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The Einstein equations are investigated for a rotating Bianchi typeV dust model in
which one of the Killing fields is spanned on velocity and rotation~case 1.2.2.2 in
the classification scheme of the earlier papers!. A first integral of the field equations
is found, and with a special value of this integral coordinate transformations are
used to eliminate two components of the metric. Thek521 Friedmann model is
shown to be contained among the solutions in the limit of zero rotation. The field
equations for the simplified metric are reduced to 3 second-order ordinary differ-
ential equations that determine 3 metric components plus a first integral that alge-
braically determines the fourth component. First derivatives of the metric compo-
nents are subject to a constraint~a second-degree polynomial with coefficients
depending on the functions!. It is shown that the set does not follow from a La-
grangian of the Hilbert type. The group of Lie point-symmetries of the set is found,
it is two-dimensional noncommutative. Finally, a method of searching for first
integrals~for sets of differential equations! that are polynomials of degree 1 or 2 in
the first derivatives is applied. No such first integrals exist. The method is used to
find a constraint~of degree 1 in first derivatives! that could be imposed on the
metric, but it leads to a vacuum solution, and so is of no interest for cosmology.
© 2001 American Institute of Physics.@DOI: 10.1063/1.1330197#

I. STATEMENT OF THE PROBLEM AND SUMMARY OF THE PAPER

This paper is a continuation of a series of papers on rotating dust models in relativity.1–3 The
initial motivation for this research was the desire to find a rotating generalization of the Fried
models. In spite of much effort spent on investigating solutions of Einstein equations w
rotating matter source, no such generalization has been found so far; see literature surveys
3 and 4. References 1, 2 and 3 provided a complete classification scheme for hypersu
homogeneous rotating perfect fluid models with zero acceleration. Unlike previous appro
the classification includes also timelike and null symmetry orbits, and so it is the farthest-rea
application of the Bianchi classification to rotating and nonaccelerating perfect fluid mode
relativity. The models split into 3 general classes: I, in which two of the Killing fields
everywhere spanned on the vector fields of velocityua and rotationwa ~Ref. 1!; II, in which only
one Killing field is spanned onua andwa ~Ref. 2!; and III, in which all Killing fields are linearly
independent ofua andwa ~Ref. 3!. The many particular cases arise because of several pos
alignments or misalignments among the 3 Killing fields andua andwa.

By the Bianchi type of the symmetry algebra and by the relation of the velocity field to
symmetry orbits it can be recognized in which cases generalizations of the Friedmann mod
be expected. Two such candidate cases were found in class II, and five more in class III. Th
class III were prohibitively complicated, but one of the cases of class II allowed for some pro
and this one is presented in the present paper. It is the Bianchi typeV subcase of the case 1.2.2.
given by Eq.~5.19! in Ref. 2. For the other candidate case found in class II, Eq.~5.10! in Ref. 2,

a!Electronic mail: akr@camk.edu.pl
3550022-2488/2001/42(1)/355/13/$18.00 © 2001 American Institute of Physics
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thek50 Friedmann limit is calculated in a much more complicated way, this will be a subje
another paper.

In Sec. II, the metric is simplified by a coordinate transformation, and a first integral o
Einstein equations is found. With a zero value of this integral, coordinate transformations c
used to eliminate two components of the metric tensor, and the number of nontrivial Ein
equations is reduced to 7. Although there are only 4 functions1matter density to be determined b
these 7 equations, the set later turns out to be self-consistent. In Sec. III, it is shown thak
521 Friedmann models are contained among the metrics that result in the limit of zero rot
In Sec. IV, the Einstein equations are reduced to a setS of 3 second-order equations to determi
3 metric components1a quadratureQ to determine the fourth component (g33). Of the Einstein
equations derived in Sec. II, one is fulfilled identically in consequence of the set$SøQ%, one
turns out to be a constraint imposed on the initial data, and the one that determines the
density turns out to provide a first integral. The first integral determinesg33 algebraically in terms
of the other components, and so it is a replacement for the quadratureQ. It is also shown that the
set S cannot be obtained as the Euler–Lagrange equations from a variational principle
Hilbert type. Finally, it is shown in Sec. IV how the set$SøQ% reproduces the Friedman
equations in the limit of zero rotation and zero shear. In Sec. V, the two-dimensional~non-
Abelian! group of Lie point-symmetries of the set is found. In Sec. VI, a method of system
search for polynomial first-order first integrals of a set of ordinary differential equations is ap
to the setS of Sec. IV. It is shown that no first integrals that are polynomials of degree 1 or
the first derivatives exist. The same method is used to reveal the existence of a possible co
on initial data, which is of degree 1 in first derivatives, that is preserved by the setS. However, the
constraint necessarily implies zero matter-density, and so it is not interesting for cosmolog

Equations that are of secondary importance for the main text, but are difficult to repro
can be found in the preprint version of this paper.5 They have been deleted from this text at t
request of the referee.

