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The Einstein equations are investigated for a rotating Bianchi¥ygdast model in
which one of the Killing fields is spanned on velocity and rotatioase 1.2.2.2 in

the classification scheme of the earlier papeidirst integral of the field equations

is found, and with a special value of this integral coordinate transformations are
used to eliminate two components of the metric. Kie—1 Friedmann model is
shown to be contained among the solutions in the limit of zero rotation. The field
equations for the simplified metric are reduced to 3 second-order ordinary differ-
ential equations that determine 3 metric components plus a first integral that alge-
braically determines the fourth component. First derivatives of the metric compo-
nents are subject to a constrai@ second-degree polynomial with coefficients
depending on the functiopslt is shown that the set does not follow from a La-
grangian of the Hilbert type. The group of Lie point-symmetries of the set is found,
it is two-dimensional noncommutative. Finally, a method of searching for first
integrals(for sets of differential equationshat are polynomials of degree 1 or 2 in
the first derivatives is applied. No such first integrals exist. The method is used to
find a constraintof degree 1 in first derivativgeghat could be imposed on the
metric, but it leads to a vacuum solution, and so is of no interest for cosmology.
© 2001 American Institute of PhysicgDOI: 10.1063/1.1330197

I. STATEMENT OF THE PROBLEM AND SUMMARY OF THE PAPER

This paper is a continuation of a series of papers on rotating dust models in refativitye
initial motivation for this research was the desire to find a rotating generalization of the Friedmann
models. In spite of much effort spent on investigating solutions of Einstein equations with a
rotating matter source, no such generalization has been found so far; see literature surveys in Refs.
3 and 4. References 1, 2 and 3 provided a complete classification scheme for hypersurface—
homogeneous rotating perfect fluid models with zero acceleration. Unlike previous approaches,
the classification includes also timelike and null symmetry orbits, and so it is the farthest-reaching
application of the Bianchi classification to rotating and nonaccelerating perfect fluid models in
relativity. The models split into 3 general classes: I, in which two of the Killing fields are
everywhere spanned on the vector fields of veloaftyand rotatiorw® (Ref. 1); II, in which only
one Killing field is spanned on* andw® (Ref. 2; and I, in which all Killing fields are linearly
independent ofi* andw® (Ref. 3. The many particular cases arise because of several possible
alignments or misalignments among the 3 Killing fields arfdandw*.

By the Bianchi type of the symmetry algebra and by the relation of the velocity field to the
symmetry orbits it can be recognized in which cases generalizations of the Friedmann models can
be expected. Two such candidate cases were found in class Il, and five more in class Ill. Those of
class Il were prohibitively complicated, but one of the cases of class Il allowed for some progress,
and this one is presented in the present paper. It is the BianchMygdcase of the case 1.2.2.2,
given by Eq.(5.19 in Ref. 2. For the other candidate case found in class II,(E40 in Ref. 2,
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thek=0 Friedmann limit is calculated in a much more complicated way, this will be a subject of
another paper.

In Sec. Il, the metric is simplified by a coordinate transformation, and a first integral of the
Einstein equations is found. With a zero value of this integral, coordinate transformations can be
used to eliminate two components of the metric tensor, and the number of nontrivial Einstein
equations is reduced to 7. Although there are only 4 functionatter density to be determined by
these 7 equations, the set later turns out to be self-consistent. In Sec. Ill, it is shown tkat the
= —1 Friedmann models are contained among the metrics that result in the limit of zero rotation.
In Sec. 1V, the Einstein equations are reduced to &3s#t3 second-order equations to determine
3 metric componentsa quadrature) to determine the fourth componerdsg). Of the Einstein
equations derived in Sec. Il, one is fulfilled identically in consequence of th¢Ss¢Q}, one
turns out to be a constraint imposed on the initial data, and the one that determines the matter-
density turns out to provide a first integral. The first integral determingalgebraically in terms
of the other components, and so it is a replacement for the quadfatutes also shown that the
set S cannot be obtained as the Euler—Lagrange equations from a variational principle of the
Hilbert type. Finally, it is shown in Sec. IV how the s€BUQ} reproduces the Friedmann
equations in the limit of zero rotation and zero shear. In Sec. V, the two-dimengiood
Abelian) group of Lie point-symmetries of the set is found. In Sec. VI, a method of systematic
search for polynomial first-order first integrals of a set of ordinary differential equations is applied
to the setS of Sec. IV. It is shown that no first integrals that are polynomials of degree 1 or 2 in
the first derivatives exist. The same method is used to reveal the existence of a possible constraint
on initial data, which is of degree 1 in first derivatives, that is preserved by ti& stwever, the
constraint necessarily implies zero matter-density, and so it is not interesting for cosmology.

