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I. MOTIVATION

The quasi-spherical Szekeres model [1] – [17] is rather
well-understood by now. In spite of its nontrivial ge-
ometry, its basic defining features are not too difficult
to grasp intuitively. In a simple-minded way one may
say that it is obtained when the spherical symmetry or-
bits in the Lemâıtre – Tolman model [16, 17] are made
nonconcentric to destroy the symmetry, but the energy-
momentum tensor is still that of dust. Recently, that
model even found application to solving problems di-
rectly related to observational cosmology [13, 14]. In
contrast to this, the first serious attempt to interpret
the quasi-plane and quasi-hyperbolic models [18] revealed
that even the corresponding plane- and hyperbolically
symmetric models are not really understood and require
more investigation. Some properties of those models were
established in Ref. [18], the present paper is a continua-
tion of that research.

The aim of the present paper is to clarify some of
the basic geometrical features of the quasi-plane Szek-
eres model, and of the plane symmetric dust model. The
following topics are investigated here: (1) The pattern of
expansion in the plane symmetric model, and the Newto-
nian model that imitates it; (2) The possibility of toroidal
topology of the t = const sections in the plane sym-
metric model; (3) The absence of apparent horizons in
the quasi-plane and quasi-hyperbolic models (they are
globally trapped); (4) Description of the toroidal topol-
ogy in the Szekeres coordinates; (5) Interpretation of the
mass function in the quasi-plane model. For the most
part, the paper is devoted to showing that the space of
constant time in the plane symmetric dust models can
be interpreted as a family of flat tori, with the ones of
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smaller diameter enclosed inside those of larger diameter.
Such a topology explains several properties of the mod-
els, among them the pattern of decelerated expansion
and the finiteness of the mass function. It turns out that
these models are of lesser use in astrophysical cosmology
than the quasi-spherical ones. Because of being globally
trapped, they cannot be used for modeling dynamical
black holes. Because they expand by the same law as the
positive-energy Lemâıtre – Tolman model, they cannot
model the formation of structures that collapse to very
dense states. They might be applicable for the descrip-
tion of formation of moderate condensations, like galaxy
clusters, and of voids.

Mena, Natário and Tod also considered the quasi-plane
and quasi-hyperbolic Szekeres models with toroidal and
higher-genus topologies [19]. They considered the match-
ing of those solutions, with nonzero cosmological con-
stant (corresponding to Λ > 0 in the notation adopted
here), to the plane- and hyperbolically symmetric coun-
terparts of the Schwarzschild solution, also allowed to
have nontrivial topologies of the symmetry orbits. How-
ever, there is no overlap between their results and those
of the present paper, as they mainly considered the global
geometry of the resulting black hole, while here the em-
phasis is put on local geometry of the topologically non-
trivial Szekeres spacetime.

The present text is a corrected version of Ref. [20],
taking into account the erratum [21]. The error hereby
corrected was revealed by Charles Hellaby. By this op-
portunity, typos and style were corrected as well.

II. INTRODUCING THE SZEKERES

SOLUTIONS

The metric of the Szekeres solutions is

ds2 = dt2 − e2αdz2 − e2β
(
dx2 + dy2

)
, (2.1)
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where α and β are functions of (t, x, y, z) to be deter-
mined from the Einstein equations with a dust source.
The coordinates of (2.1) are comoving so the velocity
field of the dust is uµ = δµ0 and u̇µ = 0.

There are two families of Szekeres solutions, depend-
ing on whether β,z = 0 or β,z 6= 0. The first family is a
simultaneous generalisation of the Friedmann and Kan-
towski – Sachs [22] models. So far it has found no useful
application in astrophysical cosmology, and we shall not
discuss it here (see Ref. [16]); we shall deal only with the
second family. After the Einstein equations are solved,
the metric functions in (2.1) become

eβ = Φ(t, z)/eν(z,x,y),

eα = h(z)Φ(t, z)β,z ≡ h(z) (Φ,z +Φν,z ) ,

e−ν = A(z)
(
x2 + y2

)
+ 2B1(z)x + 2B2(z)y + C(z),(2.2)

where the function Φ(t, z) is a solution of the equation

Φ,t
2 = −k(z) +

2M(z)

Φ
+

1

3
ΛΦ2; (2.3)

while h(z), k(z), M(z), A(z), B1(z), B2(z) and C(z) are
arbitrary functions obeying

g(z)
def
= 4

(
AC −B1

2 −B2
2
)

= 1/h2(z) + k(z). (2.4)

The mass-density is

κρ =

(
2Me3ν

)
,z

e2β (eβ) ,z
; κ = 8πG/c2. (2.5)

In the present paper we will mostly consider the case
Λ = 0.

These solutions have in general no symmetry, and
acquire a 3-dimensional symmetry group with 2-
dimensional orbits when A, B1, B2 and C are all constant
(that is, when ν,z = 0). The sign of g(z) determines the
geometry of the surfaces (t = const, z = const), and
the symmetry of the limiting solution. The geometry is
spherical, plane or hyperbolic when g > 0, g = 0 or g < 0,
respectively. With A, B1, B2 and C being functions of
z, the surfaces z = const within a single space t = const
may have different geometries (i.e. they can be spheres
in one part of the space and surfaces of constant nega-
tive curvature elsewhere, the curvature being zero at the
boundary). The sign of k(z) determines the type of evo-
lution; with k > 0 = Λ the model expands away from an
initial singularity and then recollapses to a final singular-
ity, with k < 0 = Λ the model is either ever-expanding
or ever-collapsing, depending on the initial conditions;
k = 0 = Λ is the intermediate case corresponding to the
’flat’ Friedmann model.

The Robertson–Walker limit follows when z = r,
Φ(t, z) = rR(t), k = k0r

2 where k0 = const and B1 =
B2 = 0, C = 4A = 1. This definition of the R–W limit
includes the definition of the limiting radial coordinate
(the Szekeres model is covariant with the transformations
z = f(z′), where f(z′) is an arbitrary function).

The Szekeres models are subdivided according to the
sign of g(z) into quasi-spherical (with g > 0), quasi-plane
(g = 0) and quasi-hyperbolic (g < 0).1 Despite sugges-
tions to the contrary made in the literature, the geometry
of the latter two classes has, until very recently, not been
investigated at all and is not really understood; work on
their interpretation has only been begun by Helalby and
Krasinski [18]. The sign of g(z) is independent of the sign
of k(z), but limitations are imposed on k(z) by the signa-
ture of the spacetime: for it to be the physical (+−−−),
the function h2 must be non-negative (possibly zero at
isolated points, but not on open subsets), which, via (2.4)
means that g(z)−k(z) ≥ 0 everywhere. Thus, with g > 0
(in the quasi-spherical case) all three possibilities for k
are allowed; with g = 0 only the two k ≤ 0 evolutions
are admissible, and with g < 0, only the k < 0 evolution
is allowed.

Only the quasi-spherical model is rather well investi-
gated, and found useful application in astrophysical cos-
mology. We recall now its basic properties.

It may be imagined as such a generalisation of the
Lemâııtre–Tolman (L–T) model in which the spheres of
constant mass were made non-concentric. The functions
A(z), B1(z) and B2(z) determine how the center of a
sphere changes its position in a space t = const when
the radius of the sphere is increased or decreased (see
a discussion of this in Ref. [15]). Still, this is a rather
simple geometry because all the arbitrary functions de-
pend on just one variable, z. They give us some limited
possibility to model real structures in the Universe (see
elegant examples in Refs. [13, 14]), but a fully satisfac-
tory model should involve arbitrary functions of all three
spatial variables, to allow modelling of arbitrary struc-
tures. Such models are still nonexistent, so the Szekeres
models are so far the best devices that exist.