II. THE EINSTEIN EQUATIONS, THEIR FIRST INTEGRAL AND IMPLICATIONS OF THE
ZERO VALUE OF THIS INTEGRAL

The subject of the present paper are the Einstein equations for the Bianchi type V subc
case 1.2.2.2 of Ref. 2. For reference, the initial formulas are recalled in their original notat

The Bianchi type V symmetry results whenc50 in Eqs. ~5.19! of Ref. 2 and when, in
addition, j 52a in Eqs.~5.16!. Hence, the metric is

ds25dt212y dt dx1y2h11dx212h12dx dy12y2h13dx dz

1~h22/y2!dy212h23dy dz1y2h33dz2, ~2.1!

where the coordinates are$xa%5$x0,x1,x2,x3%5$t,x,y,z%, andhi j ,i , j 51,2,3 are unknown func-
tions of the variable

v5etyC2 /a, ~2.2!

a and C2 being arbitrary constants. The velocity fieldua, the rotation fieldwa and the Killing
fields k( i )

a, i 51,2,3 are given by

ua5da
0 , wa5~r/y!da

0 , k(1)
a5da

1 , k(3)
a5da

3 ,

k(2)
a5C2da

01a~xda
12yda

21zda
3!, ~2.3!

wherer is the matter-density of dust. The rotation tensorvab has only one algebraically inde
pendent nonzero component:

v125
1
2 , ~2.4!
09 May 2008 to 193.0.83.155. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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and therefore the coordinates used here are ill-suited for considering the limitv→0.
As shown in Ref. 1, it follows from the equations of motion and from the equation

conservation of the number of particles that

gªdet~gab!52~y/r!2. ~2.5!

This is the form in which the metric resulted from the Killing equations in Ref. 2. I
advantageous to transform the coordinates as follows:

t5t82~C2 /a!ln y8, x5x82C2 /~ay8!, ~y,z!5~y8,z8!. ~2.6!

The result is equivalent to substitutingC250 anda51 in Eqs.~2.1!–~2.4!, i.e., the forms of the
metric ~2.1!, of the vector fieldsua, wa, k(1)

a andk(3)
a in ~2.3! and of the rotation tensorvab in

~2.4! do not change@although the newhi j8 in ~2.1! will be linear combinations of the oldhi j #, while
the newk(2)

a basis vector will be

k(2)
a5xda

12yda
21zda

3 , ~2.7!

and the argument ofhi j will now be v5et8, i.e., thehi j are from now on unknown functions of th
time-coordinatet.

It is convenient to parametrize the metric as follows:

ds25~dt1y dx!22~yK11dx!22~K/y!2~dy1y2h dx!22K33
2@yg dx1~ f /y!dy1y dz#2,

~2.8!

whereK11, K, K33, h, f and g are unknown functions oft. The components of the Einstei
tensor referred to below are tetrad componentsGIJ5ea

Ie
b

JGab , i.e., projections of the coordi
nate componentsGab onto the orthonormal tetradeI

ªeI
a dxa implied by ~2.8!:

e05dt1y dx, e15yK11dx, e25~K/y!~dy1y2h dx!,

e35K33@yg dx1~ f /y!dy1y dz#, ~2.9!

whereea
I is the inverse matrix toeI

a , i.e., ea
Ie

I
b5da

b , ea
Je

I
a5d I

J . In the parametrization
~2.8!, the determinant of the metric is

g52~yK11KK33!
2. ~2.10!

The tetrad components of the Einstein tensor corresponding to the metric~2.8! are given in
Appendix A of Ref. 5. As seen from there, two combinations of those equations are of first o
they areK11G031G1350, i.e.,

~ 3
2 K33/K11!@~K11

221!K22f ,t1h~h f ,t2g,t!#50, ~2.11!

andK11G021G1250, i.e.,

~K11K !21@2 3
2 K2hh,t1

1
2 h2K11K11,t1~K11

221!~2K,t /K2K33,t /K33!#50. ~2.12!

As shown in Appendix B of Ref. 5, the caseh50 does not lead to interesting developments, so
shall proceed further under the assumption

hÞ0. ~2.13!

Then, Eq.~2.11! implies
09 May 2008 to 193.0.83.155. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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g,t5@h1~K11
221!/~hK2!# f ,t . ~2.14!

