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ABSTRACT

Context. Lemaître-Tolman (L-T) toy models with a central observer have been used to study the effect of large scale inhomogeneities
on the SN Ia dimming. Claims that a giant void is mandatory to explain away dark energy in this framework are currently dominating.
Aims. Our aim is to show that L-T models exist that reproduce a few features of the ΛCDM model, but do not contain the giant cosmic
void.
Methods. We propose to use two sets of data – the angular diameter distance together with the redshift-space mass-density and
the angular diameter distance together with the expansion rate – both defined on the past null cone as functions of the redshift.
We assume that these functions are of the same form as in the ΛCDM model. Using the Mustapha–Hellaby–Ellis algorithm, we
numerically transform these initial data into the usual two L-T arbitrary functions and solve the evolution equation to calculate the
mass distribution in spacetime.
Results. For both models, we find that the current density profile does not exhibit a giant void, but rather a giant hump. However, this
hump is not directly observable, since it is in a spacelike relation to a present observer.
Conclusions. The alleged existence of the giant void was a consequence of the L-T models used earlier because their generality was
limited a priori by needless simplifying assumptions, like, for example, the bang-time function being constant. Instead, one can feed
any mass distribution or expansion rate history on the past light cone as initial data to the L-T evolution equation. When a fully general
L-T metric is used, the giant void is not implied.
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1. The historical background of the problem

In the framework of the homogeneous and isotropic standard
cosmological model, the dimming of the type Ia supernovae as
compared to their expected luminosity in an Einstein-de Sitter
model is interpreted as a consequence of an assumed acceler-
ated expansion of the Universe. This leads to the widespread
belief in a “dark energy” component currently dominating the
energy budget of our Universe. But this is not the only possible
explanation of the SN Ia observations.

Shortly after the discovery by Riess et al. (1998) and
Perlmutter et al. (1999) of the supernova dimming, it was pro-
posed by several authors that this effect could be due to the large-
scale inhomogeneities (Pascual-Sánchez 1999; Célérier 2000;
Tomita 2000, 2001a,b). After a period of relative disaffection,
this proposal experienced a renewed interest about five years
ago.

Three methods have been used to implement such a pro-
posal: computation of backreaction terms in the dynamical equa-
tions using an averaging procedure proposed by Buchert (2000,
2001), calculations in the framework of a perturbative scheme
and the use of exact inhomogeneous models, in particular those
of Lemaître (1933) – Tolman (1934) (L-T) (see Célérier 2007,
for a review).

The L-T model became rapidly popular for the purpose of
mimicking “dark energy” because it exhibits three interesting

features: i) it is one of the few exact solutions of General
Relativity able to represent a physically consistent model of the
matter dominated era of the Universe; ii) among these few, it is
the most easily tractable from a computational point of view; iii)
it is not an alternative to, but a generalisation of the Friedmann
dust models (which are contained in it as a subcase), so can re-
produce all the Friedmann-based results, including those of the
“concordance” ΛCDM model, with an arbitrary precision. For
more on this, in relation to the main subject of this paper, see the
last section.

Three classes of models have been constructed with the L-T
solution: i) models where the observer is located at the centre
of a single L-T universe (e.g., Iguchi et al. 2002; Alnes et al.
2006; Apostolopoulos et al. 2006; Bolejko 2008; Garcia-Bellido
& Haugbølle 2008a, 2009); ii) models where the observer is lo-
cated off the centre of such a universe (e.g., Schneider & Célérier
1999; Apostolopoulos et al. 2006; Alnes & Amarzguioui 2007)1;
iii) Swiss-cheese models where the holes are L-T bubbles
carved out of a Friedmannian homogeneous background (e.g.,
Brouzakis et al. 2007, 2008; Biswas & Notari 2008; Marra et al.
2007).

1 However, these authors have shown that the CMB data put very strin-
gent limits on the distance of the observer from the centre of the model
or/and on the amplitude of the inhomogeneities in an off-centre observer
model.
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As will be recalled in Sect. 2, an L-T model is defined by two
independent arbitrary functions of the radial coordinate, which
can be fitted to the observational data. However, in most of the
models currently available in the literature, the authors have arti-
ficially limited the generality by giving the L-T initial-data func-
tions a handpicked algebraic form (depending on the authors’
feelings about which kind of model would best represent our
Universe), with only a few constant parameters being left arbi-
trary – to be adapted to the observations.

Another way in which the generality of the L-T models
was artificially limited was the assumption that the age of the
Universe is everywhere the same, i.e. that the L-T bang-time
function tB is constant. With tB being constant, the only single-
patch L-T model that fits observations is one with a giant void
(Iguchi et al. 2002; Yoo et al. 2008). Conceptually there is noth-
ing wrong with a non-simultaneous big bang (even though this is
a radical qualitative difference with the FLRW models), but one
should exercise caution when referring to (t−tB) as the actual age
of the Universe. The L-T model is too simple to extend it up to
instants earlier than decoupling. Therefore tB should merely be
regarded as a function that describes a degree of inhomogeneity
of the initial conditions rather than as the actual instant of birth
of the Universe.