Often, it is more practical to reparametrise the arbi-
trary functions in the Szekeres metric as follows (this
parametrisation was invented by Hellaby [23]). Even if
A = 0 initially, a transformation of the (x, y)-coordinates
can restore A 6= 0, so we may assume A 6= 0 with no loss
of generality (see Ref. [16]). Then let g 6= 0. Writing

(A,B1, B2) =

√
|g|

2S
(1,−P,−Q), ε

def
= g/|g|, (2.6)

k = −|g| × 2E, M = |g|3/2M̃, Φ = R
√
|g|,

we can represent the metric (2.1) as

e−ν/
√
|g| def

= E def
=

S

2

[(
x− P

S

)2

+

(
y −Q

S

)2

+ ε

]
,

1 We stress once again that the same Szekeres model may be quasi-
spherical in one part of the spacetime, and quasi-hyperbolic else-
where, with the boundary between these two regions being quasi-
plane, see an explicit simple example in Ref. [18]. In most of the
literature published so far, these models have been considered
separately, but this was only for purposes of systematic research.
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ds2 = dt2 − (R,z −RE ,z /E)
2

ε + 2E(z)
dz2 − R2

E2

(
dx2 + dy2

)
.

(2.7)

When g = 0, the transition from (2.1) to (2.7) is A =

1/(2S), B1 = −P/(2S), B2 = −Q/(2S), k = −2E, M̃ =
M and Φ = R. Then (2.7) applies with ε = 0, and the
resulting model is quasi-plane.

For further reference, the evolution equation (2.3), in
the variables of (2.7) becomes

R,t
2 = 2E(z) +

2M̃(z)

R
+

1

3
ΛR2; (2.8)

From now on, we will use this representation; the tilde
over M will be dropped, but it must be remembered that
the M in (2.8) is not the same as the one in (2.3).

The representation (2.7) makes the calculations sim-
pler because the arbitrary functions in it are independent
(the condition (2.4) has been incorporated in this form).
However, it obscures the fact that the cases ε = +1, 0,−1
can be parts of the same spacetime.

Rotation and acceleration of the dust source are zero,
the expansion is

Θ = 3
R,t
R

+
R,tz −R,t R,z /R

R,z −RE ,z /E
, (2.9)

and the shear tensor is

σα
β =

1

3
Σ diag (0, 2,−1,−1), where

Σ =
Φ,tz −Φ,t Φ,z /Φ

Φ,z −Φν,z
≡ R,tz −R,t R,z /R

R,z −RE ,z /E
. (2.10)

Definitions of the Szekeres solutions by invariant prop-
erties can be found in Ref. [16].

When Λ 6= 0, the solutions of (2.8) involve elliptic func-
tions. A general formal integral of (2.8) was presented by
Barrow and Stein-Schabes [24]. Any solution of (2.8) will
contain one more arbitrary function of z that will be de-
noted tB(z), and will enter the solution in the combina-
tion (t− tB(z)). The instant t = tB(z) defines the initial
moment of evolution; when Λ = 0 it is necessarily a sin-
gularity corresponding to Φ = 0, and it goes over into
the Big Bang singularity in the Friedmann limit. When
tB,z 6= 0 (that is, in general) the instant of singularity is
position-dependent, as in the L–T model.

Just as in the L–T model, another singularity may oc-
cur where

(
eβ
)
,z = 0 (if this equation has solutions).

This is a shell crossing, but it is qualitatively different
from that in the L–T model. As can be seen from (2.2),
in the quasi-spherical case, when a shell crossing exists,
its intersection with a t = const space will be a circle,
or, in exceptional cases, a single point, not a sphere. In
the quasi-spherical models shell crossings can be avoided
altogether if the arbitrary functions are chosen appropri-
ately, see the complete list and derivation in Ref. [15].
In the quasi-hyperbolic models, shell crossings can be

avoided in one sheet of each hyperboloid, but are un-
avoidable in the other, see Ref. [18]. In in the quasi-plane
model, if the flat surfaces existing in it are interpreted as
infinite planes, shell crossings are unavoidable [18].

Equation (2.8) is identical with the Friedmann equa-
tion, but, just like in the L–T limit, with k and M de-
pending on z, each surface z = const evolves indepen-
dently of the others.

The models defined by (2.1)– (2.5) contain 8 func-
tions of z, but only 5 of them correspond to indepen-
dent physical degrees of freedom. One of the 8 func-
tions is determined by (2.4), g(z) was made constant
by the reparametrisation (2.6), and one can be speci-
fied by a choice of z, for example by defining z′ = M , or

M = z′
3 × {a constant}.

A quasi-spherical Szekeres region can be matched to
the Schwarzschild solution across a z = const hypersur-
face [6]. The other two Szekeres regions can be matched
to the plane- and hyperbolically symmetric counterparts
of the Schwarzschild solution (see Ref. [25] for the solu-
tions and [18] for the matching).

In the following, we will represent the Szekeres solu-
tions with β,z 6= 0 in the parametrisation introduced in
(2.7). The formula for density in these variables is

κρ =
2 (M,z −3ME ,z /E)

R2 (R,z −RE ,z /E)
, (2.11)

where, let it be recalled, the M above is the M̃ of (2.6).

III. THE PLANE SYMMETRIC MODELS

The plane symmetric dust models (first found by Ellis
[26]) result from (2.7) when ε = 0 and (P,Q, S) are in-
dependent of z. The constant S can then be scaled to 1
by appropriate redefinitions of R, E and M . Then, with
constant P and Q, the coordinate transformation

x = P +
2p

p2 + q2
, y = Q +

2q

p2 + q2
(3.1)

changes the metric to

ds2 = dt2 − R,z
2

2E(z)
dz2 −R2

(
dp2 + dq2

)
, (3.2)

while the energy-density simplifies to

8πG

c2
ρ =

2M,z
R2R,z

. (3.3)

These models are called plane symmetric because their
symmetries are the same as those of the Euclidean plane;
in the coordinates of (3.2) they are:

p′ = p + A1, (3.4a)

q′ = q + A2, (3.4b)

(p′, q′) = (p cosα + q sinα,−p sinα + q cosα), (3.4c)
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where A1, A2 and α are arbitrary constants – the group
parameters.

Note that eqs. (2.8) and (3.3) are identical to their
counterparts in the spherically symmetric models. In
particular, the function M(z) enters in the same way
as the active gravitational mass did in spherical models.
However, if we wish to interpret M(z) as a mass con-
tained in a volume, we encounter a problem – see below.

Examples of plane symmetric spaces are the Euclidean
plane and the Euclidean space E3 with the metric ds3

2 =
dx2+dy2+dz2. However, the space of constant t in (3.2)
can never become flat; its curvature tensor is [18]:

3Rzp
zp = 3Rzq

zq = − E,z
RR,z

, 3Rpq
pq = −2E

R2
. (3.5)

Nevertheless, the surfaces P2 of constant t and z in (3.2)
are flat. Thus, there is some mystery in the geometry of
the spacetimes (3.2). One component of the mystery is
this: In the quasi-spherical case, and in the associated
spherically symmetric model, the surfaces of constant t
and z were spheres, and M(z) was a mass inside a sphere
of coordinate radius z. In the plane symmetric case, if
the P2 surfaces are infinite planes, they do not enclose
any finite volume, so where does the mass M(z) reside?

