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Structure formation in the Lemaitre-Tolman model
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Structure formation within the Lertae-Tolman model is investigated in a general manner. We seek models
such that the initial density perturbation within a homogeneous background has a smaller mass than the
structure into which it will develop, and the perturbation then accretes more mass during evolution. This is a
generalization of the approach taken by Bonnor in 1956. It is proved that any two spherically symmetric
density profiles specified on any two constant time slices can be joined by attefaman evolution, and
exact implicit formulas for the arbitrary functions that determine the resulting LT model are obtained. Ex-
amples of the process are investigated numerically.
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I. INTRODUCTION initial data, not the other way around. This is what inflation
is believed to have done. However, in this paper we shall

Though the Lemane-Tolman(LT) model has been stud- accept a high degree of homogeneity at decoupling, and we
ied extensively(see[1]), the question of whether galaxies Will determine how fast condensations can grow, once they
and other modern cosmic structures can grow from smal®ppear in a homogeneous background.
initial perturbations, using this exact inhomogenous cosmo- In this paper we shall relax Bonnor's assumptions, and
logical model, has not been clearly answered. consider the general case. In particular, we envisage a sce-

Long ago Bonnof2] considered a version of the general nario in which the mass of the initial fluctuation is much
problem, in which the perturbation consisted of an interiorsmaller than the mass of the condensation into which it will
region matched to a Friedmann-LeimaiRobertson-Walker develop, and that it captures more mass during its evoldtion.
(Friedmani exterior, so the initial fluctuation of density in- The outer edge of the growing condensation will thus not be
cluded all the dust particles that would enter the future galcomoving with the background flow. The calculations, al-
axy, and so the outer edge of the perturbation had to b#hough based on exact formulas, will have to be carried out
comoving with the (spatially homogeneouisbackground —numerically.
flow ever after. Because of this, and given the present age of In the following we set\ =0, as its effect is felt primarily
the Universe, the initial fluctuation had to have an amplitudeat late times over the long range, and so will not strongly
many times larger than a statistical fluctuation could haveaffect structure formation. Also, current interpretations of the
However, current matter models, that allow perturbations t“MB and supernova data that estimate a non-z&rp,
grow before recombination, have successfully predicted temshould be regarded as provisional, since several reasonable
perature perturbations in the cosmic microwave backgroundlternatives have been put forward.

(CMB) of order 10°°.

The very existence of inhomogeneous cosmological mod-
els (i.e., spatially inhomogeneous solutions of Einstein’s
equations with expanding matjesuch as the LT3,4] or
Szekereg5,6] models, shows that non-Friedmannian distri-  The Lematre-Tolman (LT) model [3,4] is a spherically
butions of density and velocity would have been coded in th&ymmetric nonstatic solution of the Einstein equations with a
big bang and need not be “explained” as statistical fluctua-dust source. Its metric is
tions that appeared within a homogeneous background dur-

Il. BASIC PROPERTIES OF THE LEMAI "TRE-TOLMAN
MODEL

ing evolution. Moreover, since the LT collection of models is R 2

labeled by two arbitrary functions of mass, that reduce to gs?=dt2— ———— dr2— R(t,r)(d92+ si?9de?),
specific forms in the Friedmann limit, it follows that the dust 1+2E(r)

Friedmann models are a subset of measure zero within the 2.9

LT set. Consequently, the Friedmann models are very im-

probable statistically and, assuming that our physical UniwhereE(r) is an arbitrary functiorfarising as an integration
verse is homogeneous indeed, one needs to explain how hoenstant from the Einstein equationR,, is the derivative of
mogeneity might have come about out of inhomogeneoushe functionR(t,r) by r, andR obeys the equation

*Email address: akr@camk.edu.pl 1Such a modification of Bonnor’s method was suggested by S.
TEmail address: cwh@maths.uct.ac.za Bazarski during one of the seminars by A. K. in Warsaw.
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2 1 2
R,2=2E+2M/R+ Z AR?,

3 (2.2

where A is the cosmological constant. Equati@®2) is a
first integral of one of the Einstein equations, avidqr) is
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It will be convenient in most of what follows to usé(r)
as the radial coordinafeée.,r’=M(r)] because in the struc-
ture formation context one does not expect any “necks” or
“bellies” where M,,=0, and soM(r) should be a strictly
growing function in the whole region under consideration.

another arbitrary function that arises as integration constanfS€€ the papers by Barnes and, especially, by Hefla{0)

The matter density is

2M,, 8
Kp= —5——, where k= 2
i r C

(2.3

In the following, we will assume\ =0. Then Eq.(2.2)
can be solved explicitly. The solutions are:
WhenE<O:

M
R(t,r)=— z=(1—cosy),

2E
(-2E)*
n—sinnp= T(t—ts(r)), (2.9
where » is a parameter. WheB=0:
9 1/3
and whengE>0:
M
R(t,r)= E(coshr;—l),
. (2E)@
sinhyp—7n= T(t—ts(r)), (2.6)

wheretg(r) is one more arbitrary functiotthe bang timg

for descriptions of necks. Some properties of a neck ap-
peared also in the paper by Novikéid].) Then
kp=2/(R?R,y)=6/(R3),\ . (2.9

We also, in searching for realistic models, prefer LT mod-
els that are free of shell crossin{g]. This is not because
shells of matter cannot collide, but because the LT co-
moving description breaks down there.

We shall now apply this model to the problem of structure
formation within the exact relativity theor.e., without ap-
proximations. We believe this question has not been satis-
factorily answered so far, and so it deserves to be investi-
gated more thoroughly, both as an important consequence of
LT models, and with a view to possible cosmological appli-
cations. We seek accreting models in which a small initial
fluctuation at decoupling captures more mass during its evo-
lution, thus growing in extent as well as in density contrast.