With this, the equationsG035G135G2350 turn out to be equivalent, and they can be written
follows:

2
1

2 S K11
221

h
•

K33
3f ,t

K11K
D ,t1

K33
3f ,t

K11K
50. ~2.15!

This invites the introduction of the new variableu(t) by u,t5h/(K11
221), and then~2.15!

becomes

S K33
3f ,u

K11K
D ,u22

K33
3f ,u

K11K
50, ~2.16!

which has the first integralK33
3f ,u /(K11K)5Ce2u, C5const, i.e.,

f ,t5Ce2uhK11K/@K33
3~K11

221!#. ~2.17!

From here on, we shall follow only the special caseC50, which is a solution of the Einstein
equations, but not a general one: it is a subcase chosenad hocfor further progress with integra
tion. Then, from~2.17! and ~2.14! f 5const,g5const, and from~2.9! the coordinate transforma
tion z85z1 f /y1gx leads to

f 5g50, ~2.18!

without changing any of the other formulas forgab , ua, wa, vab or k( i )
a.

The Einstein equationsG035G135G2350 are now fulfilled identically. We are left with 7
equations that should determine the 4 functionsK11, K, K33 andh, and the matter densityr in
addition. It will turn out in Sec. IV that the 7 equations are dependent just in the way need
make the problem self-consistent and determinate.

III. THE FRIEDMANN LIMIT OF THE METRIC

As already stated, the coordinates used in Sec. II are ill-suited for considering the limv
→0. This limit can be calculated after a coordinate transformation and a reparametrization
metric.

Sincev1252v215
1
2 are the only nonzero components of the rotation tensor, a natural c

dinate transformation to consider is

y5v0y8, ~3.1!

wherev0 is a constant. After the transformation

v128 5 1
2 v052v218 ~3.2!

~all othervab50), and the limit of zero rotation isv0→0. However, before this limit is taken, th
metric functions in~2.8! must be reparametrized or else the limit will be singular. The follow
reparametrizations will do the job:

K115K̃11/v0 , K335K̃33/v0 , f 5 f̃ v0 . ~3.3!

The transformation~3.1! and the reparatmetrization~3.3! result in a metric whose limitv0→0
~with primes and tildes omitted! is

ds25dt22~yK11dx!22~K/y!2 dy22K33
2@yg dx1~ f /y!dy1y dz#2. ~3.4!
09 May 2008 to 193.0.83.155. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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The k521 Friedmann model results wheng5 f 50 andK115K5K33ªR(t), whereR(t) is the
Friedmann scale factor. The resulting coordinates are none of the standard ones, but are re
y5eu to one of the sets used in the literature@see Eq.~1.3.15! in Ref. 6#.

The fact that~3.4!, the limit v0→0 of ~2.8!, is still more general than the Friedmann met
means that shear survives the transitionv→0.

It will be shown at the end of Sec. IV that the explicitly written out Einstein equations
allow a continuous limiting transitionv→0, s→0, and in the limit they reproduce exactly th
Friedmann equations.

IV. THE INDEPENDENT EINSTEIN EQUATIONS

We shall now proceed with the subcase~2.18!. Equation~2.11! is then fulfilled identically.
Equation~2.12! does not change, and it can be more conveniently rewritten ifK11 is parametrized
as follows:

K115cosh~F !. ~4.1!

Then, from~2.12!,

K33,t5K33@2 3
2 K2hh,t /sinh2~F !1 1

2 h/sinh2~F !12K,t /K2cosh~F !F,t /sinh~F !#. ~4.2!

When this is substituted into the remaining Einstein equations@~A.1!–~A.10! in Ref. 5#, the
functionK33 disappears from the set completely, i.e., we are left with 6 equations to determih,
K, F and the matter-density plus the quadrature implied by~4.2! that allows one to calculateK33

onceh(t), K(t) andF(t) are known.
Since~2.12! is now satisfied, the equationsG0250 andG1250 are equivalent, and they ca

be written as

h,tt5
3
2 K2hh,t

2/sinh2~F !25K,th,t /K1„2 cosh2~F !21…F,th,t /sinh~F !cosh~F !

1hh,t /sinh2~F !1K,t /K31F,t /K2 cosh~F !sinh~F !2 1
2 h/„K sinh~F !…2. ~4.3!

This is used to eliminateh,tt from the other Einstein equations. The equationG0150 can then be
solved forF,tt ~see Appendix C in Ref. 5! and this is used to eliminateF,tt from the diagonal
components of the Einstein tensor~all the nondiagonal Einstein equations have been used u
this point!. After such a substitution, the following identity is fulfilled:

G111G3322G22[0, ~4.4!

i.e., one of the three equationsG115G225G335L can be discarded because it is a conseque
of the remaining two. We choose to discardG335L.

