the diameter of approx. 0.004° in the CMB sky. The current best
angular resolution of measurements of the temperature fluctuations of the CMB
radiation is 0.2° [14,15]. Consequently, the amplitude of fluctuation at this large
angular scale does not give us information that we need to constrain our model.
Lacking any better possibility, just as in the earlier paper [5], we took care that the
amplitudes of our initial density and velocity profiles do not exceed the limits set
at 0.2°.

The remarks above show that our toy model cannot be literally taken as the actual
model of an existing galaxy. However, it avoids a few other deficiencies that could be
contemplated:

1. Once the black hole is formed in an LT model, where pressure is zero and all
motions are radial, it keeps accreting matter until it swallows up the whole mass
contained in the region where E < 0. This happens in a finite time, which is arbi-
trarily long in the neighbourhood of E = 0. However, if the function E (M) has
such a profile that at a certain M = My E(Mgy) = 0 and E(M) > 0 for M > M,,
then the mass from the region M > M, is not accreted onto the galaxy. Thus,
M, which is independent of time, can be interpreted as the mass of the galaxy.
This is outside the region considered in our paper. The geometrical radius of the
M = M, surface will be expanding as dictated by the E = 0 evolution equation
of the LT model. For the surface of a galaxy? of radius 32kpc & 10?! m and mass

1 We do not wish to enter any discussion of the method by which the age of the black hole in M87 is
inferred. We only wish to demonstrate that, whatever that inference is, our model can be made consistent
with it.

2 Data for the M87 galaxy taken from [16], values of the constants ¢ and G from http://www.physics.nist.
gov/cuu/Constants/index.html, and the relations between distance units from http://www.asknumbers.com/
LengthConversion.aspx. All values rounded off.
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2.4x102 Mg = 4.8 x 10*? kg, if it were to evolve by the E = 0 Lemaitre—Tolman
equation R,;> = 2M/R, the current velocity of expansion would be approx.
800km/s ~ 8.2 x 10~*pc/year, and constantly decreasing because A = 0. This
is negligible compared to the error in determining the edge of a galaxy.

2. Eachreal galaxy is surrounded by vacuum. The cosmological model takes over at a
considerably larger scale. If one wants to illustrate this situation in a toy model like
ours, it is enough to match our LT galaxy model to the Schwarzschild spacetime
at a certain mass M = My, and then to match the Schwarzschild region on the
outside to another LT or Friedmann region modelling the Universe. Both match-
ings would take place outside the region we consider and would have no influence
on what happens inside the galaxy. An explicit example of such matchings is given
in Ref. [17].

The structure of this paper is as follows. Section 2 presents the basic properties
of the Lemaitre—Tolman model. Section 3 briefly outlines the method introduced in
Refs. [6,7] and emphasises the key elements of the model. In Sect. 4 we describe
the improvements to the basic model: the more general forms of the free functions
in the LT model and the more general (and more realistic) density profile of the gal-
axy at the present time. This section also gives the necessary equations for the use
of an arbitrary FLRW model as the background at the initial instant (in Ref. [5] the
background was assumed to be spatially flat). Section 5 presents the results of appli-
cation of the model to the M87 galaxy. Evolution from spatially homogeneous initial
profiles of velocity and density to a galaxy with a black hole is described. A spa-
tially homogeneous (flat) density profile is obviously within the observational limits
on density perturbations, but may lead to the following problem. After the LT model is
uniquely determined by the initial and final density profiles, the initial velocity profile
that caused the condensation can be calculated from the model and may turn out to
have a too large amplitude. The same may happen with the initial velocity profile
being flat—the calculated amplitude of the initial density profile may turn out to be
too large. Graphs shown in Sect. 5 prove that this did not happen; all implied profiles
are consistent with the observational constraints. Section 5 also shows how the age
of the black hole and the arbitrary functions in the LT model change with the initial
FLRW model. The last section contains summary and conclusions.

2 The Lemaitre-Tolman model: basic properties

The Lemaitre-Tolman model is a spherically symmetric nonstatic solution of the
Einstein equations with a dust source [18-20]. Its metric is

R5}"2

ds? =dr? — —L
1+2E(r)

dr? — R2(t, r)(d6? + sin® 0dg?), M

where E (r) is an arbitrary function arising as an integration constant from the Einstein
equations, R(t, r) is a function satisfying

2 M 1 2
R =2E +2— + AR, 2)
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where A is the cosmological constant and M () is another arbitrary function. Equa-
tion (2), called the evolution equation, is a first integral of the Einstein equations,
R(t,r) is called the areal radius and R,; is referred to as the velocity. The matter
density p(t, r) is

8n G 2M,,

& PTRR,

3

When A = 0, Eq. (2) has three families of solutions depending on the sign of E(r).
They are as follows:
E < 0—elliptic evolution

M
R(t,r) = —_2E(1 —cosn),

(4)
inn= 22" ey
—sinn = —————(t — tp(r)),
n n Vi B
E = 0—parabolic evolution
9 1/3
R(t,r) = <§M(t —rB<r))2) : )
E > 0—hyperbolic evolution
R(t,r) = M( hn—1)
)= S coshn ,
. QE)’
sinhn —n = — —(t = t5(r)). (6)

where 7 is a parameter and 7 (r) is one more arbitrary integration function called the
bang time. The formulas given above are covariant under arbitrary coordinate trans-
formations of the form r’ = g(r), which allows for r to be chosen freely, what in
turn means that one of the three functions E(r), tg(r) and M (r) can be fixed at our
convenience by the appropriate choice of g.