Ill. THE EVOLUTION AS A MAPPING FROM AN INITIAL
DENSITY TO A FINAL DENSITY

The evolution of the LT model is usually specified by
defining the initial conditions—the distributions of the big
bang timetg(M) and of energye(M), or by specifying e.g.
the densityp(t,,R) and velocityR ((t;,R) at an initial in-
stantt=t,. It is, however, possible, to approach the problem
in a different way: to specify the density distributions at two
different instantst=t, andt=t,, calculate the correspond-
ing E(M) and tg(M), and in this way obtain a definite
model. It is not immediately obvious whether all pairs of

Note that all the formulas given so far are covariant undegensity distributions may be connected by an LT evolution of

arbitrary coordinate transformatioms=g(r’), and sor can

a chosen type; nor whether one can ensure shell crossings do

be chosen at will. This means one of the three functiongiot occur betweety andt,. However, such a mapping from
E(r), M(r) andtg(r) can be fixed at our convenience by the an initial density to a given final density should exist in many

appropriate choice of.

In a general LT modelE may change sign, having both

cases, especially with a sensible choice of density profiles.
In fact, it will be proven below that any initial value of

recollapsing and ever-expanding regions. Also the space density at a specific positiorr (M cons} can be connected
=const withE(r)<0 everywhere is not necessarily closed to any final value of density at the same position by one of

[and the one withE(r)>0 is not necessarily infinife see
Refs.[7,8].
The Friedmann models are contained in the Léraal
Tolman class as the limit
tg=const, |E|*¥M=const,

(2.7

the Lematre-Tolman evolutiongeitherE>0, orE<O0, or, in
an exceptional cas&=0). In the Friedmann limit, any two
constant densities can be connected by one okth®, k
<0 ork=0 Friedmann evolutions.

For definiteness, it will be assumed in the following that
the final instantt, is later than the initial instant;, i.e. t,
>t,, and that the final density(t,,M) is smaller than the

and one of the standard radial coordinates for the Friedmanipitial density p(t,,M) at the saméVl. We thus assume that

model results if the coordinates in Eq2.4)—(2.6) are cho-
sen so that
M=Mgr3, (2.9

where M, is an arbitrary constant; so th&=E,r?E,
= const.

matter has expanded along every world line, but the proof
can be easily adapted to the collapse situation.

A. Hyperbolic regions

Let us consider the LT model witB>0. Let the initial
and final density distributions at=t; andt=t, be given by
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p(t1,M)=p1(M), p(t2,M)=p(M). (3.1 o xu(x)
lim———-=0. 3.7
From Eq.(2.3) we then have, for each of andt,, x—o(ta—1tg)X
5 M 6 5 _ Hence, the last term iny,; becomes dominant whex—
Rs(tiaM)_Rminizf —dM'":=R’(M), =12 +o0, and so
MminKpi(M /)
3.2 lim gy(x)=—o0. (3.9

andR,(M)>R;(M) in consequence qi(t,,M)<p(t;,M). o

In the following we will assume there is an origin where |; js easy to see thak,(0)=0, but we wish to know whether
M=0 and R(t;,0)=0, SO thatRy=0=Mpy;, is valid? yy—0" or yy—0~ asx—0. For this purpose, note that
Solving the two parts of Eq2.6) for t(R,r) and writing it
out for each of {;,R;) and ¢,,R,) leads to

32 3/2

diX¢H<x>=¢H,x=& ¢Zazx_ Jzaialx—iaz—tl) ,

tB=ti—(2E—)3/2[\/(l+2ERi/M)2—1 3.9
—arcoslil+2ER /M)], i=12 3.3 from which it follows that

P x(0)=0, limyy = —oe. (3.10

and then eliminatingg between the two versions of E@R.3)
we find

X— e

It is also easy to see that the term in square brackets in Eq.
(3.9 is a strictly decreasing function for alle [ 0,0), and so

V(1+2ER,/M)?—1—arcoslil+2ER,/M)

— J(1+2ER,/IM)2=1+arcoslil+2ER, /M) it may be equal to zero in at most one point. Since it goes to
the negative value- (3/2)(t,—t;) whenx—oo, it will have a
=[(2E)*M](t,—1ty). (3.4  zero when it is positive at=0, i.e. when
We shall prove that this equation has one and only one solu- V2
tion E(M)>0 (in addition to the trivial solutiofE=0) pro- tz—tl<?(az3’2— a,;>?). (3.11)
vided thatt, andt; obey a certain inequalitisee below. In
fact, the |nequal|t3|/ V\1I|| .exclulde thEdso models. By comparison with Eq(2.5), sincea, =R, /M3, the above
For ease of calculations, let us denote is seen to be equivalent to the statement that betweand
x=2E/M23 a=R/MY® i=12 t,, R(t,M) has increased by more than it would have in-
o ' Y creased in th&€=0 LT model. This is a necessary condition
I (X): = (1 + ax)?— 1—arcoshil+ayx) Igrér&e e'\;l(i)stence of aE>0 evolution connectindgr(t;,M)
29 .
—J(1+a;x)°—1+arcostil+a;x) It is also a sufficient condition, as we now explain. With

Eq. (3.1 satisfied, lim oy =07, i.e. ¢y,>0 in a
— (= t)x¥2=xy (0~ (t2=t)x¥* (35  neighborhood ofx=0, then it goes through zero exactly
once, at som=x,,, and becomes negative. This means
that sy (x) itself is increasing from the value 0 &0, to a
maximum atx=Xx,,, and is then decreasing all the way to
x—oo where it becomes-«. Hence, at one and only one
=Xo>Xm, ¥n(Xe)=0. This implies that Eq(3.4) defines a
functionE(M) in the whole range oM in which Eq.(3.1])
is satisfied. Examples of the functiogig(x) from Eqg. (3.8
that obey or do not obey E@3.11) are shown in Fig. 1.
arcoshil+a:x) arcoshil+a;x) There remains a practical problem for the numerical cal-
im = — lim "~ -0, (3.6 culation ofE(M). Since the range ofis infinite in Eq.(3.5),
koo V(12 x)2—1  xow (tp—tg)x32 an initial valuex,<o such thaty,(x,) <0 has to be deter-
mined first. For this purpose, note that for largeve have
and so in determining the sign gf,(x) asx—, the arcosh  [(1+a,x)?— 1~1+a;x. Together with Eq.(3.6), this im-
terms can be neglected. Note also plies thaty(x) is well approximated for large by

Our problem is then equivalent to the following question: for
what values of the parameteas>a, andt,>t,; does the
equationy(X) =0 have a solutiox= 0? Note that/y has a
zero atx=0 that the more correct but less convenient
x 32y — (t,—t,) does not have.