With M being a constant, the metric (3.2) be-
comes vacuum – the plane symmetric analogue of the
Schwarzschild spacetime.

In the quasi-spherical Szekeres, and in spherically sym-
metric solutions, analogies exist between the relativis-
tic and the Newtonian models. We will now compare
the plane symmetric model with its possible Newtonian
counterparts. For this purpose, let us note the pattern of
expansion in (3.2) and (2.8) with Λ = 0. When R,t 6= 0,
eq. (2.8) implies

R,tt = −M/R2. (3.6)

Note that R,tt = 0 implies M = 0, which is the Minkow-
ski metric. Now take a pair of dust particles, located at
(t, z1, p0, q0) and at (t, z2, p0, q0), and consider the affine
distance between them:

ℓ12(t) =

∫ z2

z1

R,z dz√
2E

=⇒ d2ℓ12
dt2

=

∫ z2

z1

R,ttz dz√
2E

. (3.7)

Thus, the two particles will be receding from each other
(or approaching each other if collapse is considered) with
acceleration that can never be zero.2

Take another pair of dust particles, located at
(t, z0, p1, q0) and at (t, z0, p2, q0). The distance between
them, measured within the symmetry orbit, is

ℓ34(t) =

∫ p2

p1

Rdp ≡ R (p2 − p1)

2 The acceleration would be zero if R,ttz = 0, which leads to a
contradiction in the Einstein equations.

=⇒ d2ℓ34
dt2

= R,tt (p2 − p1) , (3.8)

i.e. the acceleration of the expansion can never vanish
in this direction, either, unless M = 0. The same result
will follow for any direction in the (p, q) surface. Thus,
the expansion or collapse in this model proceeds with
acceleration in every spatial direction.3 We will compare
this result with the Newtonian situation.

IV. A NEWTONIAN ANALOGUE OF THE

PLANE SYMMETRIC DUST SPACETIME

At first sight, it seems that the Newtonian model anal-
ogous to the plane symmetric dust model should be dust
whose density is constant on parallel (x, y)-planes, and
depends only on z. Let us follow this idea.

If the potential is plane symmetric, then, in the
adapted coordinates, it depends only on z. Thus, the
Poisson equation simplifies to

d2V

dz2
= 4πGρ(z). (4.1)

The general solution of this is

V = 4πG

∫ z

z0

dz′
∫ z′

z0

dz̃ρ(z̃) + Az + B, (4.2)

where A and B are integration constants; z0 is a reference
value of z at which we can specify an initial condition.
If we wish to have V = const (i.e. zero force) when
ρ ≡ 0, we must take A = 0, and then V (z0) = B.4 The
equations of motion in this potential are

dvi

dt
= − ∂V

∂xi
, (4.3)

where vi are components of the velocity field of matter,
so

dvx

dt
=

dvy

dt
= 0,

dvz

dt
= −dV

dz
= −4πG

∫ z

z0

dz′ρ(z′).

(4.4)
This, however, gives a pattern of expansion different
from that in the relativistic plane symmetric model. In
(4.4), expansion with acceleration proceeds only in the
z-direction, while in the directions orthogonal to z there
is no acceleration, or, in a special case, not even any ex-
pansion. Consequently, no obvious Newtonian analogue
exists for the relativistic plane symmetric model.5

3 Since M ≥ 0, this is fact deceleration.
4 An A 6= 0 would be qualitatively similar to the cosmological
constant in relativity.

5 Incidentally, there will be no Newtonian analogue for the hyper-
bolic model, since the orbits of hyperbolic symmetry cannot be
embedded in a Euclidean space at all. They can be embedded
in a flat 3-dimensional space, but the space then must have the
signature (−++).
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Equation (4.4) shares one property with the relativis-
tic evolution equation (2.8). If ρ is bounded in the range
of integration, then the force that drives the motion of
the fluid is finite, giving the illusion that the potential is
generated by some finite mass. However, if we wanted to
calculate V (z) by summing up contributions to it from
all the volume elements of the fluid, like is done in cal-
culating the gravitational potentials of finite portions of
matter, then the result would be an infinite value of V ,
in consequence of the source having infinite extent in the
(x, y)-plane. Thus, if we want to interpret the r.h.s. in
(4.3) as being generated by a mass, then the mass that
drives the evolution is not the total mass in the source,
but the mass of a finite portion of the source.

We now provide a solution of the Poisson equation that
qualitatively mimics the pattern of expansion of the plane
symmetric relativistic model. Its equipotential surfaces
will be locally plane symmetric, but their symmetries will
not be symmetries of the whole space.

Consider two families of cones given by the equations
(see Fig. 1)

u = z − αr, v = z + r/α, r
def
=

√
x2 + y2, (4.5)

where α is a constant and (x, y, z) are Cartesian coor-
dinates. The cones of constant u are orthogonal to the
cones of constant v, and the two families are co-axial. We
choose u and v as two coordinates in space; the third co-
ordinate will be the angle ϕ around the axis of symmetry.
We begin with the Euclidean metric in the cylindrical co-
ordinates, ds2 = dr2 + r2dϕ2 + dz2, and transform this
to the (u, v, ϕ) coordinates by

r =
α(v − u)

1 + α2
, z =

u + α2v

1 + α2
. (4.6)

The transformed metric is

ds2 =
du2 + α2dv2

1 + α2
+

α2(v − u)2dϕ2

(1 + α2)2
. (4.7)

The Laplace operator, which in the cylindrical coordi-
nates is

∆V =
1

r

∂

∂r

(
r
∂V

∂r

)
+

1

r2
∂2V

∂ϕ2
+

∂2V

∂z2
, (4.8)

in the (u, v, ϕ)-coordinates becomes

∆V =
(
1 + α2

) [
− 1

v − u

∂V

∂u
+

∂2V

∂u2
+

1

α2(v − u)

∂V

∂v

+
1

α2

∂2V

∂v2
+

1 + α2

α2(v − u)2
∂2V

∂ϕ2

]
. (4.9)

Thus, if V depends only on u, then the Poisson equation
says:

(
1 + α2

)(
− 1

v − u

∂V

∂u
+

∂2V

∂u2

)
= −4πGρ. (4.10)

u = const

v = const

u = const

v = const

FIG. 1: The cones u = constant are orthogonal to the cones
v = constant. The coordinates in space are u, v and the angle
around the axis of symmetry. The figure shows an axial cross-
section through the setup. A gravitational potential which depends
only on u in these coordinates gives an expansion pattern that is
qualitatively similar to the one in a plane symmetric dust space-
time.

The gradient of V (u) has nonzero components in all
directions, and so will create expansion decelerated in all
directions. The expansion will be isotropic with respect
to the u = v axis, and the anisotropy between the (x, y)
and the z-directions is controlled by α.

This potential was introduced here for illustrative pur-
poses. In order to make it credible, one should solve the
continuity equation and the Euler equations of motion
in it. We do not quote here the appropriate calculations
because they lead to an intransparent tangle of differen-
tial equations. For dust, that set is overdetermined, so
probably has no solutions.

V. PLANE SYMMETRIC 3-SPACES

INTERPRETED AS TORI

Although known for a long time (see Ref. [26]), the
plane symmetric model has not been investigated for its
geometrical and physical properties.