From the form of the solution in the elliptic case, Eqgs. (4), we can deduce that
R(z, r) reaches a maximum for each r and then decreases to zero. The values of n
for which R(¢, r) vanishes are n = 0, corresponding to the Big Bang, and n = 2x
corresponding to the Big Crunch at r = #¢

2n M

tc(r)y =tp(r) + m

(N

The function #¢ (r) is called the crunch time function.
The Friedman-Lemaitre—Robertson—Walker (FLRW) models arise from the LT
models in the limit
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1
tg =const, E = —Ekrz, M = Mor?, (3)

where k and M are constants.

2.1 Shell crossings

It is important to avoid shell crossings, that is loci of R, = 0 and M,, # 0, where
a constant r shell collides with its neighbour (as a consequence of g, = 0). Shell
crossings are curvature singularities and cause the density to diverge (p — 00) and
change sign to become negative. Such an undesirable behavior can be avoided if the
shapes of the three arbitrary functions defining the LT model are chosen appropriately.
The general conditions for avoidance of shell crossings are given in [21,22].

2.2 M(r) as radial coordinate

It is convenient to use M (r) as the radial coordinate, that is v’ = M (r). It is possible
because M (r) will be a strictly growing function, M,, > 0, in the whole region under
consideration. Then we have R = R(t, M), p = p(¢t, M) and Eq. (3) becomes

g6 2 6 ©
A PTRR Yy T (R
from which we find
3 T d
R(t, M) — R} = —/—E, (10)
4JTM p(&)

where p is the density profile of the galaxy as a function of M, R; and M; are constants
to be determined later (see Sect. 4.3). Hereafter we use M as the radial coordinate.

3 A galaxy with a central black hole in the LT model

An LT model is generally specified by defining the shapes of the arbitrary functions
E(M) and tg(M), what then allows for the reconstruction of the evolution of the
model by using Eqs. (4)-(6). However, it is possible to follow a different path, that
is to calculate these functions for specific density or velocity profiles at any two time
instants, as described in [6] and [7]. Moreover, there are no limitations on those pro-
files (except the obvious one of spherical symmetry). The class of the LT evolution
applying to each M value can generally be different, however for the creation of a
black hole an LT model must necessarily be recollapsing in the region near the center
of symmetry M = 0.
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The main idea of the model constructed in [5] is that a spherically symmetric
galaxy with a central black hole can be created from accretion of matter onto an initial
fluctuation at recombination. This is the most probable scenario of structure formation
in our Universe [23-28]. Accretion in the model is achieved by a slower expansion
near the center, and a faster one further away. We will now briefly describe the main
properties of the previously developed model.

3.1 The basic framework of the model

The basic framework of the model was discussed in [5]. The model allows for the
formation of a galaxy with a central black hole by accretion of background mat-
ter onto an initial fluctuation of density or velocity distribution at the time of last
scattering of the CMB. The background is assumed to be Friedmannian (see Sect. 4.3).
The input data provided for the model are the profiles of the velocity or the den-
sity at last scattering and the current density distribution in the galaxy. In [5] the
model was used to create a black hole from a flat (Friedmannian) velocity distri-
bution at last scattering. In this case, the fluctuation was due to the corresponding
non-flat density profile. The existence of a black hole at the center of a galaxy is
assumed on observational grounds. The mass of the black hole is an input parameter
and likewise must be taken from observations. The observational density profile of
the galaxy was approximated by a simple function, which allowed for exact calcula-
tions.
The construction of the model consisted of the following steps:

1. Determining the functions £ (M) and 5 (M) in the part outside the black hole, that
is for the mass range M > Mpy, where Mgy is the observationally determined
mass of the black hole in the galaxy,

2. Smooth joining of the functions E(M) and tg(M) in the parts inside and outside
the black hole i.e. at the boundary M = Mpgy. The part inside the black hole is
arbitrary and was assumed to be a simple £ < 0 recollapsing model defined by a
choice of the bang and crunch time functions,

3. Evolution reconstruction—using the full £ (M) and t5 (M) functions the evolution
of R(t, M) and p(t, M) was reconstructed using Eqgs. (4)—(6).

In the model the time of the black hole formation is (fapH+)min When the
future apparent horizon first appears. However, in this model the crunch time func-
tion and the future apparent horizon almost coincide, so the instant of the cre-
ation of the black hole is very close to #¢(0) (see Fig. 4 and [5] for details).
The first application of the model was to the M87 galaxy which hosts a super-
massive black hole of mass 3.2 x 10°Mg [13], with density profile being an
approximation of Fabricant et al. [12]. In the first parametrization of the black
hole’s interior geometry the value of (fap+)min Was high, leading to a black
hole of the age of a few hundred million years, which is in disagreement with
other estimations of supermassive black hole’s age based on the ACDM model
[9-11].
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4 Development of the model

The model allows for modifications which can lead to more realistic predictions. Par-
ticular attention was paid to arrive at such bang and crunch time functions that would
give the black hole’s age of the order of Gyr.