Sincex=0 anda;>0 by definition,y(x) andxy(x) are
well-defined for anyx e [0,0). Note that

Ya(X)=(ap—ay)x— (t,—ty)x¥2 (3.12
2For examples where this is not the case, see the papers by Ein-
stein and Straugl 2,13 with M,;,#0 andR,,;,=0, and by Bonnor  Indeed, it is easy to verify that for ai>0
and Chamorr$14] whereM =0 from R=0 to R,;,,. Also “necks”
are the locus of a minimum iM andR. P (X) < ha(X). (3.13
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FIG. 1. The functiongy(x) for the caseE>0 with Eq. (3.11)
satisfied (middle curve and with Eq.(3.11) not satisfied(lower
curve). The upper curve is the approximating functigp(x) from
Eqg. (3.12. The parametersag,a,,t,—t;) are (1,2.5,0.5) for the
two upper curves and (1,2.5,1.4) for the lower one.

[Writing  #i(X) — ga(X)=xn(X) —(@2—a)x, and @y x
—a) =W(ay)—W(a;), where W(a)=a*?/x/\2+ax
—a, we note thatwW(a) is a decreasing function o for
every x>0, while #4(0)=a(0)=0. Hence, yy(X)
<a(x) for x>0.] Therefore, if ra(xa) =0, then y(Xa)
<0.

The solution ofia(X)=0 is

:(az_al)z
(t,—t)?’

and sox, is a good initial value for the numerical program
that will find a solution ofi(x)=0 by bisecting the seg-
ment[ 0, x,] and checking the sign af,(xa/2).

Also, for numerical purposes, the limits of some of the
functions atM=0 must be calculated separately, as ex-
plained in Appendix B.

(3.19

XA

B. Still-expanding elliptic regions

For E<O, a similar result holds, but with one more re-
finement: depending on the value d){t;), the final den-
sity will be either in the expansion phase or in the recollaps
phase(and only in one of these phase$he dividing value
of (t,—t;) will come out in the proof below.

Let us assume that the of Eq. (2.4) is in [0,7] for both
values oft;, so that the final density is still in the expansion
phase of its evolution(For »e[m,27], the solutions for

e
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where this time

X:=—2E/M%3

Py(X):=arcco$l—a,x) — V1—(1—a,x)?
—arcco$l—a;x)+V1—(1—a;x)?

—(ta= t)x¥2 = yy(x) = (t,— t)x¥, (3.17
the definitions ofg; being still Eq.(3.5).

The reasoning is entirely analogous to the one for Eq.
(3.5), but this time the arguments of arccos must have abso-
lute values not greater than 1. This implies 2/a; for both
i, and so, sinca,>a,

0s=x<2/a,, (3.18
which means: if there is any solution of E.16), then it
will have the property(3.18. The two square roots in Eq.
(3.17 will then also exist. Equationi3.18) is equivalent to
the requirement thatR,,)? [in Eq. (2.2) with A=0] is non-
negative at both; andt,.

Note that

#x(0)=0,

Px(2lay)=m—arccosl—2a,/a,)

+2Va,la,—(a;/a,)?

—(2/a,)¥(t,—ty), (3.19
d 2,2
&l/fx(x): Y= X \/Z?azx
3/2
t ] (3.20

i (Y
\/Tal)( 2(2 1)

In consequence a@&f,>a;, the term in square brackets is now
an increasingfunction of x, and it becomes-«~ at x=2/a,
[which only means tha#/y(x) has a vertical tangent thdre
Hence, the term can go through zero at most once, and it will
do so when it is negative at=0, i.e. when the opposite to
Eq. (3.1 holds

(3.21

J2
HL—1> 3 (a¥2—a,%?).

(t;—tg) are different, and they will be considered separately.

below) The analogues of Eq$3.3) and (3.4) are then

tg=t [arcco$l+2ER /M)

- (_ 2E)3/2

—V1—-(1+2ER/M)?] (3.15

and

x(x)=0, (3.16

This means that the model must have expanded betieen
andt, by less than th&=0 model would have done. If Eq.
(3.21) does not hold, thewy , is positive for allx>0, which
means thai/y(x) is increasing and will not be zero for any
x>0. Hence, Eq(3.2)) is a necessary condition for the ex-
istence of a solution of Eq3.16).

With Eqg. (3.21) satisfied,x x(x) becomes negative for
somex>0, then goes through zero exactly once and then is
positive all the way up tx=2/a,. This implies thatiy(x)
initially decreases below 0, then has exactly one minimum
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and is increasing up to the val8.19 at x=2/a,. Hence,
P (x) will have a zero forx>0 only if ¥(2/a,)=0, i.e. if

t,—t;=<(a,/2)%9 w—arcco$l—2a,/a,)
+2a, la,— (a;/ay)?].

The inequality(3.22 is consistent with Eq(3.21); see Ap-
pendix A. Equationg3.21) and(3.22 together are a neces-
sary and sufficient condition for Eq&3.16), (3.17) to define
a functionE(M) <0 for whichR(t,,M) is still in the expan-
sion phase of the model.

(3.22

C. Recollapsing elliptic regions

The reasoning above applied only in the increasing branch

of R in Eqg. (2.4). For the decreasing branch, wherg
e[ m,2], instead of Eqs(3.16), (3.17) we obtain

tg=t1— [arcco$l+2ER; /M)

(_ 2E)3/2

—V1—(1+2ER;/M)?]