Since a flat spatial geometry is not possible in it (see
eq. (3.5)), we now consider other possible 3-geometries
with planar symmetry. The next simplest is a space of
constant curvature. From (3.5), the space of constant
t = t0 will have constant curvature when

2E = ±C2R2 , (5.1)
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where C is a constant. The curvature is positive when
E < 0 and negative when E > 0. Since the signature
of spacetime requires E ≥ 0, we follow only the + case.
Choosing R(t0, z) = R as the spatial coordinate in this
space, we get:

ds3
2 = S2

[
dR2

C2R2
+ R2

(
dp2 + dq2

)]
. (5.2)

Note that only one hypersurface can have the property
(5.1) (since E is independent of t while R depends on t).
Thus, the 3-geometry of a space of constant t can evolve
away from or toward (5.2), or through (5.2), but cannot
preserve this geometry over a finite time.

The surface of constant q in (5.2) has the metric ds2
2 =

dR2/
(
C2R2

)
+ R2dp2. To visualise it, we embed it now

in a 3-dimensional Euclidean space with the metric

ds3
2 = dZ2 + dR2 + R2dp2. (5.3)

Our ds2
2 is the metric of the surface Z = Z0(R), where

Z0,R
2 + 1 = 1/(CR)2, thus

Z0 = ±
∫ √

1 − C2R2

CR
dR (5.4)

= ± 1

C

[
ln

(
CR

1 +
√

1 − C2R2

)
+
√

1 − C2R2

]
.

This embedding is possible only in the range R ≤ 1/C.
The R > 1/C part of the surface can be embedded in a
flat space of signature (− + +).6 The metric is then

ds3
2 = −dZ1

2 + dR2 + R2dp2, (5.5)

and the embedding equation is

Z1 = ±
∫ √

C2R2 − 1

CR
dR = ± 1

C

[√
C2R2 − 1

− 2 arctan
(
CR +

√
C2R2 − 1

)
+

π

2

]
(5.6)

(the constant of integration was chosen so that
Z0(1/C) = Z1(1/C)). The functions Z(R) and Z1(R)
are shown in Fig. 2. Note that in both embeddings,
(5.3) and (5.5), p appears as the polar angle in the plane
(R, p). If p is to be interpreted as actually being a polar
angle, with the period 2π, then all points with the coor-
dinates (t, z, p+2πn, q), where n is any integer, should be
identical with the point of coordinates (t, z, p, q). Since
p → (p+ constant) are symmetry transformations of the
spacetime (3.1), there is no problem with such an iden-
tification. Thus we should imagine the (R, p) surface as
being created by rotating the curve from Fig. 2 around
the Z axis.

6 A similar phenomenon is known from the maximally extended
Reissner – Nordström spacetime, when the region inside the in-
terior horizon is depicted, see Ref. [16].
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FIG. 2: Top panel: The function Z0(R) (from 0 to 1, solid line)
and the function Z1(R) (from 1 to 3, dotted line), given by eqs.
(5.4) and (5.6), respectively. In the graph we chose the − sign for
Z0(R) and the + sign for Z1(R). The graph is the cross-section of
the (R, p)-surface in the spaces (5.3) (left part of the curve) and
(5.5) (right part of the curve). Bottom panel: The (R, p) (or
(R, q)) surface obtained by rotating the graph from the top panel
around the R = 0 axis. The lower end of the funnel is where the
embedding in the Euclidean space breaks down, i.e. where the solid
line meets the dotted line in the top panel. Upwards, the funnel
goes infinitely far and becomes infinitely thin.

However, the same picture would be obtained for an
(R, q) surface in (5.2), given by p = const. We would
find that in that surface, q is the angular coordinate of
the polar coordinates (R, q), and points of coordinates
(t, z, p, q+ 2πm) can be identified with the point of coor-
dinates (t, z, p, q). We are thus led to conclude that (p, q)
are both angular coordinates with the period 2π, and
that the points of coordinates (p, q) have to be identified
with the points of coordinates (p+ 2nπ, q+ 2mπ), where
n and m are arbitrary integers. The tentative conclusion
is that the (p, q)-surface is a flat torus.

The conclusion is tentative in the sense that, while
we identify the set p = p0 with the set p = p0 + 2π,
we are still free to carry out the symmetry transforma-
tions within the set p = p0. Thus, the identification can
possibly be done with a twist, that will turn a square
into a Möbius strip, or with a two-way twist, that will
turn it into a projective plane [28]. We will use the term
“toroidal topology” that will be meant to include an or-
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dinary torus, and also the identifications with twists.
The conclusions drawn from an embedding can be mis-

leading. As an example, consider the hyperbolically sym-
metric counterpart of (3.2):

ds2 = dt2 − R,z
2

2E(z) − 1
dz2 −R2

(
dϑ2 + sinh2 ϑdϕ2

)
.

(5.7)
The surface of constant t and constant ϕ has the metric
ds2

2 = R,z
2dz2/(2E(z) − 1) − R2dϑ2, and embedding

it in a Euclidean space we would conclude that ϑ is the
polar coordinate with the period 2π. However, in this
case ϑ → (ϑ+ constant) are not symmetry transforma-
tions of the spacetime (or of a space of constant t), and
so identifications of points with different values of ϑ are
not permitted. Thus, the embedding in this case is not
a one-to-one mapping. Consequently, the toroidal inter-
pretation of the plane symmetric case must be treated as
one possibility, and not as a definitive conclusion.

Note from (5.2) that the length of any segment of a
curve given by p = const and q = const that goes into
the point R = 0 is infinite. The length of such a “radial”
line between the values R1 and R2 is

ℓ12 =

∣∣∣∣∣

∫ R2

R1

dR

CR

∣∣∣∣∣ =

∣∣∣∣
1

C
ln

(
R2

R1

)∣∣∣∣ −→
R2→0

∞

Thus, Fig. 2 correctly suggests that a surface of constant
p or constant q in the space (5.2) has the shape of an
infinite funnel, and the point with coordinate R = 0 is
not accessible (does not in fact belong to this surface).
This conclusion is consistent with the observation made
in Ref. [18] that in the planar Szekeres metric “there
is no real origin, but R, M and E can asymptotically
approach zero”7

It can be concluded from (3.2) that the (p, q) surface
should have a toroidal topology with any form of E, as
will now be shown. The 3-metric of a t = t0 space is:

ds3
2 =

dR0
2

2E
+ R0

2
(
dp2 + dq2

)
, (5.8)

where R0(z)
def
= R(t0, z). We can now embed a surface of

constant p or a surface of constant q in a 3-dimensional
flat space by the same method that we used for (5.2),
only the equation of embedding will not be explicit:

± Z,R
2 + 1 = 1/(2E) > 0, (5.9)

the upper sign being for embedding in the Euclidean
space, the lower sign for the embedding in the pseudoeu-
clidean space. In each case the coordinates p and q turn
out to be the azimuthal coordinates. As argued in Ref.
[18], if a nonsingular origin (where R = E = 0) is to exist,

7 In this quote, notation has been adapted to that used here.
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FIG. 3: A sketch of the 3-space of the plane symmetric to-
roidal model (a faithful picture cannot be drawn because the 2-
dimensional flat torus cannot be embedded in a Euclidean space,
and the 3-space of a planar Szekeres model cannot be made flat).
Each square section of the funnel represents a 2-dimensional flat
torus, so its front edge coincides with the back edge, and the left
edge coincides with the right edge. Each torus is an orbit of the
symmetry group of the model. Each smaller torus is contained
within all the larger ones, but the inclusion relation cannot be
depicted in the Euclidean space of this graph. Also, in the curved
3-space, the 2-tori surround the asymptotic origin, which is the tip
of the funnel, situated infinitely high above the plane shown.

then it will be infinitely far from every point of the t =
const space. This implies the infinite funnel geometry of
Fig. 2. A sketch of such a space is shown in Fig. 3.