The argument brought in defense of the constant tB assump-
tion is this: a non-constant tB generates decreasing modes of per-
turbation of the metric (Silk 1977; Plebański & Krasiński 2006),
so any substantial inhomogeneity at the present time stemming
from tB,r � 0 would imply “huge” perturbations of homogeneity
at the last scattering. This, in turn, would contradict the CMB
observations and the implications of inflationary models (we de-
liberately do not give references here, to avoid blaming any sin-
gle individual for what seems to be a piece of conventional wis-
dom). However, these are only expectations that should not be
treated as objective truth until they are verified by calculations.
Such calculations have already been done, and it turned out that
the inhomogeneities in tB needed to explain the formation of
galaxy clusters and voids are of the order of a few hundred years
(Bolejko et al. 2005; Krasiński & Hellaby 2004; Bolejko 2009).
Then, on the basis of Bolejko’s (2009) models 4 and 5, one can
calculate that for a structure of present radius 30 Mpc this age
difference between the oldest and youngest region would gener-
ate CMB temperature fluctuations equal to ΔT/T = 3.44 × 10−6

and ΔT/T = −2.35 × 10−6, respectively. This is well-hidden
in the observational errors at the present level of precision. (In
the future, when, presumably, the precision will improve, these
results may possibly be used to measure the gradient of tB.) So
there is no observational justification to the assumption tB = con-
stant.

These are the reasons why, in the recent years, we have seen
the increase in popularity of void models, where the observer is
located at or near the centre of a large, huge, giant L-T void of
size of up to a few Gpc. Many authors have constructed classes
of L-T models with a central local void and have shown that
they were able to fit the SN Ia and other cosmological data pro-
vided the void is large (e.g., it has a diameter of 400 h−1 Mpc
in Alexander et al. 2009) or even huge (e.g., 1.35 Gpc in Alnes
et al. 2006, >2 Gpc in Garcia-Bellido & Haugbølle 2008a and
2009), depending on the features of the particular model they
had chosen. This contributed to the spreading of the belief in
the necessity of a “giant local void” to resolve the “cosmologi-
cal constant problem” with L-T models. However, as shown by
Mustapha et al. (1998) and used as an illustration for the ap-
plication to the supernova data and the “cosmological constant
problem” by Célérier (2000), a given set of isotropic data can

constrain only one of the two free functions of an L-T model
and therefore, after fitting the supernova data with a given L-T
solution, we are left with plenty of room to accommodate more
observations.

Actually, a few authors discarded the central void hypothesis
and proposed models with no such void (e.g., Iguchi et al. 2002).
Enqvist & Mattsson (2007) even showed that the fitting of the
SN Ia data can be better with L-T models where the density dis-
tribution is constant on a constant-time hypersurface than with
the ΛCDM model (see also Bolejko 2008; Bolejko & Wyithe
2009). Even though such a density distribution is not what is ac-
tually observed at very large scales by astronomers (it is not even
observable, being in a spacelike relation to the central observer),
the ρ(t0, r) = const. configuration vividly illustrates how mis-
leading the FLRW-based geometrical intuitions can be. A spa-
tial distribution of matter can radically change with time in con-
sequence of an inhomogeneous expansion distribution in space.
Our models will provide more examples of this phenomenon,
and we will come back to this point in the conclusion.

Our aim here is to show, using two explicit examples repro-
ducing the observational features of the ΛCDM model, that a
giant void is not at all a necessary implication of using L-T
models. We propose to use input functions that can be derived
from observations2. Our L-T toy models will be constrained by
the angular diameter distance together with the redshift-space
mass-density or the angular diameter distance together with the
expansion rate.

It should be noted that these functions have not the same
form in the ΛCDM model and in giant-void L-T models. For
example, let us consider the giant void model from Bolejko &
Wyithe (2009) with radius of 2.96 Gpc and density contrast of
4.05. The redshift-space mass-density for this model and for the
ΛCDM model are shown in Fig. 1. As seen, at z ≈ 1 the differ-
ence between these two models is more than a factor of 2. Also,
the expansion rate as a function of redshift behaves differently
(for details and constraints coming from H(z) see Bolejko &
Wyithe 2009). Thus giant void models have difficulties to mimic
all the observational features of the dark energy model (Zibin
et al. 2008; Clifton et al. 2009).

In this paper, we show that if the observational data are prop-
erly fitted to these ΛCDM functions, then a giant void is not
mandatory to explain them. In fact the L-T models that mimic
our choice of observational features of the ΛCDM model have
a central Gpc-scale overdensity rather than an underdensity. We
emphasise that what we reproduce in our L-T model are not the
actual observational relations, but the parameters of the ΛCDM
model fitted to the observations – which is not the same thing.

Note that this model is not designed to reproduce all the
available cosmological data, nor is it to be considered as the final
model of our Universe. Its purpose is to exemplify the proper use
of L-T models and to show what can come out of it. Moreover,
it should be understood as tentative beyond the redshift range in
which the ΛCDM functions we use are robustly established.

2 One should be aware that there is a great deal of phenomenology in-
volved in interpreting the observations. For example, with supernovae,
the cosmological model predicts DL, while what is actually observed
is the flux. We can deduce the absolute luminosity only on the basis
of some empirical methods. Similarly with galaxy number counts – the
cosmological model predicts m(z)n(z) where m(z) is an average mass
per source and n(z) is number counts. The whole information about the
galaxy evolution and their mergers is encoded in m(z) – however in
galaxy redshift surveys we observe only n(z). In this paper we do not
focus on the problem of observations and assume DL and mn as in the
ΛCDM.
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Fig. 1. The redshift-space mass-density in the ΛCDM model and in a
giant void L-T model (with radius of 2.96 Gpc and density contrast
of 4.05). At the redshift around 1 one should observe twice as many
objects as in the ΛCDM model.