Equations that are of secondary importance for the main text, but are difficult to reproduce,
can be found in the preprint version of this papdiey have been deleted from this text at the
request of the referee.

II. THE EINSTEIN EQUATIONS, THEIR FIRST INTEGRAL AND IMPLICATIONS OF THE
ZERO VALUE OF THIS INTEGRAL

The subject of the present paper are the Einstein equations for the Bianchi type V subcase of
case 1.2.2.2 of Ref. 2. For reference, the initial formulas are recalled in their original notation.

The Bianchi type V symmetry results wher=0 in Egs.(5.19 of Ref. 2 and when, in
addition,j=—a in Eqgs.(5.16). Hence, the metric is

ds?=dt2+ 2y dt dx+y?h,; dx?+ 2h;,dx dy + 2y2h,5dx dz
+ (hyy/y?)dy?+ 2h 5 dy dz+ y2hgsdz?, (2.2

where the coordinates afe*}={x° x*x?x% ={t,x,y,z}, andh;; ,i,j=1,2,3 are unknown func-
tions of the variable

v=dyC2/a (2.2

a and C, being arbitrary constants. The velocity field, the rotation fieldw“ and the Killing
fieldskg“, 1=1,2,3 are given by

Ua:5a0, W”‘=(p/y)5ao, k(l)llzéal' k(3)a= 5‘13,
K2)*=C28%+a(xd*1—yd*,+28%), (2.3

wherep is the matter-density of dust. The rotation tenagy; has only one algebraically inde-
pendent nonzero component:

w12= % y (24)
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and therefore the coordinates used here are ill-suited for considering theolmit
As shown in Ref. 1, it follows from the equations of motion and from the equation of
conservation of the number of particles that

g:=det(g,z) = —(y/p)* (2.5

This is the form in which the metric resulted from the Killing equations in Ref. 2. It is
advantageous to transform the coordinates as follows:

t=t'—(Cy/la)lny’, x=x'"—-Cyl(ay’), (y,2)=(y',Z'). (2.6

The result is equivalent to substitutit@y=0 anda=1 in Egs.(2.1)—(2.4), i.e., the forms of the
metric (2.1), of the vector fieldsi®, w®, k1,* andks)* in (2.3) and of the rotation tensas,,z in
(2.4) do not changéalthough the ne\fmi’j in (2.1) will be linear combinations of the olid; ], while
the newk,)* basis vector will be

Ki2)*=%x8%—yd%+28%, 2.7
and the argument df;; will now be v =¢' e, theh;; are from now on unknown functions of the
time-coordinate.

It is convenient to parametrize the metric as follows:

ds?= (dt+y dx)2— (YK, dx)%— (K/y)?(dy+y?h dx)?— K32 yg dx+ (f/y)dy +y dz]?,
(2.8

whereK;, K, Ki3, h, f andg are unknown functions of. The components of the Einstein
tensor referred to below are tetrad componébis= e“,eﬁJGaﬁ, i.e., projections of the coordi-
nate component§ .z onto the orthonormal tetragl :=€' , dx® implied by (2.8):
e=dt+ydx, el=yKy;dx, e’=(K/y)(dy+y?hdx),
e’=Ksdygdx+ (f/y)dy+ydz], (2.9

wheree?, is the inverse matrix t@',, i.e., e*e's=65%, e*e',=6';. In the parametrization
(2.8), the determinant of the metric is

9=~ (YK11KK33)?. (2.10
The tetrad components of the Einstein tensor corresponding to the rt&8jiare given in

Appendix A of Ref. 5. As seen from there, two combinations of those equations are of first order,
they areK,Gost+G13=0, i.e.,