The toroidal geometry and topology of the (p, q) sur-
faces neatly explains the pattern of expansion. The cir-
cumference of the torus along the p- or q-direction is 2πR
in the coordinates of (5.8). Thus, as R increases with
time, the circumference of the torus increases in propor-
tion to R, which causes transversal expansion.

The toroidal topology also solves the problem of where
the mass generating the gravitational field resides. As ob-
served in Ref. [18], the regularity conditions at an origin
z = zc are independent of ε (in some cases they cannot
be fulfilled, for example with ε < 0). Thus, E/M2/3

must tend to a nonzero constant as z → zc. Knowing
this, let us calculate the amount of rest mass in an ar-
bitrary volume V , from (3.3) and (3.2). That amount is

M def
=

∫
V
ρ
√
g3d3x, where g3 is the determinant of the

3-metric of a t = const subspace of (3.2). Thus

M =
c2

4πG

∫

V

M,z√
2E

dpdqdz ≡ c2

4πG

∫

V

1√
2E

dpdqdM.

(5.10)
With 0 < E ∝ M2/3 in the vicinity of M = 0, the integral
with respect to M is finite. With a toroidal topology, the
ranges of p and q are finite, so the integrals over p and q
also give final values. Thus, the total amount of mass in
each space t = const is finite.
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The relation M,z = M,z /
√

2E that follows from (5.10)
is similar to M,r = M,r /

√
1 + 2E, which held in the

spherically symmetric and quasi-spherical models. By
analogy, we conclude that in a plane symmetric space-
time the factor 1/

√
2E measures the relativistic mass

defect/excess, i.e. the discrepancy between the active
gravitational mass M and the sum of rest masses M.

VI. NO APPARENT HORIZONS IN THE

QUASI-PLANE AND QUASI-HYPERBOLIC

MODELS

An apparent horizon is the envelope of the region of
trapped surfaces. A (past or future) trapped surface
is such, on which both the ingoing and outgoing (past-
or future-directed respectively) families of null geodesics
converge. A future AH always forms in spherically sym-
metric or quasi-spherical-Szekeres collapse before the Big
Crunch singularity is achieved, a past AH always exists
after the Big Bang singularity.

It turns out that the AH-s do not exist in the quasi-
plane and quasi-hyperbolic Szekeres models, and, conse-
quently, neither do they exist in the plane- and hyper-
bolically symmetric dust models. Actually, a stronger
result holds: these spacetimes remain trapped for all the
time. This follows by the method invented by Szekeres
[2], which applies here almost unchanged – only the final
conclusion is radically different in consequence of the dif-
ferent sign of ε. To avoid getting into complicated details,
we begin by using the general form (2.1) of the metric.
Suppose a trapped surface exists, and call it Σ.

We assume Σ to be one of the orbits of the quasi-
symmetry, i.e. to have its equation of the form {t =
constant, z = constant}. It will be explained later (see
after (6.9)) why it is sufficient to consider such surfaces
to prove the conclusion. The traditional definition of a
trapped surface requires that it be compact. With the
toroidal topology in the planar model, our Σ will be com-
pact indeed. With the infinite topology, and in the quasi-
hyperbolic model, Σ will be infinite. In view of the final
result of our consideration, this fact will turn out to be
unimportant. We choose these infinite surfaces because
of their simple geometry.

Consider any family of null geodesics intersecting Σ
orthogonally, and let the tangent vector field of those
geodesics be kµ. Let (t, z, x, y) = (x0, x1, x2, x3). We
have then

kµk
µ = 0, kνkµ;ν = 0 everywhere (6.1)

because kµ is tangent to null geodesics, and

k2 = k3 = 0,
(
k0
)2 − e2α

(
k1

)2
= 0 on Σ (6.2)

because kµ is assumed orthogonal to Σ, so at the points
of Σ it must be spanned on the vector fields normal to
Σ, which are (1, 0, 0, 0) and (0, e−α, 0, 0). The affine pa-
rameter along each null geodesic may be chosen so that

k0 = eα, k1 = e = ±1 on Σ, (6.3)

where we will call the geodesics with e = −1 “ingoing”,
and those with e = +1 “outgoing”.8 A surface Σ is
trapped when the expansion kµ;µ calculated on Σ is neg-
ative for both families. We have on Σ, using (6.2):

kµ;µ = k0,t +k1,z +eα (α,t +2β,t )+e (α,z +2β,z ) . (6.4)

In order to simplify this, we now differentiate the first of
(6.1) by t, and write out the second of (6.1) for µ = 1, in
both cases taking the result on Σ, i.e. making use of the
simplifications given in (6.2):

k0,t −eeαk1,t −eαα,t = 0,

eαk1,t +e
(
k1,z +2eαα,t

)
+ α,z = 0. (6.5)

Eliminating k1,t from (6.5), and using the result to sub-
stitute for k0,t +k1,z in (6.4) we get

kµ;µ = 2 (eαβ,t +eβ,z ) . (6.6)

Using now the expressions for eα and eβ in the notation
of (2.7), i.e.

eα =
R,z −RE ,z /E√

ε + 2E(z)
, eβ =

R

E (6.7)

we get in (6.6)

kµ;µ = 2

(
R,z
R

− E ,z
E

)(
R,t√
ε + 2E

+ e

)
. (6.8)

The first factor changes sign only at shell crossings (see
Ref. [15]), so we take it to be positive. Consider collapse,
R,t < 0. For the ingoing family, e = −1, we have kµ;µ <
0, without further conditions. For the outgoing family,
e = +1, kµ;µ will be negative when R,t /

√
ε + 2E < −1,

which, with negative R,t, means that R,t
2 > ε + 2E.

Using (2.8) with Λ = 0 for R,t
2, we then obtain

2M/R > ε. (6.9)

With ε = 0 and ε = −1, this is always fulfilled,9 with the
only exception of the ’asymptotic origin’ in the planar
model, where M/R = ε = 0.

A surface given by {t = constant, z = constant} passes
through every point of the spacetime. Since each such
surface has now been shown to be trapped at all of its
points, this means that all points of the whole spacetime
are trapped.

Thus, the quasi-hyperbolic and quasi-plane model,
along with their hyperbolically- and plane-symmetric

8 When the surface of constant t and z is infinite, it cannot be
closed, therefore the labelling “ingoing” and “outgoing” is only
conventional.

9 Note that M must be positive, or else (3.6) would imply that
collapse is retarded and expansion accelerated. This would be
gravitational repulsion.
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FIG. 4: A map of the elementary torus in the (p, q) coordinates
(the central dotted square). Its left edge coincides in space with the
right edge, the lower edge coincides with the upper edge. Some-
times it is convenient to consider the torus as a subset of the R

2

plane, in which case the plane should be imagined as covered with
an infinite number of copies of the elementary square. The identi-
fications may be done with a twist, i.e. with reflections in p = 0
and q = 0, so that a projective plane results instead of a torus.
The open circles and the full circles show the pairs of points to be
identified in the latter situation.

limits, are globally future-trapped (when collapsing), and
no apparent horizon exists for them. It follows now eas-
ily that the corresponding expanding models are globally
past-trapped.