As is usual in the study of L-T models, we choose to use
a comoving and synchronous coordinate system for the major-
ity of this work. Such a coordinate system is uniquely defined
by the flow lines of the fluid and allows the line-element to be
written in a simple form. However, it is of course the case that
quantities such as energy density profiles on space-like volumes
are sensitive to the choice of hypersurface on which they are
recorded. To illustrate this dependence, and the effect of consid-
ering other foliations, we also present our final results on a set of
hypersurfaces in which each fluid element is the same distance
from the initial singularity along the world-lines of the dust par-
ticles. Such a choice allows us to consider the energy density of
different regions when they are at the same age, and becomes
a comoving and synchronous coordinate system in the constant
bang time models where giant voids have often been inferred.

In Sect. 2 we recall briefly the main properties of the L-T so-
lution and give the equations to be integrated on the light cone. In
Sects. 3.1 and 3.2 we describe both models and give the results
of our numerical calculations. Section 4 is devoted to a discus-
sion and a summary of our conclusions.

2. The Lemaître-Tolman solution

The L-T model is one of two classes of spherically symmetric
solutions3 of Einstein’s equations where the gravitational source
is dust. In comoving and synchronous coordinates, its line ele-
ment reads

ds2 = c2dt2 − R,r2

1 + 2E(r)
dr2 − R2(t, r)(dϑ2 + sin2 ϑ dϕ2), (1)

where E(r) is an arbitrary function and R,r = ∂R/∂r. With a
vanishing cosmological constant, which is the case we con-
sider here, R(t, r) obeys the following first integral of one of the
Einstein equations:

1
c2

R,t
2 = 2E +

2M
R
, (2)

where R,t = ∂R/∂t and M = M(r) is another arbitrary function of
integration. M(r) is the gravitational mass contained within the

3 For the presentation of the other class see Plebański & Krasiński
(2006). It is called there the Datt-Ruban solution (Ruban 1968, 1969).
It has interesting geometrical and physical properties, but so far has
found no astrophysical application.

comoving spherical shell at any given r, while E(r) is the energy
per unit mass of the particles on that shell. Moreover, E deter-
mines the space curvature at each r-value. The mass density in
energy units follows from the other nontrivial Einstein equation
and is

κρc2 =
2M,r
R2R,r

, where κ =
8πG
c4
· (3)

The solutions of (2) can be written as

R(t, r) =
M(r)
χ(r)

φ(t, r), c (t − tB(r)) =
M(r)

(χ(r))3/2
ξ(t, r), (4)

where

1. when E < 0 (elliptic evolution):

χ(r) = −2E(r), (5)

φ = 1 − cos η,

ξ = η − sin η,

2. when E = 0 (parabolic evolution):

χ(r) = 1, (6)

φ = η2/2,

ξ = η3/6,

3. and when E > 0 (hyperbolic evolution):

χ(r) = 2E(r), (7)

φ = cosh η − 1,

ξ = sinh η − η,
where η is a parameter (dependent on t and r). The tB(r) is an-
other arbitrary function that appears as an integration “constant”
and is interpreted as the bang time, i.e., the Big Bang is not si-
multaneous for all values of the r coordinate.

Since all the formulae given so far are covariant under co-
ordinate transformations of the form r̃ = g(r), one of the func-
tions E(r), M(r) and tB(r) can be fixed at will by the choice of g.
Therefore, once this choice is done, a given L-T model is fully
determined by two of these arbitrary functions.

However, as shown by Mustapha et al. (1998), and used as an
illustration for application to the supernova data and the “cosmo-
logical constant problem” by Célérier (2000), a set of isotropic
data corresponding to a given observable can constrain only one
of the two free functions, and therefore the fitting of the super-
nova data, i.e. of the function DL(z), with a given L-T solution,
still leaves the other function free – and available for fitting to
another set of data. Thus, we must also assume another set of
initial conditions, e.g. the redshift-space mass-density m(z)n(z)
or the expansion rate H(z). We will take these functions to be
identical to the corresponding functions in the ΛCDM model,
assuming they reflect the observational data. By this, we want
to show that there is no antagonism between the inhomogeneous
cosmology and the ΛCDM model, and that the first can predict
the same results as the second even ifΛ = 0. However, whenever
possible we present the real data to show that there is still much
room within observational errors for different profiles.

Using the reciprocity theorem (Etherington 1933; Ellis 1971)
the luminosity distance can be converted to the angular diameter
distance

DA = R =
DL

(1 + z)2
· (8)
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For a ray issued from a radiating source and proceeding towards
the central observer on a radial null geodesic the following equa-
tion holds

c dt(r)
dr

= − R,r (t(r), r)√
1 + 2E(r)

, (9)

and the equation for the redshift reads (Bondi 1947; Plebański &
Krasiński 2006):

1
1 + z(r)

dz(r)
dr
=

1
c

R,tr (t(r), r)√
1 + 2E(r)

· (10)

For later reference we will need also the following equation,
which follows easily from (9) and (10):

1
1 + z(t)

dz(t)
dt
= −R,tr (t, r(t))

R,r (t, r(t))
· (11)

3. The L-T model with no central void

Our aim is now to show we can design an L-T model with no
central void able to reproduce the angular diameter distance-
redshift relation as inferred from the SN Ia data, smoothed out
as in the framework of a ΛCDM model. For this purpose, we
propose to use the following additional conditions to specify the
arbitrary functions M(r), E(r) and tB(r).