(%K33/K11)[(K112—1)K72f,t+ h(hf,;—g.0]1=0, (2.11)
and KllGOZ+ Glzz O, i.e.,
(Ky1K) "= 3K?hh, + 5h—=KyKyg 0+ (K2 = 1)(2K, /K= K33, /K39 ]=0.  (2.12)

As shown in Appendix B of Ref. 5, the cake= 0 does not lead to interesting developments, so we
shall proceed further under the assumption

h+0. (2.13

Then, Eq.(2.11) implies
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g,:=[h+(Ky? = D)/(hKA)]f,;. (2.14

With this, the equation& ;= G13= G,3=0 turn out to be equivalent, and they can be written as
follows:

1(K112_1 K333fvt) Kag'f,i
it

20 h KK KK

5 (2.19

This invites the introduction of the new variabigt) by u,,=h/(K;>—1), and then(2.15
becomes

K333f7u K333f!u
(KMK 20K O (218

which has the first integra ;°f,,/(K,K) =Ce?*", C=const, i.e.,
f,i=CehKyK/[K3s*(K1®— 1)]. (2.17)

From here on, we shall follow only the special ca3e 0, which is a solution of the Einstein
equations, but not a general one: it is a subcase chaddrcfor further progress with integra-
tion. Then, from(2.17 and(2.14) f=const,g=const, and fron(2.9) the coordinate transforma-
tion z’=z+f/y+gx leads to

f=g=0, (2.18

without changing any of the other formulas fogs, u®, w*, w,g or K;)*.

The Einstein equation§y;= G13= G,3=0 are now fulfilled identically. We are left with 7
equations that should determine the 4 functiéng, K, K3 andh, and the matter density in
addition. It will turn out in Sec. IV that the 7 equations are dependent just in the way needed to
make the problem self-consistent and determinate.

[ll. THE FRIEDMANN LIMIT OF THE METRIC

As already stated, the coordinates used in Sec. Il are ill-suited for considering thevlimit
—0. This limit can be calculated after a coordinate transformation and a reparametrization of the
metric.

Sincew;,= — w,;=3 are the only nonzero components of the rotation tensor, a natural coor-
dinate transformation to consider is

y=woy’, (3.0
wherewg is a constant. After the transformation
W=7 00=—wy (3.2

(all otherw,,z=0), and the limit of zero rotation is,— 0. However, before this limit is taken, the
metric functions in(2.8) must be reparametrized or else the limit will be singular. The following
reparametrizations will do the job:

Klllelle! K33=R33/w0, f=?w0 (33)

The transformatior(3.1) and the reparatmetrizatiof3.3) result in a metric whose limitvg—0
(with primes and tildes omittgds

ds?=dt2— (yK;,dx)?— (K/y)? dy?— K32 [yg dx+ (f/y)dy+y dz]?. (3.9
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The k= —1 Friedmann model results whep=f=0 andK ;=K =K;3:=R(t), whereR(t) is the
Friedmann scale factor. The resulting coordinates are none of the standard ones, but are related by
y=¢€" to one of the sets used in the literatlisee Eq(1.3.15 in Ref. 6].

The fact that(3.4), the limit wg—0 of (2.8), is still more general than the Friedmann metric
means that shear survives the transition: 0.

It will be shown at the end of Sec. IV that the explicitly written out Einstein equations do
allow a continuous limiting transitiom—0, o—0, and in the limit they reproduce exactly the
Friedmann equations.

IV. THE INDEPENDENT EINSTEIN EQUATIONS

We shall now proceed with the subca@18. Equation(2.1]) is then fulfilled identically.
Equation(2.12 does not change, and it can be more conveniently rewrittén,ifs parametrized
as follows:

K1;=coshF). 4.1

Then, from(2.12),
Kasz.t=Kgzd — 2K?hh,,/sint?(F)+ 2 h/sint?(F)+ 2K, /K — cosiF)F,,/sinh(F)]. (4.2

When this is substituted into the remaining Einstein equati@Asl)—(A.10) in Ref. 5, the
function K 33 disappears from the set completely, i.e., we are left with 6 equations to detdrmine
K, F and the matter-density plus the quadrature implied4g) that allows one to calculat€;;
onceh(t), K(t) andF(t) are known.