This is consistent with the fact that the corresponding
vacuum solutions have no event horizons (see eq. (6.22)
in Ref. [18]) and are globally nonstatic.

With no apparent horizons, no black holes may form
(more precisely, the whole Universe is one black hole).
This excludes the quasi-plane and quasi-hyperbolic mod-
els from an important area of application of the quasi-
spherical and spherically symmetric dust models.

VII. THE TOROIDAL PLANE SYMMETRIC

MODEL IN THE SZEKERES COORDINATES

The metric of a torus given by constant t and z in (3.2)
is ds2

2 = R2
(
dp2 + dq2

)
, where 2πR is the circumference

of the torus in the p-direction and in the q-direction. In
the following, we will consider the torus with R = 1,
and we will call it the ’elementary square’ or ’elementary
torus’. It will be more convenient to assume that, in the
coordinates of (3.2), the elementary torus is the square
{p, q} ∈ [−π, π] × [−π, π], shown in Fig. 4, rather than
{p, q} ∈ [0, 2π] × [0, 2π]. The R

2-space of the (p, q) co-
ordinates can be imagined as filled with infinitely many
copies of this square.

As observed in Ref. [18], the function S in the quasi-
plane model can be absorbed into the other functions by
the redefinition

(R,E,M) = (R̃/S, Ẽ/S2, M̃/S3), (7.1)

so we can assume S = 1 with no loss of generality. We
do this in the following.

The coordinates of points to be identified are related
in a more complicated way in the Szekeres coordinates of
(2.1), in which the plane symmetric model is given by:

ds2 = dt2 − R,z
2

2E(z)
dz2 −R2 4

(
dx2 + dy2

)
[
(x− P )

2
+ (y −Q)

2
]2 ,

(7.2)
with P and Q being arbitrary constants. A line q = q0
corresponds, in the (x, y)-coordinates, to

(x− P )2 + (y −Q− 1/q0)
2 = 1/q0

2, (7.3)

which is in general a circle of radius 1/q0 and the center
at (x, y) = (P,Q + 1/q0). In the special case q0 = 0 the
image becomes the straight line y = Q. Consequently,
the lines q = ±π in the (p, q)-coordinates go over into
the circles

(x− P )2 + (y −Q∓ 1/π)2 = 1/π2, (7.4)

while the lines p = ±π go over into the circles

(x− P ∓ 1/π)2 + (y −Q)2 = 1/π2. (7.5)

The image of the central point (p, q) = (0, 0) is the in-
finity of the (x, y)-plane. Conversely, the point (x, y) =
(P,Q) is the image of the infinity of the (p, q)-coordinates.

Moreover, from (7.3) follows that the image of the area
{q2 < q0

2} (an infinite strip of the (p, q) plane contained
between q = −q0 and q = q0 > 0) is the area outside the
circles (x−P )2 + (y−Q∓ 1/q0)2 = 1/q0

2. Similarly, the
image of the area {p2 < p0

2} is the area outside the circles
(x − P ∓ 1/p0)

2 + (y −Q)2 = 1/p0
2. Consequently, the

image of the elementary torus in the (x, y) coordinates
will be the infinite subset of the R

2 plane lying outside
all four circles, see Fig. 5.

This is the explanation to Fig. 5. The image of the line
p = 0 in the (x, y)-coordinates is the vertical line x = P in
the figure, with (x, y) = (P,Q) being the image of infinity
of the (p, q) coordinates. Similarly, the image of q = 0
is the horizontal line y = Q. In the (p, q)-coordinates of
(3.2), the torus is the area encircled by the straight lines
p = −π, p = π, q = −π and q = π. The image of the line
q = −π is the circle C1, of radius 1/π. The image of the
line q = π is the circle C2, of the same radius. The image
of the torus must be contained outside these two circles –
in the area covered with vertical strokes. Then, the image
of p = −π is the circle C3, and the image of p = π is the
circle C4, both of the same radius 1/π. Consequently, the
image of the torus must be contained outside these circles
– in the area covered by horizontal strokes. Thus, the
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FIG. 5: The image of the torus {p, q} ∈ [−π, π]× [−π, π] in the
Szekeres coordinates. The values of P and Q were chosen arbitrar-
ily, but other elements of the figure are drawn to scale. The small
empty circles and the small solid circles mark pairs of points to be
identified when we consider a projective plane instead of a torus.
More explanation in the text.

image of the whole torus is the common subset of these
two areas – the area in the figure outside the thick line
and covered with crosses. The area inside the thick closed
curve contains an infinite number of images of copies of
the elementary torus.

Each circle in the figure with the center at (x, y) =
(P,Q) and with radius a > 2/π is an image of a circle
of radius 2/a < π centered at (p, q) = (0, 0) that lies all
within a single copy of the elementary torus (one such
circle is shown in the figure with a dotted line). In par-
ticular, this applies to a circle of radius 1.

VIII. A NONSYMMETRIC PLANAR MODEL

The intention of the foregoing considerations was to
prepare the ground for carrying out similar identifica-
tions in the full nonsymmetric quasi-plane model. Un-
fortunately, no such identifications were proven possible.
The claim made in Ref. [20] turned out to be erro-
neous, in consequence of a computational error. That
error invalidates the statements made in Ref. [20] in sec-
tions VIII, IX and XI, which are therefore not included
in the present text. Section VIII contained the incor-
rect identification, Section IX – the prescription to avoid
shell crossings with a toroidal topology, and Section XI
– a prescription for constructing a two-sided (orientable)
compact surface out of four copies of a projective plane,
which is nonorientable. The surface thus constructed was
supposed to contain the active gravitational mass in a
similar way to the one described in Sec. V for tori.

It has not been proved that nontrivial topologies for
the surfaces of constant (t, z) are possible or impossible
in the metric (2.7) with ε = 0, so the problem is still
open.

IX. FORMATION OF STRUCTURES IN THE

PLANAR MODEL

This was Section X in Ref. [20].

As shown for the Lemâıtre – Tolman models (see Refs.
[27] and [16], Sec. 18.19), in the ever-expanding case
E > 0 an increasing density perturbation, ρ,z /ρ, freezes
asymptotically into the background – i.e. it tends to
a finite value determined uniquely by the initial condi-
tions. Consequently, it is impossible in these models to
describe the formation of condensations that collapse to
a very high density, such as a galaxy with a central black
hole. Since the evolution of the quasi-plane and quasi-
hyperbolic models is described by the same equations,
they will suffer from the same problem. (And we have
already found in Sec. VI that these models cannot de-
scribe black holes.)

Thus, these models can be used for considering the for-
mation of moderate-amplitude condensations and voids.

X. INTERPRETATION OF M(z) FOR THE

QUASI-PLANE MODEL WITH INFINITE

SPACES

With the toroidal interpretation in the plane symmet-
ric limit, the proof that M(z) is a measure of the active
gravitational mass was rather simple. The same may be
shown also when the quasi-plane model is interpreted as
infinite in extent, but in a more complicated way. We do
show it in this section – however, this is only for math-
ematical completeness. As demonstrated in Ref. [18],
with the infinite spaces the quasi-plane Szekeres solu-
tions have irremovable shell crossings, and so are in fact
not acceptable as cosmological models.

This section was Sec. XII in Ref. [20].