4.1 The black hole interior

The first modification concentrates on the functions ¢tz (M) and t¢ (M) that define the
black hole’s interior, for which, for fundamental reasons, no observational data exist.
Therefore, we are free to choose any parametrization and the only condition is to join it
smoothly to the galaxy model. In the most probable scenarios of black hole creation, it
is formed by a collapse of a massive object. We used exponential and hyperbolic func-
tions to parameterize the interior functions #3(M) and ¢ (M), see Table 1. The chosen
forms of the functions have 8 parameters: by, by, b3, b4 for tp(M) and c1, ¢3, ¢3, ca
for tc(M).

A smooth match of the interior and exterior requires the continuity of the functions
E(M) and tp (M) and their derivatives at the boundary M = Mpy (the Darmois/Lich-
nerowicz junction conditions), this is also a sufficient condition [29]. Therefore, the
following system of equations has to be solved for the parameters b; of tp(M) and c;
oftc(M),i =1,...,4:

tg(MgH, b1, by, b3, by) = [t p=prpyy»

dtp drp
— (MBu, b1,b2,b3,b4) = | — )
dM( BH, P1, D2, 03 4) |:dM:|M=MBH
E(Mgw, b1, b2, b3, ba, (11)
c1, C2, C3, C4) = [E]M:MBH’
E Myt br. ba. b3, b
dM BH, 91, 02, U3, U4,
) |:dE:|
C1,C2,C3,C4) = | —— )
AM |y pgy

Table 1 Parametrizations of the interior bang and crunch time functions

Name t(M) Di
exp p1+ p2exp(p3M + pg) p1 ~ t(MBpH)
pa ~ 10°
hyp p1+ pacosh (p3M + py) p3 ~ 10?
pa ~ 102

The table shows the bang and crunch time functions inside the black hole. The third column gives a general
order of magnitude of the value of each parameter. (M) means that the value of the parameter is of the
order of the value of the bang or crunch time function at M = Mpy. For t5(M) the parameters p; are
denoted b;, and for tc (M) by ¢;
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where the expressions on the left hand side are the analytical functions depending
on the chosen parametrization and the expressions on the right hand side are the
numerically found values of t5(M) and E(M) for M = Mgy, using the method
described in [5]. The analytical expression for E(M) is based on Eq. (7). However,
the assumed bang and crunch time functions have eight unknown parameters, whereas
from (11) only four parameters can be determined. Therefore, the values of the other
four parameters have to be supplied. To accomplish that we choose any two parame-
ters for tp(M) and any two parameters for tc (M), and set their values using random
numbers. The difficulty here (from the numerical point of view) is to determine the
order of magnitude of the parameters, but this can be achieved by examination of the
type of parameterized equation (see column 3 of Table 1). The system of Eqgs. (11)
has to be solved numerically. The usage of random numbers does not have any impact
on the analysis as the multidimensional minimalization methods, employed further
for finding extreme LT models take the random values only as the starting values for
subsequent optimalization.

4.2 The density profile of the galaxy

A galaxy in the constructed model is described by a density profile and the mass of
the black hole. However, the quantity used in the numerical calculations is the areal
radius R(ty, M) corresponding to that (spherically symmetric) density profile, where
to is the present age of the Universe. The equation used for finding its value is (10),
with p being a function of M. Therefore, the general r coordinate representing the
distance from the center of symmetry must be replaced by the mass M of the sphere
of radius r. In [5] the relation r = r (M) was found analytically, using an analytically
convenient approximation to the observational density profile of the galaxy. However,
we would like to apply the model to any galaxy with known density profile which
is suspected of hosting a black hole of known mass. In such a general situation, gal-
axies are described by density profiles which do not allow for analytical calculation
of the relation r = r(M). Therefore, we must resort to numerical calculations and

take p(M) def p(r(M)), where r(M) is the inverse function to M (r) and is found
numerically.

In order to find the areal radius R(ty, M), the constants M; and R; of Eq. (10)
have to be appropriately chosen. We may put R; = 0, thus assuming R(#, M;) = O.
Further we specify M; to be M s—the mass already swallowed by the singularity. On
a spacetime diagram in the coordinates (M, t) that mass is represented by the value of
M, for which the line r = #(, representing the present moment, intersects the crunch
time function, that is 7o = tc(My) (see Fig. 4). Therefore Eq. (10) becomes

M

3 _ i/i
R’ (to, M) = i @ (12)
Ms

The value of Mg can be calculated using the properties of the apparent horizon (see
[5,8]). Only for p (M) given in a fairly simple form analytical calculations are possible.
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Here, we do not find the value of Mg and make use of the properties of the apparent
horizon.
The apparent horizon consists of the events for which

R(Mgn) = 2MgH, (13)

where Mpy is the mass of the black hole [8,30]. We also have Mg < Mgy, that is
the mass swallowed up by the singularity must necessarily be smaller than the mass
of the black hole. Therefore we have

M,

3 Pas 3 T ae
R3,M=—/— —/—. 14
M=) o m ) r@ (19
Mg Mgy

The first term, from the definition of the apparent horizon, is equal to (2Mpy)> and the
equation for calculating the value of areal radius for the galaxy under consideration
becomes

y 1/3
3 de
R(to, M) = | @Mgn)* —/— 15
(to, M) (2Mpn) +4n G (15)
Mpu

The advantage of this equation is that it can be applied to any galaxy with known
density profile and known mass of the black hole.