=t,— [7+arccos—1—2ER,/M)

(_ 2E)3/2

+V1—(1+2ER,/M)?] (3.23
and
=0, where
Po(X):=m+arcco$— 1+a,x) + 1— (1—apx)?
—arcco$l—a;x)+1—(1—ayx)?

—(t,—t)x%2 (3.29
The derivative of this is
d a23/2 al3/2
— (X)) = =—/X +
dxlﬂc( )= thc x Vx o  o—an
3
+§(t2—tl) , (3.25
and is negative for atk>0. Since
#c(0)=27>0, (3.26)

the solution ofic(x)=0 for x>0 will exist if and only if
¥c(2/a,)<0, which translates into the opposite of Eg.

(3.22:
t,—t;=(a,/2)%9 m—arcco$l—2a,/a,)

+2a, la,— (a;/ay)?]. (3.27)
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0 0.2

FIG. 2. The functiongy(x) for the caseE<0 with Egs.(3.21)
and(3.22 satisfied(middle curve, with Eq.(3.21) satisfied and Eq.
(3.22 not satisfiedlower curve, and with Eq.(3.21) not satisfied
(upper curve The parametersag,a,,t,—t;) are (1,2,2) for the
middle curve, (1,2,3) for the lower curve, and (1,2,0.05) for the
upper curve.

Thus the two densities can be connected byEan0O LT
evolution that is recollapsing at timg if Eq. (3.27) is
obeyed.

Examples of functiongiy(x) obeying or not obeying Eqs.
(3.2) and (3.22, and of functionsyc(x) obeying or not
obeying Eq.(3.27) are shown in Figs. 2 and 3.

D. Summary

The above analysis considered only single world lines,
that is, singleM values. We extend this to the whole of
pi(M) by noting thatE(M) andtg(M) are arbitrary func-
tions in the LT model, and so continuows will generate
continuousE andtg .

The meaning of the limiting cases is now easy to
understand. In Eq.(3.1), at M values wheret,—t;
=(4/2/3)(a,%?—a,%?), the final state results from the initial

10 ' ' | I

o o -

L i

e i

‘I \\\-.

0

2| _

4} -

6}t

-8 : I I I
0 0.2 0.4 0.6 0.8 1

FIG. 3. The functiony(x) from Eq. (3.24 obeying Eq.(3.27)
(solid curve and not obeying it(dashed curvye The parameters
(a1,a,,t,—t,) are (1,2,9) for the first curve and (1,2,0.2) for the
other one.
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one by a parabolicE=0) evolution, so thidvl value is on 0= ¢yy(X)=V(1+a,x)>— 1—arcoslil+a,x)
the boundary between an elliptic region and a hyperblic one. 3
Equation(2.5) follows as theE—0 limit of Eq. (2.4) and of —V(1+a;x)°—1+arcoshil+a;x)—(tz—ty)X

Eqg. (2.6). In Egs.(3.22 and(3.27), for M values where the

equality holds, the final state is exactly at the local momen

of maximal expansion, separating a regionpefthat is al- 1

ready recollapsing from one that is still expanding. tg=t,— —[(1+ax)2— 1—arcoslil+ax)].
However, wherE<O it must be remembered that the sig- x3/2

nature of the metric requires that

nd

Parabolic E=0:
E(M)=-1/2, (3.28 If (t,—t,) is close to

and so, onc& (M) has been calculated, E@.28 will have t2—t1:(\/§a§’2/3)(1— a®?)
to be checked. Note that the Friedmann model in standard

coordinates has exactly this problem—witE2 —kr? and  then a series expansion gives
M=Mgr?, blindly continuing througtr =1 will make E< o3

—1/2 andM >M iverse- INdeed, given two uniform densi- E=xM“*2

ties p,<p; that are appropriate for a closed Friedmann

model, the integra(3.2) can be extended to arbitrarily large wherex solves

M andR. Thus the occurrence &= —1/2 is not a problem, 312 3 9
but rather an indication that the maximum of the spatial sec- 0= iyp(X)~ (ag’z( 1— ——a,Xx+ —agx2
tion has been reached. One should record the valuBs, of 3 20 224
andM ., and then use 3

3 s —ad¥q1- S8t 2—24a§x2 —(tz—tl)J

R -—R3(t-,|v|):f ——dM’  (3.29

max i M Kpi(M ,) and
and distinguish theM values beyond the maximum from J2 3 9
those in front of it. tg~ti— ?aislz 1= Sgaxt @aizxz -

Another serious possibility is that shell crossings, where
the density diverges and changes sign, may occur. If theEIIiptic E<0 and still expanding at.t
occur betweert; andt, the model evolution is unsatisfac-
tory, but if they occur beforg; or aftert,, this may not be of

much concern. The conditions oB(M) and tg(M) for (a,/2)3q m—arcco$l—2a) +2\Ja— a?]>t,— t;
avoiding them[7] must also be checked.
All these considerations apply to the Friedmann limit, but >(2a3%3)(1- a®?)

it must be remembered that in comparing models in a con-
tinuous Friedmann family, one must not scale the curvaturéhen
indexk to +1 or —1 when it is nonzero. The parameteis

— 2/3
adapted to the initial and final densities together wih. E=—xM"2
With k scaled to+ 1, taking the limitk— 0 within the family h |
becomes impossible, and the inequaliti@d1) and(3.21) do Wherex solves
not come up.
. . 0= y(X)=arcco$l—a,x) — J1—(1—a,x)?
In summary, for densitieg,(M)<p4(M) at timest,>t, ¥x() ¢ 2X) ( 2X)
we havea,>a; wherea,=R, /M3 and writing —arcco$l—a;x)+ V1—(1—ax)2—(t,—t;)x?
a=aj/a, and

the nature of the LT model that evolves between these states 1
at a givenM is: tg=t;,— 72[arcco$1— ax)— V1—(1—ax)?].
Hyperbolic E>0: X

If
Elliptic E<0 and at maximum expansion at t

t,—t,<(V2ad%3)(1- a*? If (t,—t,) is close to
then t,—t,=(a,/2)¥] m—arcco$l—2a)+ 2\ a— a?]
E=xM?32 then a series expansion gives
wherex solves E=—xM?32
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wherex solves
23/2
-2 ax)¥%+ 7