Then,K,tt can be calculated fromG222G1150. The result is

K,tt5
1
4 K3 sinh22~F !h,t

22 3
2 K3h cosh~F !sinh23~F !F,th,t

2cosh21~F !sinh21~F !K,tF,t12 cosh~F !sinh21~F !K,tF,t2K cosh2~F !sinh22~F !F,t
2

2 3
4 Kh,t1

3
2 K3h2 sinh24~F !h,t1

3
4 K3h2 sinh22~F !h,t

2 3
2 hK,t2h sinh22~F !K,t2Kh cosh21~F !sinh21~F !F,t1

3
2 Kh cosh3~F !sinh23~F !F,t

2 1
4 K21cosh2~F !sinh22~F !2 1

2 Kh2 sinh24~F !2 1
4 Kh2 sinh22~F !. ~4.5!

This is used to eliminateK,tt from the right-hand side of the equation determiningF,tt ~see
Appendix C in Ref. 5!, and the result is
09 May 2008 to 193.0.83.155. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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F,tt52 3
4 K2 cosh21~F !sinh21~F !h,t

22 3
2 Kh cosh21~F !sinh21~F !K,th,t

12K22 cosh21~F !sinh~F !K,t
22K21K,tF,t2cosh~F !sinh21~F !F,t

2

1 3
4 K2h2 cosh21~F !sinh21~F !h,t1

3
2 K2h2 cosh21~F !sinh23~F !h,t

1 1
2 cosh21~F !sinh21~F !h,t2

3
4 cosh21~F !sinh~F !h,t2

3
2 K21h cosh21~F !sinh21~F !K,t

2 3
2 K21h cosh21~F !sinh~F !K,t1h sinh22~F !F,t1

5
2 hF,t2

1
4 K22 cosh21~F !sinh~F !

2 3
4 K22 cosh21~F !sinh21~F !2 1

2 h2 cosh21~F !sinh23~F !2 1
4 h2 cosh21~F !sinh21~F !.

~4.6!

With ~4.2!, ~4.3!, ~4.5! and ~4.6! all substituted, the equationG115L reduces to the following
form:

G115
1
4 K2 cosh22~F !h,t

21 3
2 Kh cosh22~F !K,th,t1

3
2 K2h cosh21~F !sinh21~F !F,th,t

22K22 cosh22~F !sinh2~F !K,t
222K21 cosh21~F !sinh~F !F,tK,t1F,t

2

1 3
2 K2h2 cosh22~F !h,t23K2h2 sinh22~F !h,t2

1
2 cosh22~F !h,t1

3
2 h,t

1 5
2 K21h cosh22~F !K,t13K21hK,t2

5
2 h cosh21~F !sinh21~F !F,t

23h cosh21~F !sinh~F !F,t1
1
4 K22cosh22~F !1 3

2 K221 1
2 h2 cosh22~F !1h2 sinh22~F !

5L. ~4.7!

Now it may be verified thatG115const is preserved by Eqs.~4.3!, ~4.5! and~4.6!. This is done as
follows. The derivative (d/dt) G11 is calculated, andh,tt , K,tt andFtt that reappear are eliminate
using~4.3!, ~4.5! and~4.6!. Then,K,t

2 is found from~4.7! and used to eliminateK,t
3 andK,t

2 from
(d/dt) G11. The result is the identity (d/dt) G11[0. This means that, in virtue of the other fie
equations, ifG115L holds at any given time, it will remain constant at all other times. Hen
G115L is a limitation imposed by the Einstein equations on the initial data for Eqs.~4.3!, ~4.5!,
~4.6!, and it defines the cosmological constant in terms of the other constants that will appea
~4.3!, ~4.5! and ~4.6! are solved. IfL50, thenG1150 reduces the number of arbitrary constan
by 1.

Hence, with~4.4!, we are left with only four equations:~4.2!, ~4.7! and any two equations
from the setS5$(4.3),(4.5),(4.6)%, to determine the four functionsK33, h, K andF. The third
equation inS is implied by the remaining two together with~4.7!. The only field equation that ha
not yet been used up is

G005~8pG/c4!r2L. ~4.8!

This may be expected to simply define the matter-density in terms of the metric functions.
ever, in the formulation used in this paper, matter-density enters the equations in two way
source term inG00 above, and also through~2.5!. From ~2.5! and~2.10! it follows thatr must be
related to the other functions by

r5~K11KK33!
21. ~4.9!