Since(2.12 is now satisfied, the equatiofs,,=0 andG,,=0 are equivalent, and they can
be written as

h,«= 2K2hh,2/sint?(F)—5K,;h, /K + (2 cosR(F) — 1)F;h,/sinh(F)coshF)
+hh,,/sinff(F)+ K, /K3+F,,/K? cosi{F)sinh(F) — 3 h/(K sinh(F))>. 4.3

This is used to eliminath,; from the other Einstein equations. The equati&f=0 can then be
solved forF,;; (see Appendix C in Ref.)5and this is used to eliminaté,,; from the diagonal
components of the Einstein tens@il the nondiagonal Einstein equations have been used up at
this poin}. After such a substitution, the following identity is fulfilled:

G11+ G33— ZGZZEO, (44)

i.e., one of the three equatio;;= G,,=G33=A can be discarded because it is a consequence
of the remaining two. We choose to discdeds;= A.
Then,K,;; can be calculated fror®,,—G,,=0. The result is

K,=3K3sinh 2(F)h,2— 2K®h coshF)sinh 3(F)F h,,
—cosh (F)sinh™}(F)K F .+ 2 cosliF)sinh *(F)K,F,.— K coslf(F)sinh 2(F)F 2
— 2Kh,+ 2K3h?sinh 4(F)h,,+ 2K3h?sinh 2(F)h,,
— 2hK,;—hsinh 2(F)K,;—Kh cosh 1(F)sinh 1(F)F,,+ 2Kh cost(F)sinh 3(F)F
— 1K cosH(F)sinh 2(F)— tKh?sinh 4(F)— 2Kh? sinh ?(F). (4.5

This is used to eliminaté,;; from the right-hand side of the equation determinifg, (see
Appendix C in Ref. 5, and the result is
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F.u=— 2K2cosh *(F)sinh }(F)h,2— $Kh cosh *(F)sinh (F)K ;h,,
+2K 2 cosh }(F)sinh(F)K,2— K 'K F ,,— coshF)sinh™ *(F)F 2
+ 2K?h? cosh }(F)sinh }(F)h,+ 2K2h? cosh }(F)sinh 3(F)h,,
+ cosh i(F)sinh Y(F)h,,— 2cosh }(F)sinhF)h,,— 2K~ *h cosh }(F)sinh }(F)K,;
— 2K thcosh }(F)sinh(F)K,;+h sinhi 2(F)F .+ 3hF,,— 2K ~?cosh }(F)sinh(F)
— 2K 2 cosh }(F)sinhY(F)— $h? cosh (F)sinh 3(F)— #h?cosh 1(F)sinh (F).
(4.9

With (4.2), (4.3, (4.5 and (4.6) all substituted, the equatioB;,=A reduces to the following
form:

Gyy= K% cosh *(F)h,{+ 3Kh cosh 2(F)K,ih,i+ $K?h cosh Y(F)sinh™ *(F)F;h,;
— 2K 2 cosh 2(F)sint?(F)K,2— 2K ~* cosh Y(F)sinh F)F (K, +F,?
+ 2K?h? cosh 2(F)h,;—3K?h?sinh 2(F)h,,— 3cosh 2(F)h, + 2h,,
+ 2K thcosh 2(F)K,;+ 3K thK,;— 3h cosh 1(F)sinh (F)F,,
—3hcosh }(F)sinh(F)F,,+ +K 2cosh ?(F)+ 2K 2+ 1h? cosh ?(F)+h?sinh ?(F)
=A. 4.7

Now it may be verified thaG,,=const is preserved by Eqgl.3), (4.5 and(4.6). This is done as
follows. The derivative (dij G4 is calculated, and,;;, K,;; andF, that reappear are eliminated
using(4.3), (4.5) and(4.6). Then,K,? is found from(4.7) and used to eliminat,> andK,2 from
(d/dt) G1;. The result is the identity (di§iG,,=0. This means that, in virtue of the other field
equations, ifG;;=A holds at any given time, it will remain constant at all other times. Hence,
G,;=A is a limitation imposed by the Einstein equations on the initial data for &g3), (4.5),
(4.6), and it defines the cosmological constant in terms of the other constants that will appear after
(4.3, (4.5 and(4.6) are solved. IfA =0, thenG;=0 reduces the number of arbitrary constants
by 1.