—arcco$l—a;x) + Va;x(2—ax) —x¥At,—t;)

0=y (x)~—2%2(2—a,x) Y2+

and

1
tg=t;— —;[arcco$l—a;x)— y1—(1-a;x)?]
X

~t,— X3/2( 7 232(2 — ax) M2
23/2

o 32
+ 12(2 arx) )

Elliptic E<0 and recollapsing at 4:
If

t,—t,>(a,/2)%] m—arcco$l—2a) + 2\ a— o?]
then
E=—xM?32
wherex solves
0= (X)) = m—arcco§— 1+ a,x) + 1—(1—ayx)?
—arcco$l—a;x)+V1—(1—a;x)2—(t,—t)x3?

and

1
tg=t;— Tz[arccom— ax)—V1—(1- alx)z]
X

1
=t,— XTIZ[er arccos$—1+a,Xx)

+V1—(1—ayx)?].
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It is easy to adapt the above for the case>p,. Clearly any
parabolic or hyperbolic regions would be collapsing.

We conclude this section by stating the result as a theo-
rem:

TheoremGiven any two times$,; andt,>t,, and any two
spherically symmetric density profiles<(q,(M)<p;(M)
defined over the same rangelMf a LT model can be found
that evolves fromp, to p, in time t,—t;. The inequalities
(3.12), (3.21) and(3.22, (3.27 will tell which class of LT
evolution applies at eachl value. The possibilities of shell
crossings or excessively negative energies are not excluded,
and must be separately checked for.

IV. CONDITIONS FOR COMOVING EXTREMA OF
DENSITY

Since we expect the central condensation to propagate
outward into the Friedmann background, we have to set up
the initial conditions so that the edge of the condensation is
not comoving. For this purpose, it is useful to know the
general conditions for comoving extrema of density. We shall
now consider maxima and minima @f in those domains
wherep is differentiable, and usk! as the radial coordinate.

From Eg.(2.9 we see that extrema qf will occur at
those values oM where

(R®),um=0. (4.2
[This is a necessary condition only. Some of the solutions of
Eq. (4.1) will be inflection points ofp(t;,M) rather than
extrema, but the whole reasoning below will apply to them,
too.] For the cas& <0 we find from the second of E(R.4)

(_ 2E)3/2
M

(_ZE)3/2

Y m(t—tg)— te,m -

(4.2

(1—cosn)n,u=

Using this in the first of Eq(2.4) we find

3 ’ s o M _[[(=2E)% (—2E)32
(R%),mm =~ Y= mm(l—cosn)°—6 e m(l—cosn)siny VI .M(t—tB)——M tg,m
M3 sity os (—2E)%? (t—t )_(—2E)3’2t 2
83\ 1—cosy K M ™ B M B.M
MS . _ )3/2 (—ZE)3/2 (_ZE)3/2
_3@(1—COS77)SII’H7 - mm(t—tg)—2 ™ B,M_TtB,MM =0. (4.3

3For an expanding and a collapsing hyperbolic region to be contained in the same smooth model, there would have to be an elliptic region
between them. This is because fhe<p, region and they,> p, region must have a point between whege= p,. The only way this can be
arranged without causing shell crossings is for the elliptic region to be a Kruskal-like neck4+&iee
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This equation defines certain values Mf let us call them V. NUMERICAL EXAMPLE
M=Mg,, at which p may have extrema. We will verify

. . . A. Scales in the background
when they are comoving, i.e. whevi,, are independent of ! grou

time. The age of the universe is currently believed to be about
The Jacobia@(M, 5)/3(t,M) is nonzero everywhere ex- 14 Gyr. If recombination temperature is2700 K, thenz
cept those locations where =2700/2.73=1000 then recombination happened at about

t,=3x10° yr when the density was about #Qtimes the
present density.

However, in a k=0 dust (Friedmann model, Hy
=65 km/s/Mpc impliesty=2/3Hy=10 Gyr, which would
Hence, everywhere eldd and 5 can be considered to be putt, at 1¢ yr.
independent variables. Using the second of @cd), we can In an LT model that is close to parabolic even today, Egs.
eliminate ¢—tg) from Eq.(4.3), and, since thdl,, obeying (2.4 and (2.6) require sinhy—7~7°l6~7n—siny, so we
Eqg. (4.9 are assumed independent tofwhat results is an need#?<20, sayy<0.4. For a Friedmann model
equation inyn with coefficients depending oM. The coeffi-

7:,=0 = E=0. (4.4

cients of independent functions gfall have to vanish. This Me=Mqrd, 2Egp=*2Eqr? tge=0. (5.1
implies
. From Egs.(2.4) and(2.6) again the limit onE, is
[(—2E)*IM],u=[(—2E)¥IM],ym=tsm=tamm=0, (2|Eo))¥4, 773<0-43 0.01 5.2
4.5 M, 6 6 oot 62
(M3/E3), =0, (4.6) In a closed model, the maximum in the spatial sections
—the “equator” of the 3-sphere —is at=r,, where E=
-1, so
all quantities being calculated 8 =M. Equations(4.5
would have the same form in any coordinate system in which 1
M=M(r), but for Eq.(4.6), the coordinatéM is privileged; 2|Eolri=1 = rp= (5.3
in other coordinates this equation would look less readable. V2| Eol

Note that Egs(4.5), (4.6) imply that atM =M., the func-

tions tg, [(~2E)¥M] and M3/E3) agree with their at which point the areal radius today is

Friedmann valuegas determined bf¥%M andtg at M) oM 13
up to the second derivatives. This means that the local den- o= 770 23, (5.4)
sity is at all times the same as that of the Friedmann model 2(2|Eq|)%?

that matches on there.