Together with~4.8! and ~4.1! this implies that the following must hold:

@~G001L!cosh~F !KK33#,t[0. ~4.10!
09 May 2008 to 193.0.83.155. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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Indeed, this is an identity. This is verified as follows. First,~4.1!, ~4.2!, ~4.3!, ~4.5! and ~4.6! are
substituted intoG00 ~with f 5g50) to eliminate all second derivatives. Then,~4.10! is calculated,
and ~4.2!, ~4.3!, ~4.5! and ~4.6! are used to eliminateK33,t and all second derivatives again
Finally, ~4.7! is used to eliminateK,t

3 andK,t
2 from the left-hand side of~4.10!. In the end, the

identity ~4.10! results. Hence,~2.5! and ~4.8! are consistent in virtue of the other field equation
and moreover (G001L)cosh(F)KK335C5const@with second derivatives ofh, K and F elimi-
nated by~4.3!, ~4.5! and ~4.6! and withK,t

2 eliminated by~4.7!# is the following first integral of
the Einstein equations:

K33F23Kh sinh~F !F,t2
3

2
Kh2 cosh21~F !1

3

2
K cosh21~F !sinh2~F !h,t

13hcosh21~F !sinh2~F !K,t2
3

2
K21 sinh2~F !cosh21~F !2

3

2
K3h2 cosh21~F !h,tG5C.

~4.11!

Note that, from~4.8! and ~4.9!, C58pG/c4Þ0, and so~4.11! determinesK33 algebraically.
Hence,~4.11! can replace~4.2! as the definition ofK33. Thereby, the problem of this paper wa
reduced to the following procedure.

~1! Find the most general solution of the set$(4.3),(4.5),(4.6)%. It will contain 6 arbitrary
constants$C1 , . . . ,C6%.

~2! Impose~4.7! on the$h,K,F% found in the previous step. This will be just a definition ofL
in terms of$C1 , . . . ,C6% or, whenL50, an additional constraint imposed on$C1 , . . . ,C6%.

~3! CalculateK33 from ~4.11!, with C58pG/c4.
~4! Calculate the matter-density from~4.9!.
As shown in Ref. 7, an efficient method to find first integrals of a set of equations exists

set can be obtained from a Lagrangian. Unfortunately, the problem of determining whether a
set of equations is derivable from a Lagrangian is rather complicated and unsolved in gene8 It
is known that the Einstein equations for class B Bianchi metrics may not admit a Lagrangian
though the general Einstein equations do~see Ref. 9 for an explanation!. It is shown in Appendix
A that Eqs.~4.3!, ~4.5!, ~4.6! do not follow from the most natural Lagrangian conceivable in t
case: a second-degree polynomial in the first derivatives ofh, K andF, with coefficients being
functions ofh, K andF.

For further reference, let us consider the limit of zero rotation in~4.2!–~4.3! and~4.5!–~4.7!.
After the reparametrization~3.3! we have

cosh~F !5K̃11/v0 , sinh~F !5AK̃11
2/v0

221,

F,t5K̃11,t/AK̃11
22v0

2, ~4.12!

and then~4.2! in the limit v0→0 becomes

K̃33,t5K̃33~2K,t /K2K̃11,t/K̃11!, ~4.13!

which is an identity in the Friedmann limitK̃115K5K̃335R(t).
The limiting form of ~4.3! is

h,tt525h,tK,t /K12K̃11,th,t /K̃111K,t /K3. ~4.14!

The limit v0→0 of ~4.5! is
09 May 2008 to 193.0.83.155. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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Downloaded 
K,tt52K K̃11,t
2/K̃11

22 3
4 Kh,t2

3
2 hK,t

1 3
2 KhK̃11,t/K̃1121/~4K !12K,tK̃11,t/K̃11. ~4.15!

The same limit of~4.6! is

K̃11,tt /K̃1152K,t
2/K22K,tK̃11,t/~KK̃11!1 3

2 hK̃11,t/K̃112
3
2 h,t2

3
2 hK,t /K21/~4K2!.

~4.16!

In the Friedmann limitK̃115K5R(t), Eqs.~4.15! and ~4.16! become identical:

R,tt /R5R,t
2/R22 3

4 h,t21/~4R2!. ~4.17!

Finally, the limit v0→0 of ~4.7! is

22K,t
2/K222K,tK̃11,t/~KK̃11!1K̃11,t

2/K̃11
21 3

2 h,t13hK,t /K23hK̃11,t/K̃1113/~2K2!5L.
~4.18!