Hence, with(4.4), we are left with only four equationg4.2), (4.7) and any two equations
from the setS={(4.3),(4.5),(4.6), to determine the four function$§,;, h, K andF. The third
equation inSis implied by the remaining two together with.7). The only field equation that has
not yet been used up is

G00:(87TG/04)[)_A. (48)
This may be expected to simply define the matter-density in terms of the metric functions. How-
ever, in the formulation used in this paper, matter-density enters the equations in two ways: as a
source term inGy above, and also througR.5. From(2.5) and(2.10 it follows that p must be
related to the other functions by
p=(Ky KKz " 4.9
Together with(4.8) and(4.1) this implies that the following must hold:

[(Goo+A)COS“F)KK33],tEO. (41@
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Indeed, this is an identity. This is verified as follows. Fifgt,1), (4.2), (4.3), (4.5 and(4.6) are
substituted intd5 g (with f=g=0) to eliminate all second derivatives. Thé#,10 is calculated,
and (4.2), (4.3, (4.5 and (4.6) are used to eliminat&,3,; and all second derivatives again.
Finally, (4.7) is used to eIiminateK,f andK,? from the left-hand side of4.10. In the end, the
identity (4.10 results. Hence(2.5) and(4.8) are consistent in virtue of the other field equations,
and moreover Gyt A)coshf)KKz3= C=const[with second derivatives df, K andF elimi-
nated by(4.3), (4.5 and(4.6) and withK,? eliminated by(4.7)] is the following first integral of
the Einstein equations:

i 3 2 -1 3 -1 i
Ks —3KhS|nI*(F)F,t—§Kh cosh (F)+§Kcosh (F)sint?(F)h,,

3 3
+3hcosh }(F)sint?(F)K,,— EKflsinI"F(F)coshfl(F)— §K3h2 cosh Y(F)h,|=C.

(4.11

Note that, from(4.8) and (4.9), C=8nG/c*#0, and so(4.11) determinesK 35 algebraically.
Hence,(4.11) can replacd4.2) as the definition 0K3;. Thereby, the problem of this paper was
reduced to the following procedure.

(1) Find the most general solution of the ¢#.3),(4.5),(4.6). It will contain 6 arbitrary
constantdCy, . ..,Cg}.

(2) Impose(4.7) on the{h,K,F} found in the previous step. This will be just a definition/of
in terms of{C,, ... ,Cg} or, whenA =0, an additional constraint imposed §8, ... ,Cg}.

(3) CalculateK 33 from (4.11), with C=87G/c*.

(4) Calculate the matter-density fro(4.9).

As shown in Ref. 7, an efficient method to find first integrals of a set of equations exists if the
set can be obtained from a Lagrangian. Unfortunately, the problem of determining whether a given
set of equations is derivable from a Lagrangian is rather complicated and unsolved in §éneral.
is known that the Einstein equations for class B Bianchi metrics may not admit a Lagrangian, even
though the general Einstein equations(dee Ref. 9 for an explanatiprit is shown in Appendix
A that Egs.(4.3), (4.5), (4.6) do not follow from the most natural Lagrangian conceivable in this
case: a second-degree polynomial in the first derivatives, &€ andF, with coefficients being
functions ofh, K andF.

For further reference, let us consider the limit of zero rotatiofi®)—(4.3) and (4.5—(4.7).

After the reparametrizatio(8.3) we have

coshF)=K/wy, sinHF)= K Zw3—1,
Flt:RllI/ \/Rllz_ (1)%, (412
and then(4.2) in the limit wq—0 becomes
K g =Kag(2K, /K=K 13,/K1y), (4.13

which is an identity in the Friedmann limi ;;= K =K 3= R(t).
The limiting form of (4.3) is

hltt:_5h1tK1t/K+2Rlllh!t/Rll+K’t/KS' (414)

The limit wy—0 of (4.5) is
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Kiw=— KT(ll,tZ/Rllz_ %Kh,t_ %tht
+ 3KhKyy, /Ky — 1(4K) + 2K, K 1p /K 3. (4.15
The same limit 0f(4.6) is

Rll,t'[/RllzZKIIZ/KZ_K7'[R111/(KR11)+ %hkllI/Rll_ %h,t_ ghK,t/K_1/(4K2)
(4.16

In the Friedmann limii ;;=K=R(t), Egs.(4.15 and(4.16 become identical:
R, /R=R,2/IR?— 3h,— 1/(4R?). (4.17)
Finally, the limit wg—0 of (4.7) is

— 2K, 2IK2= 2K, (K 11/ (KK 19) + K11 2/K 124 2h,+ 30K, /K —3hKy; /Ky + 3/(2K2) = A.