Recall that with ε = 0 we are free to rename the func-
tions R, E and M as in (7.1), and the result will be the
same as if S ≡ 1. Thus, we assume S ≡ 1 throughout
this section.

For the beginning let us consider the plane symmetric
subcase of the ε = 0 model, which has P,z = Q,z = 0. Let
us choose a circle of radius 1 centred at (x, y) = (P,Q)
(both P and Q being now constant) in every surface of
constant t and z. Let d2xy be the surface element in the
(x, y) plane, and let U be the outside of the unit circle.
This region has finite surface area. Then, introducing
(u, ϕ) by

x = P + u cosϕ, y = Q + u sinϕ, (10.1)
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we get

∫

U

d2xy
1

E2
=

∫ 2π

0

dϕ

∫ ∞

1

4

u3
du = 4π, (10.2)

in every (t = const, z = const) surface. Now let V be a
3-dimensional set in a t = const space, extending from
z = zc to a running value of z, whose every section of
constant z is U – the outside of the unit circle (x−P )2 +

(y−Q)2 = 1. Calculating M =
∫
V
ρ
√
|g3|d3x with ε = 0,

S = 1 and P,Q constant we get E ,z = 0 and

M =
1

4π

∫

U

d2xy

∫ z

zc

du
M,u√
2EE2

=

∫ z

zc

M,u√
2E

(x)du,

(10.3)

Thus, in this case, M behaves as the active gravita-
tional mass contained outside a tube of coordinate height
(z − zc) which has radius equal to 1 at every z value,

while 1/
√

2E plays the role of the mass defect/excess
factor. We recall that the (x, y) coordinates of (2.7), in
the plane symmetric case ε = 0 = E ,z , S = 1 are related
by the inversion (3.1) to the Cartesian coordinates (p, q)
in a plane, so the outside of the tube in the (x, y) coor-
dinates is in reality the inside of the same tube in the
Cartesian coordinates. Thus, physically, M is the active
mass within a tube V2.

We calculated the integrals in (10.2) and (10.3) around
the central point (x, y) = (P,Q). However, with plane
symmetry, the origin of the Cartesian coordinates can be
transferred to any other point by a symmetry transfor-
mation.10

Let us consider the transformation (3.1), after which
the metric becomes (3.2), which is formally (2.7) with
E = 1 and (x, y) renamed to (p, q). In this form, the
transformation

p = p′ + Ap, q = q′ + Aq (10.4)

(with Ap and Aq being arbitrary constants) is an isom-
etry of (3.2). Thus, the transformation (10.4) does not
change either the metric (3.2) or the value of the inte-
gral (10.2), which, in the variables (p, q), becomes simply
4
∫
S1

dpdq = 4π, independently of where the centre of the
circle S1 is located.

Now let us consider the planar metric ε = 0 that is
not plane symmetric, i.e. with P,z and Q,z not van-
ishing simultaneously. Let U(z) be the outside of a
unit circle in an z = const surface, with the centre at

10 The circle of unit radius in the Cartesian coordinates, when
moved to another point of the (p, q) plane, will not have a unit
coordinate radius in the (x, y) coordinates, and the image of the
center of the circle will not be the center of the image circle.
However, the surface area of the circle and the invariant dis-
tances between points are not changed.

(x, y) = (P (z), Q(z)). Within each single such surface,
applying the transformation of variables (10.1), we get

∫

U

d2xy
1

E2
=

∫ 2π

0

dϕ

∫ ∞

1

4

u3
du = 4π,

∫

U

d2xy
E ,z
E3

(10.5)

=

∫ 2π

0

dϕ

∫ ∞

1

−4u cosϕP,z −4u sinϕQ,z
u5

du = 0.

These integrals do not depend on P,z or Q,z, but the
centres of the circles no longer have the same (x, y) co-
ordinates at each z. Thus, to use (10.5) in an analogue
of (10.3), we have to take a volume V which is a wiggly
tube: its every cross-section with a constant z surface is
a unit circle, but the centres of the circles do not lie on a
line orthogonal to the z = const surfaces. Instead, they
lie on the curve in the t = const space given by the para-
metric equations x = P (z), y = Q(z). Because of the
second of (10.5), (10.3) still follows for this single tube.

The whole 3-space t = const is now no longer homo-
geneous with respect to the group of plane symmetries.
However, each single z = const surface in that space is
homogeneous. In particular, the surface containing the
base of the tube, z = z0, is homogeneous. Thus, we can
apply the inversion (3.1) with P = P (z0), Q = Q(z0).
The inside and outside of the unit circle in the z = z0
surface will thereby simply interchange, but the resulting
transformations in other z = const surfaces will be more
complicated, and the wiggly tube will deform substan-
tially. Still, in the inverted coordinates we are now free
to move the centre of the base circle (within the z = z0
surface) to any other point.

We now carry out this plan. Let us denote:

P (z0)
def
= P0, Q(z0)

def
= Q0,

V
def
= (P0 − P )2 + (Q0 −Q)2. (10.6)

To the metric (2.7) with ε = 0 and S = 1 we apply the
inversion adapted to the surface {t = const, z = z0}:

x = P0 +
p

p2 + q2
, y = Q0 +

q

p2 + q2
. (10.7)

After this, the 2-metric R2
(
dx2 + dy2

)
/E2 becomes:

ds2
2 =

1

Ẽ2

(
dx2 + dy2

)
, (10.8)

2Ẽ = V
(
p2 + q2

)
+ 2 (P0 − P ) p + 2 (Q0 −Q) q + 1.

In these coordinates, the surface {t = const, z = z0} is
explicitly homogeneous, so we are now free to shift the
origin of coordinates to any other point by

p = p′ + A1, q = q′ + A2, (10.9)

with A1 and A2 being constants. After the shift, the
metric is still Szekeres with ε = 0, but with complicated
expressions for the new P , Q and S.
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After the transformations (10.7) and (10.9) the region
U of integration in (10.5) (which was the outside of a tube
extending out to infinity) goes over into a finite region –
the inside of a certain tube whose edge is the image of
the family of unit circles in (x, y). In the integrals (10.5),
the two transformations are just changes of integration
variables, so the values of the integrals do not change, and
thus (10.3) still applies. This shows that over each point
of the surface of constant t and of z = z0 in the Szekeres
ε = 0 metric, we can find a region of finite volume (a
wiggly tube) such that the function M can be interpreted
as the active gravitational mass within that tube.

As an illustration we now consider a special case of

the transformation (10.9) with A1
def
= λ and A2 = 0. But

first we give the complete transformation that will take
us back to the coordinates of (2.7) in the surface z = z0.

To the variables (p′, q′) of (10.9) we apply the inver-
sion in a circle of radius 1 centred at (p′, q′) = (0, 0),
and the shift by (P0, Q0) to the resulting (x′, y′) coordi-
nates. Calling the final coordinates (x2, y2), we calculate
the effect of (10.9) on the variables (x, y). The complete
transformation from (x, y) to (x2, y2) is

x2 = P0 +
1

W
(x− P0 + A1U) ,

y2 = Q0 +
1

W
(y −Q0 + A2U) , (10.10)

where

U def
= (x− P0)2 + (y −Q0)2, (10.11)

W
def
= 1 + 2 [A1(x− P0) + A2(y −Q0)] +

(
A1

2 + A2
2
)
U .