The Friedmann limit of this is

23R,t
2/R21 3

2 h,t13/~2R2!5L. ~4.19!

Finding h,t from ~4.19! and substituting it in~4.17! we obtain

R,tt /R52R,t
2/~2R2!11/~2R2!2L/2, ~4.20!

which is exactly one of the Friedmann equations. Incidentally, theh,t found from ~4.19!, if
substituted in~4.14!, leads to~4.20! again. Hence, in the Friedmann limit,~4.14! follows from
~4.19! and~4.17!. The functionh, as seen from~3.4!, does not enter the limiting metricv→0 at
all because, after the reparametrization~3.3!, it is multiplied byv0 .

Note that also~4.11! has a meaningful Friedmann limit. In order to make this limit finite
must be assumed that

C5C̃/v0
2 , ~4.21!

and then the limitv0→0 of ~4.11! is

K33@LKK̃1112K,t
2K̃11/K12K,tK̃11,t2KK̃11,t

2/K̃1123K̃11/K#5C̃. ~4.22!

In the Friedmann limit this becomes

R~LR213R,t
223!5C̃. ~4.23!

Recalling the Friedmann formula for the mass-density, withk521:

3R,t
2/R223/R21L5~8pG/c2!r, ~4.24!

we recognize in~4.23! the familiar mass-conservation formula of the Friedmann model,rR3

5c2C̃/(8pG)5const.

V. THE LIE POINT-SYMMETRIES OF THE EQUATIONS „4.3…, „4.5… AND „4.6…

The basic definitions and theorems concerning point-symmetries are presented in de
Refs. 7 and 8.

Equations~4.3!, ~4.5! and ~4.6! are of the following form:
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d2zi

dt2 5Wi
jk

dzj

dt

dzk

dt
1Vi

j

dzj

dt
1Ui , ~5.1!

wherei 50,1,2; (z0,z1,z2)5(h,K,F) andWi
jk , Vi

j andUi are functions of thezi , but not oft.
~Incidentally, the independence oft of all these coefficients immediately implies one group
symmetries,t→t85t1s, wheres is the group parameter.! Let the following be a one-dimensiona
group of point transformations:

t85t8~ t,$zj%,t!, z8 i5z8 i~ t,$zj%,t!, ~5.2!

wheret is the group parameter andt5t0 corresponds to the identity@so thatt8(t,$zj%,t0)[t,
etc.#. The generators of this group@the field of vectors tangent to the orbits of the group~5.2!# are
then

X5j
]

]t
1h j

]

]zj , ~5.3!

where

F j
h j G5 d

dt F t8
z8 j G

t5t0

. ~5.4!

The generatorX is extended to arbitrary derivatives dkz/dtk
ª z

(k)

by the recursive formulas

h
~0! j

5h j , h
~k! j

5
d h

~k21! j

dt
2

dkzj

dtk

dj

dt
, ~5.5!

X
~k!

5j
]

]t
1h j

]

]zj 1 h
~1! j ]

] z
~1! j

1 ¯ 1 h
~k! j ]

] z
~k! j

. ~5.6!

The derivatives d/dt in ~5.5! are total derivatives, i.e.,

d

dt
f ~ t,$zi%,$ z

~1!i

%, . . . ,$ z
~k!i

%!5
] f

]t
1

dzj

dt

] f

]zj 1 (
p51

k

z
~p11! j ]

] z
~p! j

,

and the ordern to which the generatorX has to be extended is equal to the highest order
derivatives in the set~5.1! (n52 in our case!. A generator of a point-symmetry obeys then

X
~n21!

V i5
d h

~n21!i

dt
2V i

dj

dt
, ~5.7!

whereV i is the right-hand side of~5.1!. Equations~5.7! must be identities in all the derivative

z
(1)i

, . . . , z
(n21)i

, and so they imply several separate equations to be obeyed by thej andh i .
For our equations~5.1!, Eqs.~5.7! imply the following four relations:

j,kl1Wj
klj, j50, ~5.8!

h i ,kl5Wi
kl,sh

s12Wi
s( lh

s,k)2Ws
klh

i ,s1d i
( lV

s
k)j,s1Vi ,( lj,k)12

]2j

]t ]z(k d i
l ) , ~5.9!

where parentheses on indices denote symmetrization,
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]2h i

]t ]zk 5Wi
ks

]hs

]t
1

1

2
Vi

k,sh
s1

1

2
Vi

sh
s,k2

1

2
Vs

kh
i ,s

1
1

2
Vi

k

]j

]t
1Uij,k1

1

2
d i

kU
sj,s1

1

2
d i

k

]2j

]t2 , ~5.10!