4.3 The parameters at the recombination
In [5] the parameters at the time of last scattering where chosen to match those of
the k = 0 FLRW model. In this work we will use general FLRW models with k 7~ 0

and with nonvanishing cosmological constant. The areal radius R(#, M) and the scale
factor S(¢) of the FLRW model are connected by

R, M)=r(M)S(), (16)

with M as the radial coordinate. Using the limiting conditions for the FLRW model
arising from the LT model, i.e. Eq. (8), we have

R(t, M) = My P M35 (), (17)

where the constant M determines the particular FLRW model. The value of this con-
stant can be found by comparison of the solutions of the LT model (Egs. (4)—(6)) with
the solutions of the FLRW model [8], obtaining
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Mo = 5 —mp(1)S7(1), (18)
3¢
where p(¢) is the (homogeneous) density. By taking the values of p(#) and S(¢) at the
present moment ¢ = fg, that is

3H;
p(10) = Qum perit = Qn —~, Sto) =1, (19)
8n G

where €2, is the density parameter of matter (with equation of state p = 0), pcrit
is the critical density with the current estimate of the Hubble constant Hy = 71 £
2.5 km s~ Mpc’l, based on the latest WMARP results [14], we get the value for
My as

1 2
Mo = 5% . (20)

The value of the scale factor S(¢) at the time of recombination (last scattering of
CMB) is found from

Sty) 1
I+ Zrec - 1+Zrec’

S(trec) = 21

where zpec = 1088.2 4+ 1.2 is the redshift of CMB from the WMAP results. The
derivative of the scale factor is determined by the Friedmann equation

S..\> 8xG k
2y T, — — A, 22
(S) 3 =gt (22)

with the constant k given by
k = HES?(t0)(Qm + Q24 — 1) = H3 (R0 — 1), (23)

where Q2o = (3/81G)(A/perit) and Qo = 2, + Q4.

We would like to find the dependence of our model on the €2, and 25 parameters
of the FLRW model used to determine the functions at the time of last scattering. In
order to do that we need to know the age of the Universe and the recombination time
for FLRW models with different €2,,, and €25. From the Friedmann equation, using
the normalization S(fy) = 1, the age of the Universe 7y is determined by

1
fo = H—l/ d§
") Ve~ @+ 2 — D+ OaE

(24)

The instant of last scattering of CMB, used as one of the input parameters for the
model, is dependent on the matter content of the Universe. This instant is defined
by such density of the radiation that the energy of the photon becomes smaller than
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Fig. 1 a The time of last scattering of CMB in the FLRW model as a function of €2 for different values
of Q. For the ACDM model with WMAP 7-year results the instant of last scattering is at trec = 494 kyr,
which is marked with a cross in the plot. b The age of the Universe for the same set of 25 and ¢ values.
The cross at thow = 13.727 Gyr indicates the age of the Universe for the ACDM model with WMAP
7-year results. ca = R/Ml/3 andd b = R,; /Ml/3 at the time of last scattering of CMB in the FLRW
model for the same set of 2 and Q¢ values. For the ACDM model with WMAP 7-year results a equals
1.649 x 10° m~1/3 while b is equal to 3.483 x 1073 m~1/3

the ionization energy of the hydrogen atom. As the radiation and matter have differ-
ent equations of state, the instant of last scattering is different for different density
parameters. The time of last scattering of CMB can be found from an equation similar
to Eq. (24), but with the upper limit in the integral replaced by S(fec), taken from
Eq. (21). Figure 1 shows the age of the Universe and the instant of recombination
as a function of 2, for different values of €2y. This figure also shows the depen-
dence of the two functions used as input data for the model a(M) = R(M)/M 173 and
b(M) = R,; (M)/M'/3 at the recombination on the value of €25 for the same set of
Qo values. The two parameters are constant within a FLRW model and their values
for the ACDM model, in units described in Sect. 4.4 and with WMAP 7-year results,
area = 1.649 x 10°m~!/% and b = 3.483 x 1073 m~1/3,

4.4 The units

Throughout this article we have used the geometric units where both ¢ and G are equal
to unity. In order to avoid large numerical values we used 10'! M, as the unit of mass.
This value corresponds roughly to the mass of the M87 galaxy.
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Fig. 2 a Comparison of M87 density profiles. All curves start at M = Mgy, which for Fabricant et al. is
equal to 0.03 m, and 0.032 m for both Wu, Tremaine profiles. The profile used in our calculation is “Wu,
Tremaine isotropic’. Both axes are in geometric units. b The distance—mass relation for the M87 galaxy with
the “Wu, Tremaine isotropic’ density profile. The mass equal to the mass of the black hole is enclosed within
the radius rgy = 25538.6 m. ¢ R(M) and d a(M) functions for the chosen density profile of Eq. (25). The
dotted vertical line represents the black hole’s surface at Mgy = 0.032 m

5 Application of the model to the M87 galaxy

We have tested the constructed model on the M87 (NGC 4486) galaxy, which hosts a
supermassive black hole of mass 3.2 x 10° M, and is about 16 Mpc away from the
Earth [13]. The galaxy is mainly known for its highly relativistic jet, but we are only
interested in its density profile and the mass of the supermassive black hole in the
center.