3.1. The model defined by DA(z) and m(z) n(z)

3.1.1. The MHE procedure

The algorithm used to find the L-T model reproducing the DA(z)
and n(z) data was first developed by Mustapha et al. (1997). Let
us recall its major steps and equations.

The radial coordinate r is chosen so that, on the past light
cone of (t, r) = (t0, 0),

R̂,r√
1 + 2E

= 1. (12)

(Note: this choice of r is possible only on a single light cone. In
the following, we always refer to the light cone of (t, r) = (t0, 0).)
This choice of coordinates simplifies the null geodesic equation:

ĉt(r) = ct0 − r, (13)

where we denote quantities on this null cone by a hat.
Furthermore, (3) now becomes

(κc2/2)̂ρR̂2 =
M,r√

1 + 2E
· (14)

The total derivative of the areal radius R gives

dR̂
dr
= R̂,r + R̂,t

d̂t
dr
· (15)

Using (2), (12) and (13), the above equation can be written as

dR̂
dr
− √1 + 2E = −1

c
R̂,t = ∓

√
2M

R̂
+ 2E . (16)

This can be solved for E(r):

1 + 2E =

⎧⎪⎪⎨⎪⎪⎩1
2

⎡⎢⎢⎢⎢⎢⎢⎣⎛⎜⎜⎜⎜⎝dR̂
dr

⎞⎟⎟⎟⎟⎠2

+ 1

⎤⎥⎥⎥⎥⎥⎥⎦ − M

R̂

⎫⎪⎪⎬⎪⎪⎭
2 / ⎛⎜⎜⎜⎜⎝dR̂

dr

⎞⎟⎟⎟⎟⎠2

. (17)

Using (14) the above becomes

dM
dr
+

⎛⎜⎜⎜⎜⎝ κc2ρ̂R̂

2 dR̂/dr

⎞⎟⎟⎟⎟⎠ M =

⎛⎜⎜⎜⎜⎝ κc2ρ̂R̂2

4 dR̂/dr

⎞⎟⎟⎟⎟⎠ ⎡⎢⎢⎢⎢⎢⎢⎣⎛⎜⎜⎜⎜⎝dR̂
dr

⎞⎟⎟⎟⎟⎠2

+ 1

⎤⎥⎥⎥⎥⎥⎥⎦ . (18)

Matter density can be expressed in terms of n(z) – the observed
number density of sources in the redshift space per steradian per
unit redshift interval. Thus, the number of sources observed in a
given redshift interval and solid angle dΩ is n dΩ dz and the total
rest mass between z and z + dz is

M = 4π m̂n̂ dz, (19)

where m̂(z) is the average mass per source. On the other hand the
total rest mass between r and r + dr is

M = ρ̂d̂3V = ρ̂
4πR̂2R̂,r√

1 + 2E
dr, (20)

where d̂3V is the proper volume on a constant time slice, evalu-
ated on the null cone. Hence by (19), (20) and (12)

R̂2ρ̂ = m̂n̂
dz
dr
· (21)

Finally, to find r(z), the r.h.s. of (10) must be expressed in terms
of R̂ and n̂(z). Differentiating (2) with respect to r and substitut-
ing the result in the r.h.s. of (10), we obtain

R̂,tr√
1 + 2E

=
c2

R̂,t

[
M,r

R̂
√

1 + 2E
− M

R̂2
+ (
√

1 + 2E ),r

]
. (22)

The derivative of
√

1 + 2E follows from (17). Then, replacing
M,r by (14) and using (16), the above equation can be written as

1
c

R̂,tr√
1 + 2E

= −
⎛⎜⎜⎜⎜⎝1

2
κc2ρ̂R̂ +

d2R̂
dr2

⎞⎟⎟⎟⎟⎠ / ⎛⎜⎜⎜⎜⎝dR̂
dr

⎞⎟⎟⎟⎟⎠ · (23)

Now, from (10):

dR̂
dr

dz
dr
+

d2R̂
dr2

(1 + z) = −1
2
κc2ρ̂R̂(1 + z). (24)

Applying

dR̂
dr
=

dR̂
dz

dz
dr
,

d2R̂
dr2
=

dR̂
dz

d2z
dr2
+

d2R̂
dz2

(
dz
dr

)2

,

and integrating with respect to r, yields∫ z

0

d
dr

⎡⎢⎢⎢⎢⎣dz
dr

dR̂
dz

(1 + z)

⎤⎥⎥⎥⎥⎦ dr

= −
∫ z

0

1
2
κc2ρ̂(z)R̂(z)(1 + z)

dr
dz

dz. (25)

Using the origin conditions [(dz/dr)(dR̂/dz)]0 = [dR̂/dr)]0 = 1,
z(0) = 0 and (21) the above can be rearranged to obtain

dz
dr
=

⎡⎢⎢⎢⎢⎣dR̂
dz

(1 + z)

⎤⎥⎥⎥⎥⎦−1

×
{

1 − 1
2
κc2

∫ z

0

m̂(z)n(z)

R̂(z)
(1 + z) dz

}
. (26)

Finally:

r(z) =
∫ z

0

⎡⎢⎢⎢⎢⎣dR̂
dz̃

(1 + z̃)

⎤⎥⎥⎥⎥⎦
×
{

1 − 1
2
κc2

∫ z̃

0

m̂(z)n(z)

R̂(z)
(1 + z) dz

}−1

dz̃ . (27)
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Fig. 2. The function E(r) of the L-T model defined by the (DA,m(z)n(z))
set of data (see Sect. 3.1.1, for details). There is a problem with numer-
ical integration around r = 2.9 Gpc. The problem comes from (17)
where the term (1 − 2M/R)/(dR/dz) becomes 0/0 at the apparent hori-
zon.