]2h i

]t2 5Vi
s

]hs

]t
1Ui ,sh

s2Ush i ,s12Ui
]j

]t
. ~5.11!

The general solution of these equations@with Wi
kl , Vi

k andUi read off from~4.3!, ~4.5! and~4.6!#
is

X5A
]

]t
1BS t

]

]t
2h

]

]h
1K

]

]K D , ~5.12!

whereA andB are arbitrary constants. The proof that this is the most general solution is labo
but straightforward, it is given in Appendix E of Ref. 5. Hence, our set of equations h
two-dimensional symmetry group whose generators are

X(1)5
]

]t
, X(2)5t

]

]t
2h

]

]h
1K

]

]K
, ~5.13!

and the corresponding finite symmetry transformations are

t85t1t1 , ~h8,K8,F8!5~h,K,F !;

t85et2t, h85e2t2h, K85et2K, F85F, ~5.14!

wheret1 andt2 are the group parameters.
Unfortunately, these symmetries do not lead to any discernible simplification of theS

5$(4.3),(4.5),(4.6)%. In variables adapted to the generatorX(1) , the independent variable isK,
and t(K) is one of the functions. The set~5.1! thus transformed is of first order inf(K)
ªdt/dK, but the first-order equation is still a member of a complicated set and none o
equations separate out. Moreover, after the transformed set is algebraically solved fort,KK , h,KK

andF,KK , the right-hand sides become polynomials ofthird degree int,K , h,K andF,K .
The variables adapted to the generatorX(2) are (t8,h8,K8), where

t5eK8t8, K5eK8, h5e2K8h8. ~5.15!

In these variables, the set~5.1! becomes of first order inc(t8)5K8,t8 . However, after it is solved
for h8,t8t8 , K8,t8t8 andF,t8t8 , the right-hand sides ofh8,t8t8 andF,t8t8 contain rational functions
of the formW/(11t8K8,t8), whereW is a monomial of second degree in some of theh8,t8 , K8,t8
and F,t8 . Neither equation separates out. It is not possible to adapt the variables to bo
generators simultaneously because the group is nonabelian. This author was not able to m
use of the new variables.

VI. FIRST INTEGRALS THAT ARE POLYNOMIALS IN „h ,t ,K ,t ,F,t…

Suppose that the setS̃5$(4.3),(4.5),(4.6),(4.7)% has a first integral of the form

IªQi j ż
i żj1Li ż

i1E5C5const, ~6.1!

whereC is an arbitrary constant,Qi j 5Qji , Li and E are unknown functions of (h,K,F), i , j
51,2,3,z15h,z25K,z35F. Then dI /dt [0 in virtue of S̃, i.e., using~5.1! to eliminatez̈i :
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~2Qi j ż
j1Li !~Wi

klż
kżl1Vi

kż
k1Ui !1Qi j ,kż

i żj żk1Li , j ż
i żj1E, i ż

i[0. ~6.2!

It can be verified that first integrals of the form~6.1! do not exist for our setS̃. The calcula-
tions are conceptually straightforward, but lead through horrible intermediate expressions, s
are not reported here. The hypothesis that~6.1! is a first integral uniquely leads to an equation th
is equivalent to~4.7!.

The same method may be used to test whether our set of equations admits a constra
would be a polynomial of degree 1 or 2 in the first derivatives. The only difference with res
to the procedure of looking for a first integral is that in verifying whether~6.2! is zero, Eq.~6.1!
is used, too. If a nontrivial solution of~6.2! with this additional simplification is found, then i
means that the derivative of~6.1! by t is zero if ~6.1! holds for any fixedt. Then, such~6.1! is a
constraint preserved by the setS̃. However, even this attempt has not led to useful resu
Constraints of degree 2, i.e., those withQi j Þ0, lead to prohibitively complicated equations an
could not be investigated. One constraint of the form~6.1! with Qi j 50 was found, but it is
equivalent to the square bracket in~4.11! being zero, and so implies zero matter density. Aga
the details are not reported because they contain complicated equations, but no ingeniou
This result proves the usefulness of the method—a sensible constraint was revealed—
solution with zero density is not interesting for cosmology, and thus not necessarily worth i
tigating.

The zero-density constraint was found without using Eq.~4.7!. Equation~4.7! would reduce
the number of unknown functions by one, but the resulting set of equations is prohibi
complicated and no progress was achieved.