5.1 The M87 input parameters

In [5] the authors used the approximated profile of Fabricant et al. [12], with the
mass of the black hole Mgy = 0.03 m. As was described in Sect. 4.2, we no longer
have to use any approximation to the density profile and generally we could use
the original, not approximated profile, and the value of Mgy for our numerical cal-
culations. However, in recent years the standard value of Mpy and the shape of
the density profile for M87 have changed (see Fig. 2a). We will use the updated
values.
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The M87 galaxy is a radio source, and has been the subject of many measurements
based on different methods. In this work we used the ‘isotropic’ profile of Wu, Tre-
maine [16] based on globular clusters data, given by

p(r) = po (1) , (25)
ro

with the values of the parameters: ro = 19kpc, pp = 1.9x 10’ Mg kpc 3 and o = 1.8.
The mass of the black hole is assumed to be 3.2 x 10° M. The ‘anisotropic’ profile
based on the same data, but modified method, differs only in the value of «, which for
this profile is equal to 1.6. The three density profiles are plotted in Fig. 2. Note the
change in the magnitude of the density values.

The quantities used in our calculations that describe the M87 galaxy, besides My,
are the distance—mass relation (M), the areal radius R (fg, M) and a(M) = R/M /3.
The distance—mass relation is found numerically by integration of the density profile
and the areal radius R(#yp, M) is found using Eq. (15). The three functions are plotted
in Figs. 2b—d.

5.2 The scheme of the method

The general scheme of our method is as follows. Firstly, for the given velocity or
density profile at the last scattering and the M87 density profile (together with the
assumed Mpp), the functions E(M) and tp(M) (and also the resulting tc(M)) are
found in the part outside the black hole, that is for M > Mppy. Secondly, for the
chosen type of black hole interior, that is the bang and crunch time functions for
M < Mgy described by the equations in Table 1, random four parameters of those
equations are chosen and their values are set using uniformly distributed random num-
bers in the appropriate range, depending on the parameter. Then, the values of the other
four parameters are found by numerically solving the Egs. (11). This is done using
multidimensional root finding method based on the Hybrid Method. In this way an LT
model model near M = 0 is found (necessarily recollapsing), which will serve as the
starting point for further actions. With some density profiles (at # = now and at last
scattering) it may turn out that the model is not recollapsing at present. This step is
necessary to make sure that this does not happen.

As stated before, for galaxies that host supermassive black holes, such as M87, we
are mainly interested in finding such an LT model that would yield a black hole of
the age of Gyr. Therefore the age of the black hole is the parameter to be optimized.
Optimization is done using the Simplex algorithm of Nelder and Mead for minimiza-
tion of multidimensional functions [31] by again choosing arbitrary four parameters
of bang and crunch time functions in the interior of the black hole (found in the
previous step) and finding such values of those parameters that would give a black
hole of maximal age. For each run we have also found the LT model of minimal age
of the black hole, just as a comparison to the maximal one. After this we have per-
formed the reconstruction of evolution together with the calculation of other valuable
data.
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5.3 The ACDM model of initial fluctuation

The current concordance cosmological model is the homogeneous ACDM model with
Hy =71 +25kms! Mpc_l, Q= 0.266 and 25 = 0.734, based on the latest
WMAP results [14]. In our calculation we used the parameters of this model, described
by the equations in Sect. 4.3, for the initial state. The constructed model of a galaxy
with a black hole takes as the input data for the initial fluctuation at last scattering the
profiles of either velocity R,; (M), or density p(M). Firstly we will present the results
of optimization of black hole’s age for the M87 galaxy evolving from the velocity
profile coinciding with that of the ACDM model.

5.3.1 The velocity profile

The quantity that is used in our calculations for this evolution type is b =
R,; (M)/M1/3. In an FLRW model it depends only on time, and for €2, =
0.266, 2 = 0.734 its value at recombination is equal to 3.483 x 1073 m~1/3. The
homogeneity of the chosen velocity profile does not prevent the creation of a galaxy as
the corresponding profile of density at last scattering, shown in Fig. 3a, is nonuniform,
and an initial fluctuation appears and can gain mass through accretion.

Figures 3b,c and d show the main results of optimization of the age of black hole
for the evolution from flat velocity profile at recombination. The bang and crunch time
functions were parameterized by the hyperbolic functions of Table 1. The black hole
of maximal age is formed at 6.458 x 10'0 m, what means that the age of such a black
hole is 12.719 Gyr. The corresponding values for the minimal age are 8.5197 x 10! m
and 0.428 Gyr. The last number is roughly equal to the value obtained in [5]. Other
parameters of the model are summarized in Table 2.

As we can see in Fig. 3d the value of the crunch time function at Mpy is extremely
close to #p. However, in the model the crunch time is equal to 79 not for Mpy, but
for Mg, the mass swallowed by the singularity, which is necessarily smaller than the

Table 2 The parameters of the

black hole’s bang and crunch Quantity Min Max
tlrpg functions fori the models of BH age (Gyr) 0.428388 12.719398
minimal and maximal age of the 0
black hole (fAH+4)min (1077 m) 85.197 6.458
by (109) 1.156 1.160
by 374.749 —8.460 x 1070
b3 —0.432 64.205
by 0.629 10.819
The parameters labeled as b; . 11
describe the bang time function, 1 (1075 4.121 8.855
¢; describe the crunch time e 3.628 x 10! —3.858 x 10719
function. The initial conditions P 3.163 —153.308
correspond to those of Fig. 3 e 0.641 70.526