3.1.2. The algorithm

In order to specify the model, we proceed in the following way:

1. The model is defined by two functions on the past null cone:
the angular diameter distance, DA(z), and the mass density
in redshift space, m(z)n(z). We assume that these functions
are the same as in the ΛCDM model:

DA(z) =
1

1 + z
c

H0

∫ z

0

dz′√
Ωm(1 + z′)3 + 1 − Ωm

, (28)

m(z)n(z) = Ωm
3H2

0

8πG
(1 + z)3D2

A
dr
dz
, (29)

where Ωm = (8πG)/(3H2
0)ρ0.

2. Using the MHE algorithm we find r(z) by solving (27).
3. We numerically invert this relation to find z(r) and solve (18)

to find M(r).
4. The function E(r) is found by solving (17).
5. Once E and M are known, we find η and then tB, by solving

the appropriate relations (4)–(7).
6. Since in (17) the term (1 − 2M/R)/(dR/dz) becomes 0/0 at

the apparent horizon, the computer produces inaccurate re-
sults in the vicinity. To overcome this we apply the procedure
described in Sect. 3.1.4.

3.1.3. The results

The algorithm described in the previous section allows us to find
an L-T model from a given (DA(z),m(z)n(z)) set of data.

The free functions of the L-T model, E, tB, and M are shown
in Figs. 2, 3, and 4 respectively.

As can be seen, there is a problem with numerical integra-
tion for E and tB around r = 2.9 Gpc. The problem is related
to (17) where the term (1 − 2M/R)/(dR/dz) becomes 0/0 at the
apparent horizon. Because of this, the computer produces inac-
curate results in the vicinity. One solution to this problem was
proposed by Lu & Hellaby (2007) who performed series expan-
sions of R(z), n(z), dr/dz, M(z) and E(z) around the apparent
horizon. However, this method leads either to jumps in one of
these functions, say E(z), or to lower accuracy of the algorithm
(Lu & Hellaby 2007). Therefore, we propose a different, much
simpler approach. Namely, we fit polynomials to E(r) and M(r)
and then we recalculate the area distance and the redshift-space
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Fig. 3. The function tB(r) of the L-T model defined by the (DA,m(z)n(z))
set of data (see Sect. 3.1.1, for details). There is a cusp around r =
2.9 Gpc. The cusp follows from an unstable behaviour of E(r) around
r = 2.9 Gpc.
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Fig. 4. The function M(r) of the L-T model defined by the
(DA,m(z)n(z)) set of data (see Sect. 3.1.1, for details). In this case there
is no problem around r = 2.9 Gpc.
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Fig. 5. The function E as a function of the current areal radius for the
(DA,m(z)n(z)) set of data – the comparison of results obtained for E
as given by (17) (solid line) and for the approximation to E as given
by (31) (dashed line). See Sect. 3.1.4 for details. The inset presents
E/R2, the quantity that is constant in the FLRW limit.

mass-density as functions of redshift to check the accuracy of
our approximations. As we will see, this method leads to results
that from the observational point of view (every observation is
accompanied with an error) are indistinguishable from those of
the ΛCDM model.
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Fig. 6. The function M as a function of the current areal radius for the
(DA,m(z)n(z)) set of data – the comparison of results obtained for M
as given by (18) (solid line) and for the approximation to M as given
by (30) (dashed line). See Sect. 3.1.4 for details. The inset presents
M/R3, the quantity that is constant in the FLRW limit.

3.1.4. Dealing with the apparent horizon

To overcome the numerical problem of indeterminacy of E(r) at
the apparent horizon, we fit polynomials to the obtained M(r)
and E(r). The most obvious choice would be polynomials in the
variable r. However, in numerical experiments we noticed that
much better results are obtained when we approximate M and
E by polynomials in R(t0, r), where t0 is the present instant. The
explicit forms of the fitted functions are

M(R(t0, r)) =
n=8∑
n=3

Mn�
n, (30)

where � = R(t0, r)/1Gpc, (M3,M4,M5,M6,M7,M8) =
(8.142244 × 10−3 kpc, 0 kpc, 1.32458 × 10−4 kpc, −3.79 ×
10−5 kpc, 3.23834× 10−6 kpc, −9.8233× 10−8 kpc), and

E(R(t0, r)) =
n=6∑
n=2

En�
n, (31)

where (E2, E3, E4, E5, E6) = (1.9475 × 10−2, 4.28698 × 10−3,
6.50383 × 10−4, −3.66095× 10−5, 8.78679× 10−7).

The profiles of these functions together with those numeri-
cally derived are presented in Figs. 5 and 6. We then use these
functions as initial conditions and solve the null geodesic equa-
tions. First, we invert (10) and (11) to get the equations for dt/dz
and dr/dz, to derive the pair (t, r) for a given redshift; simultane-
ously we solve (2) to get R̂, R̂,r, and R̂,tr.