This set of transformations does not change the metric
(2.7) in the hypersurface z = z0, but after the transfor-
mations the unit circle U = 1 goes over into the circle

(x2 − P0 −A1/γ)
2

+ (y2 −Q0 −A2/γ)
2

= 1/γ2,

(10.12)

where γ
def
= A1

2 + A2
2 − 1.

Now we specialize this to the 1-parameter subgroup
A1 = λ, A2 = 0, i.e. to the shift along the p-direction in

(10.9). The transformation (10.10) – (10.11) becomes:

x2 = P0 +
x− P0 + λ{(x − P0)2 + (y −Q0)

2}
W0

,

y2 = Q0 +
y −Q0

W0
, (10.13)

W0
def
= λ2{(x− P0)2 + (y −Q0)2} + 2λ(x− P0) + 1,

and its inverse is obtained by replacing λ with (−λ), i.e.

x = P0 +
x2 − P0 − λ{(x2 − P0)2 + (y2 −Q0)2}

W̃0

,

y = Q0 +
y2 −Q0

W̃0

, (10.14)

W̃0
def
= λ2{(x2 − P0)2 + (y2 −Q0)2} − 2λ(x2 − P0) + 1.

The Jacobians of the two transformations are, respec-
tively

J̃ =

∣∣∣∣
∂(x2, y2)

∂(x, y)

∣∣∣∣ =
1

W 2
0

,

J =

∣∣∣∣
∂(x, y)

∂(x2, y2)

∣∣∣∣ =
1

W̃ 2
0

. (10.15)

The following identities are useful in calculaitons:

(x2 − P0)2 + (y2 −Q0)2 ≡ (x− P0)2 + (y −Q0)2

W0
,

(x− P0)2 + (y −Q0)2 ≡ (x2 − P0)2 + (y2 −Q0)2

W̃0

.

(10.16)

The transformation (10.13) takes the circle (x−P )2 +
(y −Q)2 = u2 to a shifted circle with a different radius,
namely

(x2 −A)2 + (y2 −B)2 = (u/p0)
2
, (10.17)

where

A
def
=

λ2P0

[
(P0 − P )2 + (Q0 −Q)2 − u2

]
− λ

[
u2 + P 2

0 − P 2 − (Q0 −Q)2
]

+ P

p0
,

B
def
=

λ2Q0

[
(P0 − P )2 + (Q0 −Q)2 − u2

]
− 2λQ0(P0 − P ) + Q

p0
,

p0
def
= λ2

[
(P0 − P )2 + (Q0 −Q)2 − u2

]
− 2λ(P0 − P ) + 1 (10.18)

(in fact, these will be applied with u = 1.) Now using (10.14) – (10.16) we find:

(x − P )2 + (y −Q)2 =
S0

W̃0

[
(x2 + α)2 + (y2 + β)2

]
,

(10.19)
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where

S0
def
= 1 − 2λ(P0 − P ) + λ2

[
(P0 − P )2 + (Q0 −Q)2

]
,

α
def
= −P0 +

P0 − P − λ
[
(P0 − P )2 + (Q0 −Q)2

]

S0
,

β
def
= −Q0 +

Q0 −Q

S0
. (10.20)

Note that S0, α and β are functions only of z, they do not

depend on x2 and y2. We can see that the W̃ 2
0 that will

appear in the transformed integral in (10.5),
∫
U

d2xy/E2,

will be canceled by the W̃ 2
0 from the Jacobian of the

transformation, and what remains will be

∫
1

E2
dxdy =

4

S0(z)
2

∫
1

[(x2 + α)2 + (y2 + β)2]
2 dx2dy2,

(10.21)
an integral of exactly the form (10.5), except for the ad-
ditional factor 1/S0

2.
The transformation (10.13) affects also the metric. Un-

der (10.13), E changes as follows:

E = (x−P )2 + (y−Q)2 =
S0

W̃0

[
(x2 + α)2 + (y2 + β)2

]
.

(10.22)
The expression dx2 + dy2, after the transformation
(10.13) goes over into

(
dx2

2 + dy22
)
/W̃ 2

0 , (10.23)

and so the two equations above imply that after the
transformation:

dx2 + dy2

E2
=

dx2
2 + dy2

2

S0
2 [(x2 + α)2 + (y2 + β)2]2

. (10.24)

We are in the same Szekeres model as at the beginning,
but at a different location. The alien form of the Szekeres
metric in these coordinates results from the fact that the
transformation (10.13) is not a symmetry, apart from the
single surface z = z0. Since the quantities in this equa-
tion (α, β and S0) depend on the continuous parameter
λ, the equation above describes the result of a shift to any
location (with λ = 0 corresponding to identity). Equa-
tions (10.24) and (10.21) show that the transformation
(10.13) is area-preserving.

The second integral in (10.5) does not change its zero
value under the transformation (10.13) – since that trans-
formation is simply a change of variables under a definite
integral, applied both to the integrand and to the area of
integration. Thus, the second integral in (10.5) does not
contribute to calculating M in (10.3).

XI. SUMMARY

Continuing the research begun in Ref. [18], geomet-
rical properties of the quasi-plane Szekeres model were

investigated here, along with the corresponding proper-
ties of the plane symmetric model. The following results
were achieved:

1. The pattern of decelerated expansion in the plane
symmetric model was analysed and shown to be in com-
plete disagreement with the Newtonian analogues and
intuitions (Sections III and IV). An example of a Newto-
nian potential that gives a similar pattern of expansion
has co-axial parallel cones as its equipotential surfaces;
it has not been investigated whether such a potential can
be generated by any realistic matter distribution.

2. Embeddings of the constant t and constant z sur-
faces in the Euclidean space suggest that the flat surfaces
contained in the plane symmetric model can be inter-
preted as flat tori whose circumferences are proportional
to the function R(t, z), and thus vary with time (Sec. V).
Such a topology immediately explains the pattern of ex-
pansion and implies that the total mass contained within
a z = const surface is finite.

3. The quasi-plane and quasi-hyperbolic models are
permanently trapped (Sec. VI), so no apparent horizons
exist in them. Consequently, these models cannot be
used to describe the formation of black holes (the whole
Universe is one black hole all the time).

4. The quasi-plane model cannot describe the forma-
tion of structures that collapse to very high densities (Sec.
IX), since the density perturbations tend to finite values
in the asymptotic future.

5. In the full (nonsymmetric) case the mass function
is proportional to the active gravitational mass within a
’wiggly tube’ of finite radius (Sec. X).

Whether the toroidal interpretation is a necessity is
still unknown. However, this paper demonstrated that
with the toroidal topology the plane symmetric model
becomes in several respects simpler, and, however para-
doxical this may sound, more realistic.

The plane symmetric model with toroidal spaces may
be a testing ground for the idea of a ’small Universe’, pro-
posed by Ellis [29]. A small Universe is one with compact
spatial sections, in which thus a present observer has al-
ready seen several times around the space. Several papers
were devoted to checking this idea against the observa-
tional data (see, for example, Refs. [30] – [35]; a conclu-
sive proof or disproof of any nontrivial topology is, unfor-
tunately, still lacking). However, the background geome-
try has always been a homogeneous isotropic Robertson
– Walker metric with identifications in the underlying
manifold. The plane symmetric toroidal Szekeres (Ellis)
model has a less general topology (identifications in it oc-
cur only in two-dimensional surfaces, in the z-direction
the space is infinite), but is inhomogeneous, so might be
useful for considering light propagation and comparing
the mass distribution in the model with the observed im-
ages.
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