@ Springer



96 P. Jacewicz, A. Krasinski

1.0092196 - T T T T T T T T 116006 T .
a 116008
max
116004 fs - min —-eeeee L
1.0092194 | 3 Te00s .
116002 116004 -
1.0092192 — 116000|- 116003
E 1isoce |
S 10092190 - ~ 115998 Tre01 |-
g = jisoes| .
= 1.0092188 [ il 0
(=Y 115994 [
a
1.0092186 - 115992 -
1.0002184 - _ T1ees0r
= 11598
1.0092182 < 1k
£ 090000
1.009218q - . . < 0.99998
i 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
M [m] M [m]
d 87965
Cc 87960
87955 [ mex ——
87950 | oMy~
80000
7.0000
60000
— 5.0000
S —
(= g 40000
= = 30000
= =)
E E —, 20000
<
m - =
O 09000
+~ 0.8000
07000
06000
0.5000
Zo
2 osf
< oef
Foaf
E : : : : : : : : : Dok n . .
0 Mg 01 02 03 04 05 06 07 08 09 1 -0 0.001 0.01 Mgy 01 1
M [m] M [m]

Fig.3 aThe ratio of the density at the recombination prec (M) corresponding to the homogeneous velocity
profile of the standard ACDM model to the ACDM density in the same model. The nonuniformness of this
profile is responsible for the creation of a galaxy with a central black hole. b—¢ The main panel on both plots
shows the 1 (M) and E (M) functions for the maximal and minimal age of the black hole. The maximal age
is 12.719 Gyr, the minimal one is 0.428 Gyr. The functions are calculated for an evolution from a homoge-
neous velocity profile at recombination consistent with the ACDM model with Q,, = 0.266, 2 = 0.734.
The bang and crunch time functions inside the black hole are parameterized by the hyperbolic function of
Table 1. For M > Mgy the functions are identical, and dependent only on the input profiles. The difference
is inside the black hole (M < Mpy) and is exhibited in the inset. The ratio of the two functions is plotted in
the bottom panel. d The main panel shows the 7~ (M) function for the LT model of maximal and minimal
age of the black hole. The optimization parameters are the same as described in (b) and (¢). Note the loga-
rithmic scale for the x axis. The y axis is logarithmic up to the value of 7¢c (M) = 8.7945 x 101 m ~ 10,
above that value the scale is linear. This is done in order to make the plot readable, as there is a significant
difference in the black hole’s creation time, that is the value of 14+ at the minimum, which for the maximal
model is equal to 6.458 x 1019 m. The ratio of the two functions is plotted in the bottom panel. The dotted
vertical line in all plots represents the boundary of the black hole at Mgy = 0.032m

mass of the black hole. On the other hand Mgy is that value for which the future
apparent horizon crosses the present time. Figure 4 shows this situation in an illus-
trative way, with the bang and crunch time functions chosen so as to make the plot
readable.

Such behaviour is a consequence of the very small difference between the future
apparent horizon and the crunch time function, which causes Mg and Mgy to almost
coincide. The value of Mg cannot be found analytically for a general observational
density profile of the galaxy. In our calculations we have used the method described
in Sect. 4.2 that does not require the knowledge of the value of M.

The maximal age of the black hole obtained here is in good agreement with the
estimates based on other models. Figure 5a shows the time and radial dependence of
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Fig. 4 Evolution leading to a black hole in the £ < 0 LT model. This a copy of Fig. 1 from [5], where the
bang and crunch time functions were chosen so as to make the plot readable and illustrative. Intersections of
the line = now with the lines representing the Big Crunch and the future apparent horizon AH+ determine
the masses Mg and Mgy, respectively. AH— stands for past apparent horizon and ths for time, when the
future apparent horizon first appears

the areal radius R (¢, M). As follows from the negative value of E, the whole region of
spacetime under consideration is recollapsing by now. The flat part of the graph, for
which # > (fAH+)min, 1S the region of spacetime where the singularity already exists.

In Fig. 5b the constant M slices of R(t, M) for characteristic M values are shown.
The first nonvanishing M = const slice is for a small M, chosen arbitrarily to be
10730, The whole region under consideration is recollapsing by now, but only the
region M < Mpy is within the black hole. Characteristic = const slices are plotted
in Fig. 5c. The upper plot shows the + = const curve for the instant of recombination,
the middle one shows the curves for the time of the creation of the black hole and for
the time it was half its present age, the bottom one shows the curve for the present
moment. All the curves for ¢ values ranging from the recombination time f.¢ to the
moment of the black hole creation (faAx+ )min Start at the point M = 0, R = 0. All the
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Fig. 5 a The function R(¢, M) for the evolution from a flat velocity profile at recombination. The M axis
is in logarithmic units in order to enhance the region near the center of symmetry. Note the inscribed crunch
time function in the R = 0 plane—the crunch time function borders the black hole’s interior. b Character-
istic M = const slices of the areal radius. Only those slices for which M < Mpy reach the black hole. The
M = 1 slice, corresponding to the region furthermost from the center of symmetry, is recollapsing, but not
yet in the final singularity. The M = Mpy slice also does not reach the black hole—its value at t = 1 is
2MBH-. ‘trec’ stands for the time of recombination. ¢ Characteristic # = const slices of the areal radius. The
upper plot shows the curve for the instant of recombination, the middle one shows the curves for the time
of the creation of the black hole and for the time when it was half its present age, the bottom one shows
the curve for the present moment. The curves for times after the creation of the black hole do not start at
M = 0 as the black hole is already created

curves for larger ¢ values start at M # 0, R = 0, because of the formation and growth
of the black hole.