The results are shown in Figs. 7, 8. The angular diameter
distance is recovered very accurately, while the redshift-space
mass-density less so, but still up to z = 4 it does not differ
by more than 6% from the redshift-space mass-density in the
ΛCDM model – which is far less than the expected observational
uncertainty. In addition we calculate the prediction for H(z), and
we compare it to the estimations of the expansion rate by Simon
et al. (2005). Since these are based on the observed age of the
oldest stars, and H(z) follows from dt/dz, thus, as seen from (11),
H(z) = R̂,tr/R̂,r. The results are presented in Fig. 9. As seen, the
L-T model does not deviate from the ΛCDM model by more
than 5%. These differences in m(z)n(z) and H(z) are caused by
two factors: a) the Eqs. (30) and (31) are just approximations;
b) numerical errors in the vicinity of the apparent horizon bias
the solution of (17) for r � rAH (where rAH is the position of the
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Fig. 7. The angular diameter distance as a function of redshift; compari-
son of the results for the ΛCDM and L-T models. The inset presents the
estimations of DA based on the type-Ia supernova measurements taken
from the Union data set (Kowalski et al. 2008). See Sect. 3.1.4.
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Fig. 8. The redshift-space mass-density as a function of redshift. The
difference between the LT and ΛCDM models is less than 6%. See
Sect. 3.1.4.

apparent horizon). In principle, however, it is possible to con-
struct the Λ = 0 L-T model that matches the ΛCDM model.
Finally, as seen from Fig. 10, the current density profile does not
exhibit a giant void shape. Instead, it suggests that the universe
smoothed out around us with respect to directions is overdense in
our vicinity up to Gpc-scales. As a consequence of our numer-
ical procedure the value of density at the centre at the present
time t0 is the same as the present density in the ΛCDM model.

3.2. The model defined by DA(z) and H(z)

3.2.1. The algorithm

The algorithm used to find the L-T model consists of the follow-
ing steps:

1. The model is defined by two functions on the past null cone:
the angular diameter distance DA(z) and the Hubble function
H(z). We assume that these functions are the same as in the
ΛCDM model – DA(z) is given by (28) and

H(z) = H0

√
Ωm(1 + z)3 + 1 −Ωm. (32)
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Fig. 10. The ratio ρ/ρ0 of density to density at the origin. Solid lines
present density profiles at constant t (from top to bottom: t = now, t =
now−2×109 y, t = now−5×109 y). Dashed lines present density profiles
at the hypersurface of constant age of the Universe (from top to bottom:
τ = now, τ = now−2×109 y, τ = now−5×109 y). For each curve, the ρ0

is taken at the value of t or, respectively, τ that identifies the curve. Note:
all the graphs, for both foliations, use a comoving radial coordinate, r :=
R(t0, r), which means that points with the same horizontal coordinate in
the graph correspond to the same matter particle at all times. Only for
the uppermost solid graph is R(t0, r) equal to the actual area-distance
from the centre.

2. We choose r so that (12) is satisfied on the past light cone
of the present-day observer. Then using H(z) = R̂,tr/R̂,r, (10)
becomes

dr
dz
=

1
1 + z

c
H(z)
, (33)

which for (32) can be integrated to

r =
2c

3H0

1√
1 −Ωm

⎡⎢⎢⎢⎢⎣arsinh

⎛⎜⎜⎜⎜⎝√1 − Ωm

Ωm

⎞⎟⎟⎟⎟⎠
−arsinh

⎛⎜⎜⎜⎜⎜⎜⎜⎝
√

1 −Ωm

Ωm(1 + z)3

⎞⎟⎟⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎥⎥⎦ . (34)

3. Using (23) we find ρ(z) and solve (21) for n(z).
4. We solve (18) to find M(r).
5. The function E(r) is found by solving (17).
6. Once E and M are known we find η and then tB by solving

the appropriate relations (4)–(7).
7. As before, because of the 0/0 term in (17) at the apparent

horizon, we employ the procedure described in Sect. 3.2.3.
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Fig. 11. The function E(r) of the L-T model defined by the (DA,H(z))
set of data (see Sect. 3.2.1, for details). Around r = 2.9 Gpc there is a
problem with the numerical algorithm.
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Fig. 12. The function tB(r) of the L-T model defined by the (DA,H(z))
set of data (see Sect. 3.2.1, for details).
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Fig. 13. The function M(r) of the L-T model defined by the (DA,H(z))
set of data (see Sect. 3.2.1, for details). In this case there is no problem
around r = 2.9 Gpc.

3.2.2. The results

The results for E, tB and M are given in Figs. 11–13. As in
Sect. 3.1.3, the functions E(r) and tB(r) evaluated by this al-
gorithm behave unnaturally close to the apparent horizon, see
Figs. 11 and 12. As before, this is caused by the fact that in (17)
one has to deal with 0/0. We overcome this problem by once
again fitting polynomials to these functions.
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Fig. 14. The function E as a function of the current areal radius for
the (DA,H(z)) set of data – the comparison of results obtained for E
as given by (17) (solid line) and for the approximation to E as given
by (36) (dashed line). See Sect. 3.2.3 for details. The inset presents
E/R2, the quantity that is constant in the FLRW limit.
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Fig. 15. The function M as a function of the current areal radius for
the (DA,H(z)) set of data – the comparison of results obtained for M
as given by (18) (solid line) and for the approximation to M as given
by (35) (dashed line). See Sect. 3.2.3 for details. The inset presents
M/R3, the quantity that is constant in the FLRW limit.