In brief, we have shown that ¥ =M., is an extremum For hyperbolic models, there is no maximum radius, R
of density, the density is differentiable Bt.,, and the ex- gives the curvature scale. Another way to restkgtis to
tremum is comoving, then Eqet.5), (4.6) are satisfied. Con-  Specify that the horizon scatd, be much less thaR,,, say
versely, ifp is differentiable aM.,, has an extremum there, to<<Rmo/8, which gives a restriction similar to E¢.2).
and Eqgs(4.5), (4.6) are satisfied, then the extremum will be A third way to limit E, is to specify(2,>0.03. In a hy-

comoving. perbolic model
By the same method it may be verified that in 88E\)
>0 region, where Eq(2.6) apply, the conditions for a co- _ 8mpR? 3 2
moving extremum are again of the forf@.5), (4.6), except Q= 3R2 1+coshy)’ (5.9

that now the 2E) in Eq. (4.5 is replaced by (E).
For tge parabolic case, E(.5), the condition R®),wm  Solving this for» and using Eq(2.6) again gives
=0 reads
(2|EoD)¥*0

————<0.016. (5.6)
—9[(2tg y+Mtgym)(t—tg) —Mt3 ,]=0, (4.7 Mo

) ) However, within a condensation, the evolution may be
and so the extremum will be comoving WhetﬂM:tB’MM nowhere near parabo'iC.

=0 atM=M,.

Note that for an arbitrary LT perturbation inside an ex-
actly Friedmannian exterior, the density at the boundary may
be discontinuous, as in the Einstein-Striig,13 configu- The physical radius of the past null cone ika0 Fried-
ration. Furthermore, even if it i€! at an initial moment, it mMann dust model with scale fact8et?? is
may develop a discontinuity. However, if the above condi- o1
tions hold at the boundary, 'they ensure the densitCis L(t)zsf O—dt=3c(t(1)’3t2’3—t) (5.7)
through the boundary at all times. t S

B. Past null cones, horizons and scales on the CMB sky

023501-8



STRUCTURE FORMATION IN THE LEMATRE-TOLMAN MODEL PHYSICAL REVIEW D 65 023501

so an observed angular scale éfon the CMB sky has a TABLE 1. Approximate scales associated with present day

physical size at recombination of structures. Note that the horizons are thosekinO Friedmann
models without inflation, as given in Sec V B. The masses associ-
L, =L(t)6=3c(ti*?3~t,) 0. (5.8)  ated with the resolution scales of COBE, MAXIMA and BOOMER-

ANG are obtained by assuming a density equal to the para-
The present day size of the observed structure—assuminghblic background valug,, as indicated by (1)" in the dens-
does not collapse—is merely scaled up by the ratio of scalégy column. Useful collections of data can be found at

factors the following web addresses: http://www.obspm.fr/messier/,
http://adc.gsfc.nasa.gov/adc/sciencedata.html, and
So http://www.geocities.com/atlasoftheuniverse/supercls.html
Lo=L, S (5.9
Radius Density  Angle
The scales would be fairly similar in reasonakt 0 mod- today Mass  of sphere on CMB
els. (kpc) (Mo) (pp)  sky (%)
To determine the condensed structures that correspond Y s —
a given present day scale in the background, the rivgsef %jtlaL lar clust %1(?1 1150 iiigzs jiig_s
the condensation is divided by the present day depsjtyof GOI ular cluster 15 16t 6x10° 4x 103
the Friedmann background€ 0 dusj and cube-rooted: aaxy ,
Virgo cluster 2000  x10 5 0.02
3M, |\ 1B Virgo supercluster 15000 %10 0.3 0.06
0= | Zmposg (5.10  Abell cluster(example 800 105 4000  0.08
. . . . Void 6.1¢" ? 0.4
Conversely, the mass associated with a given scale at a glvpr? !
time is Recomb horizon 280 1.8
5 Present horizon 9.210° 59
M _4mLe(D) pp(D) (5.17  Visual horizon 8.%10° 57
T T— .
COBE resolution 1.&10° 1.9x10728 (1) 10
The particle(causal horizon at any given time is BOOM/MAX resolution 3.1x10" 1.5x10'° (1) 0.2
tl
C=S Ogdt:30t (5.12 Although the magnitude of galaxy scale or even supercluster
scale perturbations, are not yet directly constrained by obser-
The scales associated with present day structures are sum-
t1 marized in Table I.
v=sf gdt=30(t—tr1’3t2’3). (5.13
tI’

D. Choice of units and scales

The particle horizon takes no account of inflation, and retains ggr the background Friedmann model, we choose the sim-

a dust equation of state before recombination, so is onlyjest case, as its only purpose it to get the cosmic time scales

C. Scales in the perturbation A=0, k=0, p=0. (5.19

We imagine that present day structures accreted their
mass from a background that was C'O?'e to Fnedmanman, ar}gmaining scale freedom of GR is fixed by choosing units in
therefore the scale of the matter that is destined to end up iich the present day mass of the condensation being con-

a present day condensation is fixed by its present day MasSijered is 1. The correspondina aeometric lenath and time
The Cosmic Background ExplordCOBE) data shows | its arel thén honding g ! g !

ST/T~10 ° on scales of 1é)°, and the density perturbations

are Sp/p=36T/IT<3X10 > [15]. The power spectrum _ _ 2 _ 3
P(K)=|8?= where 8p/p=3,5&"> is commonly ap- Me=1 = Le=MgGlc", Te=MgGle '(5 15
proximated byP(k)=Ake S, where the cutoff scals is '
small compared to the Hubble scale. This is jist Ak at
longer wavelengthésmallerk) [16]. COBE’s measurements E. The model

had a resolution of~10°, while BOOMERANG's and The principal limitation of the LT model in the post-
MAXIMA's were ~0.2°. These angular scales correspond tarecombination era is the absence of rotation. However, once
length scales of 2 Mpc and 50 kpc at the time of decouplingrotation has become a significant factor in the collapse pro-
and thus to 2 Gpc and 50 Mpc today. Thus we are only justess, there is already a well defined structure. Later on pres-
beginning to detect void scale perturbations in the CMB.sure and viscosity will become important. Our interest is in