(4.18
The Friedmann limit of this is
—3R,%/R?+ 3h,+3/(2R?)=A. (4.19
Finding h,; from (4.19 and substituting it iN4.17) we obtain
R./R=—R,2/(2R?)+ 1/(2R?) — A/2, (4.20

which is exactly one of the Friedmann equations. Incidentally, thefound from (4.19), if
substituted in(4.14), leads to(4.20 again. Hence, in the Friedmann lim{@.14 follows from
(4.19 and(4.17). The functionh, as seen frong3.4), does not enter the limiting metris— 0 at
all because, after the reparametrizatiBt8), it is multiplied by w,.

Note that alsd4.11) has a meaningful Friedmann limit. In order to make this limit finite, it
must be assumed that

C=Clw?, (4.21)
and then the limitw,—0 of (4.1)) is
Kad AKK 11+ 2K, 2K 10/K + 2K (K11, — KK 11,2/K 1;— 3K /K ]=C. (4.22
In the Friedmann limit this becomes
R(AR?+3R,?-3)=C. (4.23

Recalling the Friedmann formula for the mass-density, ith—1:
3R,2/R?—3/R*+ A =(8wGIc?)p, (4.24
we recognize in(4.23 the familiar mass-conservation formula of the Friedmann mog@f

=¢?C/(87G)=const.

V. THE LIE POINT-SYMMETRIES OF THE EQUATIONS (4.3), (4.5) AND (4.6)

The basic definitions and theorems concerning point-symmetries are presented in detail in
Refs. 7 and 8.
Equations(4.3), (4.5 and(4.6) are of the following form:
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dzzi_Wi dz! dzk+vi dz"+Ui 5 1
a2  Wikgr g TVig TV (5.

wherei=0,1,2; ¢°2%,2%)=(h,K,F) andW';, V'; andU' are functions of the', but not oft.
(Incidentally, the independence ofof all these coefficients immediately implies one group of
symmetriest—t’ =t+s, wheres is the group parametei.et the following be a one-dimensional
group of point transformations:

t'=t'(t,{2},7), z''=z2''(t{d},7), (5.2

where 7 is the group parameter angd= 7, corresponds to the identifyso thatt’(t,{z'}, 7o) =t,
etc.]. The generators of this groythe field of vectors tangent to the orbits of the grd6®)] are
then

J :
=&— 4 pl — .
X=&— gy (5.3

where

t!

211 (5.9

T=1Tg

-
7| dr
®

The generatoK is extended to arbitrary derivative§zddt® := z by the recursive formulas

(k=1)j _
@ & d g dzl d¢
n=n, n=————% =, (5.5
dt dt® dt
® 5 g Wi ®i g
et —t g—t o+ g —. .
X=Extmogt 17, 7w 69
Jz 9z

The derivatives d/din (5.5 are total derivatives, i.e.,

k

d i Wi of dZd of Pl 9

. | = — _— -

dt f(t,{Z},{ z }1 I 1{ z }) at + dt &ZJ +p=l z (p)j !
Jdz

and the ordemn to which the generatoX has to be extended is equal to the highest order of
derivatives in the sef5.1) (n=2 in our casg A generator of a point-symmetry obeys then

(n=1)i
=1 d g dé

i _ 0>
X Q=g -0l (5.7)

whereQ' is the right-hand side of5.1). Equations(5.7) must be identities in all the derivatives
(1)i (n—1)i

z,..., z ,and so they imply several separate equations to be obeyed kyate7'.
For our equation$5.1), Egs.(5.7) imply the following four relations:

EtWiE,=0, (5.9

2
7' 0= W s7°+ 2W's1 7% = WO 77!, s+ 8' (Vo9 €+ V' 1€ 2 G 'y, (5.9

where parentheses on indices denote symmetrization,
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&Zﬂi :Wi (9_7ls+_vi Sy Evl S _Evs i
ot ok ksT™or T o k,s?7 2 s 1k 2 k7 s
+£vi (9—§+Ui§ +35i us¢ +£5i ¢ (5.10
2" Kot k20K st 2 Tk '
WZVISW+UI,S773—US7]I,S+2UIE. (5.11)