VII. SUMMARY OF RESULTS

It was shown that the Einstein equations for the metric~2.8! with f 5g50 are self-consisten
and solvable. They reduce to the setS5$(4.3),(4.5),(4.6)% to determineh, K and K11

5cosh(F), and ~4.11! to determineK33 ~whereC58pG/c4). The matter density is found from
~4.9!. The first derivatives of the functions obeying the setS must obey~4.7!.

The Friedmann solution withk521 is contained among the solutions of this set, as show
Eqs.~4.12!–~4.24!. Unfortunately, no explicit example of a more general solution could be fou
Attempts to followad hocAnsatzes produced uninteresting results. The AnsatzK5K33 led to the
deSitter solution in disguise, in which the t-lines had nonzero rotation. The AnsatzK115K/C
(C5const), which is consistent with the Friedmann limit, led to such complicated equation
it could not even be verified if they are not contradictory. The assumption of zero shear im
zero expansion, in virtue of the theorem (s50)⇒(vu50) that holds for dust~see Ref. 10!.

The setS was shown to have a two-dimensional group of point-symmetries, given by~5.14!,
and to admit no Lagrangian of the Hilbert type. It was also verified that no first integrals o
form ~6.1! exist.

The progress achieved in this paper was the reduction of the problem of existence of a r
generalization of thek521 Friedmann model to the technical problem of finding an expl
solution of the setS. The solvability of the setS may be taken for granted because the Friedm
model itself was shown to be one of its solutions. It is still unknown, though, whether a contin
family of solutions exists labeled by the parameterv ~rotation! such that the limitv→0 taken in
the explicit solution leads to thek521 Friedmann model.

A similar analysis as done here should be done for the other promising cases identified
3.
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APPENDIX A: NONEXISTENCE OF A HILBERT-TYPE LAGRANGIAN FOR THE SET
ˆ„4.3…, „4.5…, „4.6…‰

Equations~4.3!, ~4.5! and ~4.6! can be written in the form

d2zi

dt2 5Wi
jk

dzj

dt

dzk

dt
1Vi

j

dzj

dt
1Ui , ~A1!

wherei 50,1,2; z05h, z15K, z25F andWi
jk , Vi

j andUi are functions of (h,K,F) ~but not of
t). Note that the set~A.1! is covariant with respect to arbitrary transformationszi→z8 i

5 f i($zj%): the first derivatives dzj /dt transform then like a contravariant vector, and so do
termsUi , the coefficientsVi

j transform like a mixed tensor, and the coefficients (2Wi
jk) trans-

form like components of an affine connection.@The nontensorial terms in the transforme
(2Wi

jk) arise from d2zi /dt2.# The most natural Ansatz for a Lagrangian for~A1! is

L5Qi j

dzi

dt

dzj

dt
1Li

dzi

dt
1F, ~A2!

whereQi j , Li andF are functions of (h,K,F). Such a Lagrangian would result from the Hilbe
Lagrangian by taking out a complete divergence and integrating the result with respect
spatial variables. The Euler–Lagrange equations implied by~A2! are

Qis

d2zs

dt2 52S Qki,l2
1

2
Qkl,i D dzk

dt

dzl

dt
1

1

2
~Lk,i2Li ,k!

dzk

dt
1

1

2
F, i . ~A3!

If these are to be equivalent to~A1!, then the following must hold:

QisW
s
kl52 1

2 ~Qki,l1Qli ,k2Qkl,i !, ~A4!

QisV
s
k5 1

2 ~Lk,i2Li ,k!, ~A5!

QisU
s5 1

2 F, i . ~A6!

Equation~A4! implies that (2Wi
jk) must be Christoffel symbols constructed from the metricQi j ,

Eq. ~A5! implies that 1
2 Li must be a vector potential for the tensor fieldQisV

s
k , and Eq.~A6!

implies thatF/2 must be a scalar potential for the vector fieldQisU
s. All of these are strong

conditions and they may be impossible to fulfill in many cases.
Indeed, for our equations~4.3!, ~4.5!, ~4.6!, the solution of~A4! turns out to beQi j [0, i.e.,

the Lagrangian~A2! does not exist. An outline of the proof is given in Appendix D of Ref. 5
Since the Euler–Lagrange equations~A4! are covariant with respect to arbitrary transform

tions of the Lagrangian variables@in our caseh→h8(h,K,F), etc.#, and equations of the form
~A1! are covariant, too, the conclusion that a Lagrangian of the form~A2! exists~or does not exist!
is coordinate-independent, i.e., having shown that Eqs.~4.3!,~4.5!,~4.6! do not follow from a
Lagrangian~A2! in our variables$h,K,F%, we know that no such Lagrangian will exist in an
other variables.
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