We will use geometric units such thet=1=G, and the
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8000

7000

6000

5000 FIG. 4. The chosen density profile

tho 2/ thob 2 p2(M)/py, as a multiple of the “background”

4000 density, for an Abell cluster at time=10 Gyr.
The axes are in geometric units such that

3000 M apell cluste= 1, a@s given in Egs.(5.15 and
(5.18.

2000

1000

0 02 04 06 08 1
M

generating highly condensed structures in a short enougéo the radius in the Friedmann “background” that contains
time scale, and these factors only come into play once colthis mass i$
lapse is well underway. Because of the lack of rotation, etc.,
all of which tend to delay or halt collapse, we expect our

3 - . 3M
model to be rapidly collapsing rather than stationary at the RF,ZZ(M

1/3
r) —260000Ls. (5.20)

present day. Ampp o
We choose to model an Abell cluster: .
Thus we find
M abell cluste™ 10 M o - (5.16 " 3
RoMP= [ —dmr= = ertam)
Rabell cluste= 800 kpc. (5.17) 0 4mpy(M') 224.000/7py 52
5.
From Eg. (5.15 and Table | the associated geometric
units are as shown in Fig. 5, and the resultipg(R) is shown in Fig.

6.

1Mg=Mapeli cluster 2. Initial profile

At t;=100 kyr=10 °t,=641Tg we specify the density

1Ls=48 pc perturbation to have mass
1Te=156 yr M1:10_2MAbellcluster (5.23

—M apell cluste=1 Mg and density enhancement
Rabell ciuster= 16800Lg 3X10"pps (524

for which the chosen profile is
t,=6.4X10'Tg. (5.18
) ) 1.000031+100M)
1. Final profile p1(M)=pp 4 151000031 (5.25
Att,=10 Gyr=6.4x10'Ts, we specify the density pro- '
file to be as plotted in Fig. 7. The Friedmann densityt ais
_ 2

p2(M)=pp, o(7000e ")) (5.19 pp1=1.3x1077 Mg/Li=8x10"% kg/m® (5.26

which is shown in Fig. 4. Now the Friedmann density.ais

17 3 o7 “For backgrounds withk# 0, the radius that contains this mass
Pp2=1.3x10" "M /LE=8%10"?" kg/m® (5.20  \ould be adjusted slightly.
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800000 1 14000
12000
10000
R2
600000 1 w00
R2 600 FIG. 5. The areal radiuR,(M) at time t,,
o that results from the chosep,(M). The inset
400000 shows an enlargement of the curve near siiall
The axes are in geometric units.
o 0.1
200000 1
0 02
log(rho 2/ rhob 2)
led
1e3+
e2 . ' .
FIG. 6. The density profile,/py, , against ar-
eal radiusR,. The axes are in geometric units.
1. 50000 100 150000 200000 250000
RE
RESE
Jde-2
1.00004 -
1.00003 -

rho 1/ rhob 1 ) .
FIG. 7. The density profile;(M)/py ; cho-

1.00002 - sen for the initial perturbation at timg. The
axes are in the geometric units of E¢s.15 and
(5.18.
1.00001
1o 02 04 " 06 08 1
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FIG. 8. Areal radiu®R;(M) at timet,, that is
obtained fromp,(M). The axes are in geometric
units.

and the radius in the “background” that contains the total

mass is

e

F. Model results

A Maple program was written to generate the formulas
and then solve folE(M) and tg(M) numerically, as ex-
plained in Sec. Ill. The results are shown in Figs. 10 and 11.

We see thaE is of order 10°° which gives a recollapse
time scale of 16 Tg=1.7x10° yr, so that the curvature in
the condensation is of orddit,/(2E)%2~0.17. The bang
time perturbation is of order 2ZI;=300 yr, and is quite

Strictly speaking, an increasing;, tg >0, creates a
shell crossing, but for such a slight variationty, the shell
crossing occurs very early on, long beféoyevhen the model
becomes valid.

The “velocity” R —rate of change of the areal radiis
—would, in a homogeneous model, increas&/§, so plot-
ting R /M™3, as in Fig. 12, indicates the velocity perturba-
tion, as a deviation from a constant value.

In this case, the perturbation is withinx30 > for 0
<M <0.6, wherep, is large, but increases to810™* in the
near vacuum region 0s6M <1. This slight excess is most

FIG. 9. Density profilep, /py, ; against areal
radiusR;. The axes are in geometric units.

Re .= 3MAbeII cluster 1/3: 26 L (5 27)
Fl 400mpy,, G '
The resultingR,(M), P
negligible.
3 M 3
(Ri(M)) =f —dM’
: 0 4mpy(M')
3 0.00003 1+ 100M
= Ampya 100,003 )
(5.28
is shown in Fig. 8, ang,(R) in Fig. 9.
1.00003 1
1.00002 A
rho 1/ rhob 1
1.00001
To 20 40 60 80 100

023501-12



STRUCTURE FORMATION IN THE LEMATRE-TOLMAN MODEL PHYSICAL REVIEW D 65 023501

0.1284f

0.12821

0.128

Rt1 / MA(1/3)

0.12781

0.1276

FIG. 12. The velocity perturbatioR/M 2 at timet,. A constant
value would indicate no perturbation. The axes are in geometric

FIG. 10. The LT energy functioke(M) obtained from solving ,its.

for the LT model that evolves betwegrn(M) andp,(M). The axes
are in geometric units. The symbols “EC,” “EX,” and “H” indicate
regions that are respectively elliptic and recollapsing.,atEC),
elliptic and still expanding at, (EX), and hyperbolidH). We proved that an LT model can be found to evolve any
initial density profile on a constant time slice, to any final
likely due to choosing @,(M) that falls off too fast outside density profile a given time later. Although it cannot be guar-
the condensation, requiring a too strongly hyperbolic evolu@nteed the resulting model is free of physical singularities
tion that expands too rapidly. It is likely that this same effectSUch as shell crossings, and the occurrence of a large nega-

requires the slightly increasing to keepp,(M) almost flat f[ive energy £=—1/2) WUSt be handleq CO”QC“Y by che_mg.-
in these outer regions. ing to M andR decreasing, our numerical experiments indi-

As a cross-check, these derived functions were used in ate that realistic choices of the two density profiles and the

separate MATLAB program that plots the evolution of a LT ime d|fferenc_e are likely to generate reasonable m_odels.