The general solution of these equatiéwith W'y, , V', andU' read off from(4.3), (4.5) and(4.6)]
is

X=A i B i h i K i 5.1
= E +Blt E % + 07_K , (5.12
whereA andB are arbitrary constants. The proof that this is the most general solution is laborious

but straightforward, it is given in Appendix E of Ref. 5. Hence, our set of equations has a
two-dimensional symmetry group whose generators are

J J J

X =
M at oh K’

Ea
and the corresponding finite symmetry transformations are
t'=t+7, (h' ,K',F)=(hK,F);
t'=e2t, h'=e h, K'=e2K, F'=F, (5.19

wherer; and 7, are the group parameters.

Unfortunately, these symmetries do not lead to any discernible simplification of th® set
={(4.3),(4.5),(4.6). In variables adapted to the generaxqy), the independent variable I,
and t(K) is one of the functions. The séb.1) thus transformed is of first order ig(K)
:=dt/dK, but the first-order equation is still a member of a complicated set and none of the
equations separate out. Moreover, after the transformed set is algebraically solvgg fdn,
andF,kx , the right-hand sides become polynomialgiufd degree int,x, h,x andF .

The variables adapted to the generaXegy, are ¢',h’,K’), where

t=ef't’, K=&', h=e K'h’. (5.15

In these variables, the s@.1) becomes of first order igh(t') =K’ ,;, . However, after it is solved

for h', v, K’ 1 @ndF,. 0, the right-hand sides df’ ;. andF,;/;, contain rational functions

of the formW/(1+t'K’,;/), whereW is a monomial of second degree in some oflthg, , K',;/

and F,;,. Neither equation separates out. It is not possible to adapt the variables to both the
generators simultaneously because the group is nonabelian. This author was not able to make any
use of the new variables.

VI. FIRST INTEGRALS THAT ARE POLYNOMIALS IN (h,;,K,:,F,;)
Suppose that the s&={(4.3),(4.5),(4.6),(4.7) has a first integral of the form
1:=Q;;ZZ+L;z + E=C=const, (6.1)

where C is an arbitrary constanQ;;=Qj;, L; andE are unknown functions ofh(K,F), i,]
=1,2,3,2'=h,z?=K,z*=F. Then d/dt =0 in virtue of S, i.e., using(5.1) to eliminatez':
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(2QyZ+L)(WZ2'+ VI 2"+ U + Q;; k2 224+ L ;22 + E, ;2 =O0. (6.2

It can be verified that first integrals of the forf®.1) do not exist for our seb. The calcula-
tions are conceptually straightforward, but lead through horrible intermediate expressions, so they
are not reported here. The hypothesis {i6at) is a first integral uniquely leads to an equation that
is equivalent ta4.7).

The same method may be used to test whether our set of equations admits a constraint that
would be a polynomial of degree 1 or 2 in the first derivatives. The only difference with respect
to the procedure of looking for a first integral is that in verifying whett&p) is zero, Eq.(6.1)
is used, too. If a nontrivial solution d.2) with this additional simplification is found, then it
means that the derivative ¢8.1) by t is zero if (6.1) holds for any fixed. Then, such6.1) is a
constraint preserved by the s8t However, even this attempt has not led to useful results.
Constraints of degree 2, i.e., those wiy # 0, lead to prohibitively complicated equations and
could not be investigated. One constraint of the fairl) with Q;;=0 was found, but it is
equivalent to the square bracket(#11) being zero, and so implies zero matter density. Again,
the details are not reported because they contain complicated equations, but no ingenious ideas.
This result proves the usefulness of the method—a sensible constraint was revealed—but the
solution with zero density is not interesting for cosmology, and thus not necessarily worth inves-
tigating.

The zero-density constraint was found without using &q7). Equation(4.7) would reduce
the number of unknown functions by one, but the resulting set of equations is prohibitively
complicated and no progress was achieved.