3.2.3. Dealing with the apparent horizon

The explicit forms of the fitted functions are:

M(R(t0, r)) =
n=7∑
n=3

Mn�
n, (35)

where (M3,M4,M5,M6,M7) = (8.2 × 103 kpc, −1.1948 kpc,
1.07521 × 102 kpc, −24.1385 kpc, 1.15743 kpc), and

E(R(t0, r)) =
n=6∑
n=2

En�
n, (36)

where (E2, E3, E4, E5, E6) = (1.7324 × 10−2,−2.5725 × 10−3,
1.14925 × 10−4, 2.87776× 10−5,−1.90389× 10−6).

The profiles of these functions together with the numerically
derived ones are shown in Figs. 14 and 15. We then use these
functions as initial conditions and solve the null geodesic equa-
tions. The results are presented in Figs. 16 and 17. Both the an-
gular diameter distance and the expansion rate as functions of the
redshift are recovered very accurately. From the observational
perspective these two models are indistinguishable. In addition
we present the m(z)n(z) plot. As seen from Fig. 18, it also gives
quite an accurate fit, with a deviation from the ΛCDM model
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Fig. 16. The angular diameter distance as a function of z. See Sect. 3.2.3
for details.
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Fig. 17. The function H(z). See Sect. 3.2.3 for details. For comparison
the measurements of H(z) (Simon et al. 2005) are also shown.
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Fig. 18. The redshift-space mass-density as a function of redshift for
the LT model considered in Sect. 3.2.3, and in the ΛCDM model. The
difference between the two models is less than 2.5%. Compare Fig. 1;
the consistency achieved here is much better than in a giant void model.

being less than 2.5%. Finally, as seen from Fig. 19, the current
density profile has a similar shape as in Sect. 3.1.4, and this is
not a giant void.

4. Discussion and conclusion

Contrary to what is commonly claimed, L-T models with a giant
void do not reproduce the main features of the ΛCDM model.
These types of models just fit cosmological observations, with a
priori constraints imposed on the L-T models. Indeed, we have

Page 8 of 10

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200913581&pdf_id=14
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200913581&pdf_id=15
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200913581&pdf_id=16
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200913581&pdf_id=17
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200913581&pdf_id=18


M. N. Célérier et al.: Explaining away dark energy without a (giant) void

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 0  2  4  6  8  10

ρ/
ρ 0

R(t0,r) [Gpc]

Fig. 19. The ratio ρ/ρ0 of density to density at the origin. Solid lines
present density profiles at constant t (from top to bottom: t = now,
t = now − 2 × 109 y, t = now − 5 × 109 y). Dashed lines present density
profiles at the hypersurfaces of constant age of the Universe (from top
to bottom: τ = now, τ = now− 2× 109 y, τ = now− 5× 109 y). For each
curve, the ρ0 is taken at the value of t or, respectively, τ that identifies
the curve. The remark about the horizontal coordinate in Fig. 10 applies
also here.

found the L-T models that mimic some of the observational
features of the ΛCDM model and exhibit no giant void, but
rather a giant hump.

It is clear from the energy density profiles shown in Figs. 10
and 19 that the L-T models we have reconstructed have a large
overdensity, when viewed over large enough scales. However, as
we have made clear throughout, these profiles are the result of
reproducing observables that match ΛCDM predictions, and not
from fitting to any real data. Luminosity distances from super-
novae observations, and number counts from galaxy surveys do
not currently extend much beyond z ∼ 1.5 and z ∼ 0.5, respec-
tively. As such, using real observables, it would only currently be
possible to perform a reconstruction of a limited part of the full
structure we have found here, and even then only up to the de-
gree allowed by the errors associated with these quantities. If one
were to attempt such a reconstruction, it appears from Figs. 10
and 19 that one may, in fact, reconstruct a local energy density
profile that is an increasing function of r, and not decreasing,
due to the limited extent of these observations in z (this is par-
ticularly true in the equal age foliation). Our interpretation of a
giant hump should therefore be understood as corresponding to
an extrapolation of observable quantities under the expectation
that they will follow ΛCDM, rather than being directly implied
by any currently known observations themselves.

Recently, some astrophysicists have begun to take seriously
the cosmological implications of the L-T model. This model,
although still simple4, is quite powerful and exhibits some fea-
tures of general relativistic dynamics, like arbitrary functions in
the initial data.

As we said earlier in this paper, the belief that an L-T
model fitted to supernova Ia observations necessarily implies the

4 From the computational point of view, the difference between the
Friedmann and L-T models is quite trivial. The Eq. (2) that governs
the evolution of the L-T model is exactly the same as in the Friedmann
model; it is still an ordinary differential equation in the time-variable t.
The only difference is that the function R(t) obeying (2) depends on one
more variable, the radial coordinate r. This r enters only as a parameter,
and then automatically all the integration “constants” that appear while
solving (2) are no longer constant, but are functions of r. Sophistication
comes at the level of interpreting the solutions – however, this is no
longer mathematics, but astrophysics.
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Fig. 20. The density distribution as a function of redshift for the giant
void (GV) L-T model, for the models of Sect. 3.1.4 and 3.2.3 (GH)
and for the FLRW model, where ρ(z) = ρ0(1 + z)3 (dashed line). The
parameters of the GV model are: radius 2.96 Gpc and density contrast
4.05. The same model is presented in Fig. 1; for details of how the
model is specified and null gedesics solved see Bolejko & Wyithe 2009.

existence of a giant void with us at the centre was created by
arbitrarily limiting the generality of the model. With its free
functions fitted to ΛCDM features rather than to expectations,
the giant void does not necessarily follow. Rather, one alterna-
tive is that the graph of the density smoothed out over angles
around us has the shape of a shallow and wide valley on top of a
giant hump.