. . . . . Our numerical example created an Abell cluster in a real-
model, given its arbitrary function§The appropriate form of
the evolution equations is given in Appendix) Bhe initial
and final density profiles were recovered to high accuracy.
The resulting density evolution is shown in Fig. 13.

VI. CONCLUSIONS

25 : : : : : : r —

0.5 t (x107)
ol FIG. 13. The evolution op(t,M) for the derived LT model. The
axes are in the geometric units of Ed5.15 and (5.18. In the
S range 0<M < 0.795 the evolution is elliptic and already recollaps-
08 o2 03 o4 05 o8 07 o8 o5 1 ing at timet,, in 0.795<M < 0.865 it is elliptic but still expanding

M at t,, and forM>0.865 it is hyperbolic. In practice, recollapse
would be halted at some point by the effects of pressure, rotation,
FIG. 11. The LT bang time functioty(M) obtained from solv-  etc. The initial and final density profiles calculated at tirneandt,
ing for the LT model that evolves between(M) andp,(M). The coincide with those originally chosen and shown in Figs. 7 and 4,
axes are in geometric units. respectively.
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istic time scale. It started from recombination, with a density f(y)>0 forall 0<y<1, where
perturbation involving a small amount of mass, having

Splp~3x 10 °. It then “accreted” most of its final mass. In

fact this “accretion” consists of lower expansion rates near 4

the center, and more rapid expansion rates further out. Only ~ f(y):=7—arcco$1l—2y)+2\y—y’— = (1—y?).
at late stages does actual collapse begin at the center. The 3

initial velocity perturbation cannot be chosen if the initial
and final densities are chosen. It turned out todbév ~3

X 10 ° within the future condensation and8x 10~ in the
future vacuum region. The relativiely large value in the outer
regions is probably due to choosing the final density profile,
p» to fall off more rapidly than ideal.

The preceding two points—the theorem plus the numeri-
cal example—demonstrate that the LT model provides a very 5
:ﬁgﬁggable description of post-recombination structure for ﬂzz y ( T—y—l)<0.

: . o o dy —1-y2

These two points also indicate that post recombination (A3)

structure formation in a dust universe has an important kine-

matical component—the initial distribution of velocities has yence,f(y) is monotonically decreasing frof(0)>0 to 0

as much bearing on whether or not a condensation forms anghq o is positive for all &y<1, which proves Eq(A1).
gravity magnifies density fluctuations, as the initial density

distribution. These initial distributions of density and veloc-
ity are generated by the functioi§(M) andtg(M), i.e.,
coded in the initial conditions. 1. Limiting values at M=0

Further numerical examples for structure formation on a Several of the quantities considered in this paper have the
variety of scales within the LT model are under investigation. d pap )
value O at the center of symmetry, wheve=0. The vari-

We also obtained the conditions for a density maximum or

minimum or shoulder to be comoving. Since these are re ables used in the proof of the theorean,andx, have finite

itrictions on the LT arbitrary functions, it is evident that ex- |m|tshas Mtﬂt?. For r)(ljJrr(;erlcall_ p_:lograms, these limiting val-
trema are in general moving through the fluid, as argued iﬁ‘eﬁ_h ave IO € growt?\/l fgpf'cl'l Y- iv. Si
[17], and are not comoving. In other words present day den- € values ola; at V=4 Tollow very easily. Sinces

— 1/3 3_ M
sity maxima are not likely to be on the same world lines as= R(ti-M)/M™* and R°= [ [6/kp(t,x) Jdx, we have, ap-

(A2)

Now observe that

f(0)=m— ;—1>0, f(1)=0,

APPENDIX B: NUMERICAL CONSIDERATIONS

initial density maxima. plying I'Hopital’s rule in the third step
_ 3\ 113
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(B1)

The variablex comes out nonzero automatically when

APPENDIX A: CONSISTENCY OF THE INEQUALITIES nonzero values of; (0) are used in the program; this follows
(3.21) AND (3.22 from the proof of the theorem in Sec. Ill.
The inequalitieg3.21) and(3.22 will be consistent if the ) .
right-hand side of Eq(3.21) is smaller than the right-hand 2. Practical variables
side of Eq.(3.22 in the whole range of; anda,, i.e. when In practice, it was convenient to define=a,/a,, z

=t;/a,, andy=a,X, and then solve the varioug=0 equa-
tions in terms of the variablg sincea, was in general quite
large, whereas €ax<2 in elliptic regions, andax was at

V2

(2,2 a,%?) < (a,/2)¥] w—arcco$l—2a,/a,)

3 most 200 in a quite strongly hyperbolic region.
_ 2
+2ya la,—(ar/ay)”]. (A1) 3. Reconstructing the model evolution
Definingy=a; /a,, and recalling tha&,>a,>0 by assump- For reconstructing the evolution of the model, it is conve-
tion, the above is equivalent to nient to re-write the LT solutions in terms gfanda.
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—sin . 2
t =u, R=M1/3\/x(——1).
1—cosy

Elliptic:

(1—cospy)
X

R=M 1/3

’ B
Parabolic or close to it:

9 1/3
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1+ X 6 2/3 3X2 6 4/3+ 23)(3 6 2

N 1/3\/ —2/3] X 2/3 4/3 X3 2)
R=M3~/4[6(t—tp)] (1+§[6(t—t5)] + gl Bt~ ta) ¥~ 55 6(t—te) 1%

Hyperbolic:

(coshp—1)
X ! B X

R=M 1/3

In all cases the density is

_ (sinhp—17)
te= 32

X2

(B2)

. 2
—\13 +11.
R=M \/X( coshpy—1 1)

P 4ma(al3+May)
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