5.3.2 The interior parametrization of the black hole

All the results presented so far were found for the bang and crunch time functions of
the black hole interior given by the hyperbolic function of Table 1. However, the calcu-
lations can be performed for an arbitrary type of the interior of the black hole. Figure 6
presents the comparison between the hyperbolic and the exponential parametrization.
The bang and crunch time functions are very similar, their ratio differs from unity by
anumber of the order of 10~ for the bang and 1073 for the crunch time function. The
maximal age of the black hole is almost the same for the two types of parametrization.
Therefore in the following we have chosen only the hyperbolic parametrization of the
interior of the black hole functions.
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Fig. 6 The difference between the hyperbolic and exponential parametrizations of the black hole interior.
The plots show the ratio of the bang (a) and the crunch (b) time functions subtracted from unity in order
to make the values readable. The difference between the functions can be neglected. The shape of the bang
time curve for M > Mgy is due to numerical errors, as this M range corresponds to the exterior of the
black hole where the type of parametrization of the interior does not affect the values of the functions

5.3.3 The density profile

An initial fluctuation at recombination can also be defined by a density profile, that is
the function pec(M). The quantity that is used here in calculations is a = R/M 173,
where the areal radius at recombination is found using the modified Eq. (15), without
the first term in square brackets and setting the lower limit of the integral to zero. As in
the evolution from a given velocity profile at last scattering, we set the density profile
to the one corresponding to the ACDM model with €2, = 0.266 and 2, = 0.734.
Then the density profile is flat and the value of a is equal to 1.649 x 10° m~!/3,

The corresponding profile of velocity R,; (M) is presented in Fig. 7a. This profile
exhibits nonuniformness enabling the creation of a black hole. However, the nature
of the fluctuation is different than in the case of a flat velocity profile and its corre-
sponding density profile in Fig. 3a. In the model the density at the center increases
by accretion of background matter, which is achieved by a lower expansion rate near
the center and a higher rate further away. The difference in expansion rates is the
underlying reason of accretion and creation of the black hole. Therefore, any velocity
profile at last scattering that could lead to the creation of a galaxy with a black hole
must necessarily be monotonically increasing as a function of M. Such a behaviour
can be seen in Fig. 7a.

The results of our calculations for the evolution form a flat density profile coin-
ciding with the ACDM profile are presented in Figs. 7b—d. The E(M) functions are
similar in both cases and the whole M range is recollapsing which is necessary for
the creation of a black hole. The main difference compared to the previous evolu-
tion type is in the bang time function #p (M) which is increasing. This means that
the conditions of avoidance of shell crossings are not fulfilled and a shell crossing is
imminent. However, due to the values of 7p(M) it will occur after the present time
and not in the range of application of the model. Figure 8a shows the points where the
shell crossings appear. We can see that for the points near the black hole they appear
after the present moment. The non-occurrence of shell crossings in the area covered
by the model can also be seen in Fig. 8b where there are no points (besides the black
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Fig. 7 a The ratio of the velocity at last scattering corresponding to a flat density profile, to the ACDM
velocity. A monotonic increase of this function enables the creation of a galaxy with a black hole. b The
bang time function for the evolution from the flat density profile for the maximal and minimal age of the
black hole models. The main panel shows the functions for the whole M range, the inset shows the functions
near the center of symmetry at M = 0 and the bottom one shows the ratio of the maximal model to the
minimal. Note the difference from the bang time function for the evolution from flat velocity profile in
Fig. 3b. This function being increasing indicates that there is a shell crossing in the model, but it appears
outside the range of the application of the model. ¢ The corresponding E (M) function in the same range
as for the velocity evolution in Fig. 3c. The difference between this and the flat velocity evolution is very
small. d In the main panel: the crunch time function for the maximal an minimal black hole models. The
age of the black hole for the maximal model is 12.719 Gyr, and 0.429 Gyr for the minimal one, the same
values (within numerical errors) as for the evolution from a flat velocity profile. Note the logarithmic x axis

hole interior) where R, ;s = 0. The small difference in the LT model functions means
that the ages of black holes in both evolution scenarios are the same, within numerical
errors. Other parameters of the bang and crunch time functions are shown in Table 3.

5.4 The parameters at recombination

The results presented so far were obtained for flat velocity and flat density profiles at
recombination consistent with the ACDM model with €2,,, = 0.266 and 2, = 0.734.
However, the specific initial FLRW model should not play a key role in the creation of
Gyrs old black holes. Therefore, we have performed calculations of the maximal age of
the black hole for two types of evolution for initial models with different parameters.
We set the Hubble parameter value at Hy = 71 km s~! Mpc~! and the redshift of the
CMB at zec = 1090, based on WMPA 7-year results, and carried out the calculations
for varying €2, and Q2 values.
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Table 3 The parameters of the

bang and crunch time functions Quantity Min Max
of the interior of the black hole
BH 429112 12.71
for the LT models of minimal age (Gyn) 10 0429 719378
and maximal age of the black (fAH-)min (1077 m) 8.5195 6.4583
hole for evolution from a flat by 104 —2.890 —20911
density profile coinciding with 6
the standard ACDM model by —94.851 214110
b3 —0.432 64.205
by 0.629 10.819
11
As before, the parameters cp 1075 4119 8.855
labeled as b; describe the bang ~ ¢2 3.630 x 101! —3.858 x 10719
time function, ¢; describe the 3 3.163 —153.308
crunch time function s 0.641 70.526

5.4.1 The age of the black hole

In Fig. 9 the dependence of the maximal age of the black hole on the matter density
parameter €2, for three constant values of ¢ equal to 0.5, 1.0 and 1.5, is shown.
For both evolution types we can clearly see the two constant values of the maximal
age of the black hole equal to 3.717 and 12.708 Gyr. For ¢ = 0.5 only the first
value is obtained. The shapes of the curves for the same value of Q¢ and differ-
ent evolution types are very similar. The differences are caused by numerical errors
and are remnants of the method of choosing initial conditions for the optimization
method involving random numbers. These differences are presented in the insets in
the 29 = 1.5 plots.