This giant hump may be a feature of the particular L-T model
that we ended up with. Variations in the ΛCDM parameters
would modify the details, and the observational constraints we
considered are not very tight. Future calculations with other con-
straints may favor a still different profile at t = now. Hence we do
not wish our paper to become a starting point of a new paradigm
in observational cosmology, aimed at detecting the hump. Before
this happens, we must decide at the theoretical level whether the
hump is a necessary implication of L-T models properly fitted to
other observations.

It must be stressed that this hump is not directly observable.
It exists in the space t = now, of events simultaneous with our
present instant in the cosmological synchronisation, i.e. it is in a
space-like relation to us. This is also the case of the giant void
(see, e.g., Fig. 4 of Alnes et al. 2006; Fig. 1 of García-Bellido
& Haugbølle 2008a; Figs. 4 and 6 of Yoo et al. 2008). However,
an observational test of the giant void is easier to complete. The
reason is that the models considered in this paper have a redshift-
space mass-density almost the same as in the ΛCDM model (see
Figs. 8 and 18) and as can be seen from Fig. 20, their ρ(z) scales
with the redshift in almost the same manner as in the FLRW
model, i.e. ∼(1 + z)3. This is not the case of the giant void5

which does not reproduce these features on the past light cone
(see Figs. 1 and 20). Thus, unlike the giant void, the giant hump
is not observable in ρ(z) or in the number count data.

What is the cause of this difference between the density dis-
tribution on our past light cone and in the t = now space? It is
the oft-forgotten basic feature of the L-T model (and in fact of all
inhomogeneous models, also those not yet known explicitly as
solutions of Einstein’s equations): on any initial data hypersur-
face, whether it is a light cone or a t = constant space, the den-
sity and velocity distributions are two algebraically independent

5 The giant void used here is Bolejko & Wyithe (2009)’s model with
radius of 2.96 Gpc and density contrast of 4.05. The redshift-space
mass-density for this model is presented in Fig. 1.
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functions of position. Thus the density on a later hypersurface
may be quite different, since it depends on both initial func-
tions. Whatever initial density distribution we observe can be
completely transformed by the velocity distribution. For exam-
ple, as predicted by Mustapha & Hellaby (2001) and explicitly
demonstrated by Krasiński & Hellaby (2004), any initial con-
densation can evolve into a void and vice versa. In FLRW mod-
els, there are no physical functions of position, and all world-
lines evolve together. Thus, while dealing with an L-T (or any
inhomogeneous) model, one must be cautious when applying the
Robertson-Walker-inspired prejudices and expectations.

The use of oversimplified L-T models can create another
false idea and false expectation. The false idea is that there is an
opposition between the ΛCDM model, belonging to the FLRW
class, and the L-T model or in general, inhomogeneous models:
either one or the other could be “correct”, but not both. This pu-
tative opposition can then give rise to the expectation that more,
and more detailed, observations will be able to tell us which one
to reject. In truth, there is no opposition. The inhomogeneous
models, like for example the L-T model with its two arbitrary
functions of one variable are huge, compared to FLRW, families
of models that include the Friedmann models as a very simple
subcase. The fact, demonstrated in several papers already (see
Célérier 2007, for a review), that even a Λ = 0 L-T model can
imitate Λ � 0 in an FLRW model, additionally attests to the
flexibility and power of the L-T model. Thus, if the Friedmann
models, ΛCDM among them, are considered good enough for
cosmology, then the L-T models can only be better: they con-
stitute an exact perturbation of the Friedmann background, and
can reproduce the latter as a limit with an arbitrary precision.
While future observations, for example the kSZ effect (Garcia-
Bellido & Haugbølle 2008b) or the growth of linear structure
(Clarkson et al. 2009) will provide a sufficient insight to test par-
ticular configurations (like for example a giant void model), we
will never be able to reject inhomogeneous models. After all, the
Universe as it is, is inhomogeneous. Nowadays we use homoge-
neous models just for simplicity, and although they have worked
well so far, in future they will certainly be replaced by more so-
phisticated models, either by exact solutions, or what is more
probable in light of increasing computation power of computers,
by numerical simulations.

When considering models that go beyond the FLRW approx-
imation, one may ask either “what limitations on the arbitrary
functions in the models do our observations impose”, or “which
model best describes a given situation: a homogeneous FLRW
model or an inhomogeneous one?” The latter of these questions
has often been asked in the context of comparing L-T models
without Λ to FLRW models with Λ, and is of much interest for
understanding the necessity of introducing Λ into the observer’s
standard cosmological model. Such hypothesis testing questions
are often posed in cosmology, but are difficult to address in the
current context as they require artificially limiting the generality
of the models in question (in order to have a finite number of
parameters, so that the test can be performed). Given the lack
of motivation for exactly how to perform such a limitation, one
is then left in the undesirable circumstance of (potentially) dis-
missing particular L-T models, while being left with an infinite
number of remaining L-T models to evaluate. We therefore
prefer to consider the former question. In order to reasonably
answer this for the L-T model, a general framework for interpret-
ing observations in the L-T geometrical background should be

created (and in the future it should be transformed into a frame-
work for interpreting the observations in a still more general, or
the most general geometrical background). Such a program is
still in its infancy, but is being actually developed by C. Hellaby
and coworkers under the name “Metric of the Cosmos” (Lu &
Hellaby 2007; McClure & Hellaby 2008; Hellaby & Alfedeel
2009).
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