VIl. SUMMARY OF RESULTS

It was shown that the Einstein equations for the meRi®) with f=g=0 are self-consistent
and solvable. They reduce to the s8&{(4.3),(4.5),(4.6) to determineh, K and Ky,
=coshf), and(4.11) to determineK 33 (WhereC=8xG/c*). The matter density is found from
(4.9). The first derivatives of the functions obeying the Senust obey(4.7).

The Friedmann solution witk= — 1 is contained among the solutions of this set, as shown in
Eqgs.(4.12—-(4.24). Unfortunately, no explicit example of a more general solution could be found.
Attempts to followad hocAnsatzes produced uninteresting results. The AnsatX 45 led to the
deSitter solution in disguise, in which the t-lines had nonzero rotation. The AksatzK/C
(C=const), which is consistent with the Friedmann limit, led to such complicated equations that
it could not even be verified if they are not contradictory. The assumption of zero shear implies
zero expansion, in virtue of the theorem= 0)=(w 6= 0) that holds for dustsee Ref. 1D

The setS was shown to have a two-dimensional group of point-symmetries, giveb. b,
and to admit no Lagrangian of the Hilbert type. It was also verified that no first integrals of the
form (6.1) exist.

The progress achieved in this paper was the reduction of the problem of existence of a rotating
generalization of th&k=—1 Friedmann model to the technical problem of finding an explicit
solution of the se8. The solvability of the se$ may be taken for granted because the Friedmann
model itself was shown to be one of its solutions. It is still unknown, though, whether a continuous
family of solutions exists labeled by the paramatefrotation such that the limiw— 0 taken in
the explicit solution leads to thie= —1 Friedmann model.

A similar analysis as done here should be done for the other promising cases identified in Ref.
3.
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APPENDIX A: NONEXISTENCE OF A HILBERT-TYPE LAGRANGIAN FOR THE SET
{(4.3), (4.5), (4.6)}

Equations(4.3), (4.5 and(4.6) can be written in the form

&’z _w dz' dz* Ly dz! LU AL
@ Wi w Vi Y (A1)
wherei=0,1,2;2°=h, z'=K, z°=F andWJk, V andU' are functions of §,K,F) (but not of
t). Note that the sef(A.1l) is covariant with respect to arbitrary transformations—z'!
=f! ({zJ}) the first derivatives zl/dt transform then like a contravariant vector, and so do the
termsU', the Coeff|C|ent3/' transform like a mixed tensor, and the coeff|C|entsV(le) trans-
form like components of an affine connectiofthe nontensorial terms in the transformed
(—W',) arise from dz'/dt?.] The most natural Ansatz for a Lagrangian fa) is

__dZ dZ . dz o .
Qigattgt® (A2)
whereQ;; , L; and® are functions of {,K,F). Such a Lagrangian would result from the Hilbert
Lagrangian by taking out a complete divergence and integrating the result with respect to the
spatial variables. The Euler—Lagrange equations impliedA2y are

dZ*dzZ 1 Lo dz* 1q> A3
o a T2 tkiTLik gt o P (A3)

d?z 1
QisF == Qii— EQkI,i

If these are to be equivalent {41), then the following must hold:

QisWo=—3(Qxi1 + Qi k— Qi) (A4)
QisV%=3(Lki—Lix, (A5)
QisUs=3D,;. (AB)

Equation(A4) implies that (—Wijk) must be Christoffel symbols constructed from the megic,
Eq. (A5) implies that;L; must be a vector potential for the tensor fi€ VS, and Eq.(A6)
implies that®/2 must be a scalar potential for the vector fi€dUS. All of these are strong
conditions and they may be impossible to fulfill in many cases.
Indeed, for our equationgh.3), (4.9, (4.6), the solution of(A4) turns out to beQ;;=0, i.e.,
the LagrangiarfA2) does not exist. An outline of the proof is given in Appendix D of Ref. 5.
Since the Euler—Lagrange equatidigl) are covariant with respect to arbitrary transforma-
tions of the Lagrangian variablg¢s our caseh—h’(h,K,F), etc], and equations of the form
(A1) are covariant, too, the conclusion that a Lagrangian of the {é&2) exists(or does not exist
is coordinate-independent, i.e., having shown that E4),(4.5,(4.6) do not follow from a
Lagrangian(A2) in our variables{h,K,F}, we know that no such Lagrangian will exist in any
other variables.
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