5.4.2 The LT functions

Figure 10 shows the E(M) and ¢¢ (M) functions for the same three values of ¢ as in
Fig. 9 for the evolution form flat velocity at recombination. For the E (M) function all
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Fig. 9 The maximal age of the black hole for three different values of 2( for a flat initial velocity profile
(left) and a flat initial density profile (right) as a function of 2;,. The interior of the black hole is parameter-
ized using hyperbolic functions. The two constant values of the maximal age of the black hole are clearly
visible. In the Q¢ = 0.5 case, for the whole range of €2, values, only 3.717 Gyrs old black holes are
formed. For the other two values of €2( also 12.708 Gyrs old black holes are created. In the ¢ = 1.0 plots
the cross indicates the ACDM model. The insets in the 2 = 1.5 plots show the small changes of the age
values, caused by numerical approximations and the usage of random numbers for initial conditions

the curves are similar, without any hints of the two values of the age of black holes.
The plots for the crunch time function reveal the existence of the two values, as for all
values of €2¢g we can indicate the two distinctive families of curves. Because of the fact
that the crunch time function and the future apparent horizon 4y almost coincide
in all the cases and taking into account that the value of the future apparent horizon
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Fig. 10 The plot shows the E(M) (left) and t- (M) (right) functions for the same three values of Q as in
Fig. 9. All the plots of E (M) are similar and do not reveal the existence of the two values of the age of the
black hole. The crunch time functions show this fact by the occurrence of the two distinctive families of
curves. The curves starting at lower values correspond to the higher value of the maximal age of the black
hole. Note the logarithmic scale on the x axis. The ‘flatness’ of the curves for M > Mpy is a consequence
of the logarithmic x axis—in reality the curves are not flat, but change very slowly compared to the part
inside the black hole

at its minimum is the creation time of the black hole, we can say that the crunch time
curves starting at lower values correspond to the higher value of the maximal age of
the black hole. The reason why all the crunch time curves corresponding to one value
of the age of the black hole, e.g. 12.708 Gyr, do not start at the same point is that with
varying €2, the age of the Universe changes.
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6 Summary and conclusions

We have demonstrated that within the inhomogeneous LT model a perturbation of the
velocity or density profile at recombination can evolve into a spherically symmetric
galaxy-like object with a black hole at the center of the age of Gyr. This work is a
refinement to the model presented in [5], which allows for such an early creation of
black holes, together with the usage of an arbitrary density profile describing the pres-
ent day galaxy and an arbitrary FLRW model as the background matter reservoir. The
evolution of such a perturbation leading to the present mass distribution of a galaxy
progresses without any shell crossing singularities. In the model, the mass at the center
increases in consequence of different expansion rates in the central region and farther
away. The crucial point for the time of the black hole creation is the interior geometry
of the black hole, that is the bang time function ¢5 and the crunch time function t¢c (M)
in the region M < Mpy. By an adequate adjustment of those arbitrary functions, we
were able to find an LT model yielding the desired age of Gyrs. It was found that the
maximal age of the black hole as a function of the density parameters €2, and Q2
takes a constant value irrespective of the ¢ value.

The main target for the model was the proper simulation of the black hole at the
center of M87 galaxy. This supermassive black hole is one of the biggest supermassive
black holes found. We have used a new density profile describing the mass distribu-
tion in this galaxy together with an updated value of the mass of the black hole based
on [13]. This required a slight improvement of the basic model allowing to use any
density profile, not only the one for which analytical calculations are possible. We
have successfully obtained an LT model characterizing the evolution leading to this
galaxy together with the black hole created about 12.7 Gyrs ago. This number was
independent of the type of the initial perturbation (velocity or density) seeding the
galaxy formation. By changing the parameters of the initial FLRW model we found
that the maximal age of the black hole for this particular galaxy can take only two
values: 3.717 and 12.708. A set of thorough runs for three values of ¢ equal to
0.5, 1.0 and 1.5, determining the three families of FLRW universes: open, flat and
closed respectively, showed that the LT model functions behave properly in all cases.

However, as found by Gebhardt and Thomas [32], the mass of the black hole in
M87 canbe even 6.4 &+ 0.5 x 10° M, that is twice the mass used in our calculations.
This can affect the results presented here and we plan to perform the simulations with
this new value of Mgy in near future.

The main disadvantage of the LT model in simulating the evolution and creation of
galaxies is the absence of rotation. Rotation is a key factor in galaxy formation, as it
slows down the collapse and produces accretion disks around black holes. Due to this
it plays a much bigger role in the later stages of evolution, when the collapse of the
central body has started.
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