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The existence of Friedmann limits is systematically investigated for all the
hypersurface—homogeneous rotating dust models, presented in previous papers by
this author. Limiting transitions that involve a change of the Bianchi type are
included. Except for stationary models that obviously do not allow it, the Fried-
mann limit expected for a given Bianchi type exists in all cases. Each of the three
Friedmann models has parents in the rotating classkthé 1 model has just one
parent class, the other two each have several parent classes. The type IX class is the
one investigated in 1951 by @el. For each model, the consecutive limits of zero
rotation, zero tilt, zero shear, and spatial isotropy are explicitly calculated.

© 2001 American Institute of Physic§DOI: 10.1063/1.1378304

I. MOTIVATION AND SUMMARY OF THE METHOD

In previous papefs® a complete set of all metric forms was derived that can represent
hypersurface—homogeneous rotating dust models. For each case, the generators of the symmetry
algebra were found, the Bianchi type determined, and the metric form resulting from the Killing
equations was explicitly presented. That classification was more detailed than the Bianchi classi-
fication because all possible orientations of the symmetry orbits in the spacetime were allowed,
i.e., the orbits could be spacelike, timelike or null.

In a later papet,one of the Bianchi type V models was investigated. Among the problems
considered there was the question whether the model can reproduce thé Friedmann model
in the limit of zero rotationw— 0. Since the coordinates that are well-suited to the classification
are not suitable at all for considering the limit— 0, this limit could be taken only after a
coordinate change and reparametrization of the metric.

In the present paper, the existence of the Friedmann limits is systematically investigated for all
the other cases found in the classification in Refs. 1-3. The Bianchi type is allowed to change in
the limiting transition. In all Bianchi type | cases the velocity field is tangent to the symmetry
orbits, i.e., those models have matter density constant along the flow, and no expanding Friedmann
model can be a subcase there. The same is true for the Bianchi type Il from Ref. 1 and for both the
subcases of case 1.1.1.2 in Ref. 2 which are of type Ill. In all the other cases the Friedmann limits
that can be expected for a given Bianchi type do indeed exist.

The specialization to the Friedmann metrics is possible in so many cases because there is a
free parameter in them that determines the tilt of the orbits with respect to the velocitfigid
various values of the tilt parameter, the orbits may be spacelike, timelike or Whienever a
Friedmann limit exists, the orbits are made orthogonal to the velocity (figftilted” ) during the
limiting transition.

In order to make this paper readable independently of the other ones, the basic facts are briefly
recalled here. More details can be found in Ref. 1.

The velocity field of a rotating dustj, defines three scalar function$x), n(x) and &(x)
such that
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U,=T, ot 7,4 (1.1

These functiongwhose existence follows from the equations of motion via the Darboux théprem
are determined up to the transformations:

r=1'=S(&',7'), &=F(&.7"), 7=G(¢.7"), 1.2
where the function§ andG obey
F,eG,,—F,,Ge=1, (1.3
and thenS is determined by

S,e=GF,.—7', S, =GF,,. (1.4

!

[Eq. (1.3 is the integrability condition of1.4).]
Then, the continuity equationn(®)., =0, wheren is the number density of the dust particles,
implies that there exists one more functigfx) such that

J=gnut=ef7%¢ 1n. ¢, (1.5

whereg is the determinant of the metric tensor aftf?° is the Levi-Civita symbol. The function
{ is determined up to the transformations

(=0+T(E "), (1.6

whereT is an arbitrary function.
The following relations hold then:

ur,,=1, UPE p=ufn,z=uPf z=0,
1.7)

&( T’ n’g’g)
ax° X X2 x3) V=gn=0.

This shows thafr,&,7,{} can be chosen as coordinates, witheing the time coordinate. They
are called the Plebaki coordinates. Denotingr, &, 7, ¢} ={x% x*,x2,x®} ={t,x,y,z}, we obtain
for the velocity fieldu®, the metric tensog,;, the rotation tensow ,; and the rotation vector

in these coordinates

ua:5001 ua:50a+y51a1

Joo=1, G01=Y, Uo2=U03=0, g=delg,z)=—-n"?

WO=NSS, wup= —wga=30" 0. (1.9

It is the last property that makes the limiting transitier~0 impossible without a coordinate
transformation and reparametrization.
In these coordinates, if any Killing field is allowed by the metric it must be of the form

kK*=(CH+d—Yd.y) 6%+ b,y 6%1— ¢,x6%+ N6, 1.9

whereC is an arbitrary constant anfi(x,y) and\(x,y) are arbitrary functions. 1% ,#0 (i.e., ¢
is not constant on an open sethen the coordinates can be adaptedtawithin the Plebaski
class[by Eqgs.(1.2—(1.4) and(1.6)] so that

ke= 5%, (1.10
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The metric then becomes independenkpfind the coordinates preservifig10 are determined
up to the transformations:

t’=t—fyH,ydy+A, x'=x+H(y), y'=y, zZ'=z+T(y), (1.11

whereA is an arbitrary constant artd, T are arbitrary functions.

If ¢ ,=0, then the form of the Killing fielk®=Cd%,+\ 6“3, is invariant undef1.2)—(1.6)
and the Plebaski coordinates cannot be adaptedto The property¢=const is equivalent to the
following invariant relation:

k*=Cu®+ (N/n)w?, (1.12

i.e., k® is then spanned on the velocity field and the rotation field.

If three Killing fields exist, then each of them can either be of the special(tyi® or of the
general typg1.9). One of the general-type Killing fields can always be transformed to the form
(1.10 by (1.2—(1.6).

This observation gives rise to a complete classification of all hypersurface—homogeneous
space—times that are possible for a rotating dust. When all three Killing fields are of the special
type (1.12, the symmetry orbits are two-dimensional, and this case is not considered. When two
Killing fields are of the special type, while the third one is general, there exist two classes of
metrics (Bianchi types | and )l that were derived in Ref. 1. When one Killing field is of the
special type, while the two others are general, all Bianchi types except VIII and IX affipefar
2). When all three Killing fields are of the general type, all the Bianchi types appear, some of them
hidden as limits of more general typ&Ref. 3. The multitude of cases is a consequence of the
many possible alignments or misalignments among the three Killing fields and the velocity and
rotation fields.

When the Bianchi classification is introduced, the generators of symmetry are scaled to stan-
dard forms such that all nonzero structure constéensept the free parameters in types, @hd
VIl ,) become equal either t6 1 or to — 1. In general, though, they are arbitrary constants, and in
the general form each of those constants can be allowed to become zero. In this way, the more
special Bianchi types can be obtained from the more general ones by going to the zero limit with
some of the structure constants. The resulting hierarchy of Bianchi types is well-known, and is
shown in Fig. 1(adapted from Ref.)5for easy reference. The specializations that are possible can
be instantly guessed from the values of ¢hen,, n,, andng parameters for the different Bianchi
types. Type Ill cannot be specialized to IV or V because, with the arbitrary values of the param-
etersn, andns, the parametea is determined bya=\—n,ns.

Another well-known resufit is the placement of different Robertson—Walker geometries
within the Bianchi classes. This is also recalled for easy reference. Since we are considering only
dust models, we will call these geometries the Friedmann models and Friedmann limits of the
rotating models.

Thek=0 model is a subcase of the Bianchi types | and,Vihe two Bianchi algebras have
different bases, but share common orhits

The k= —1 model is a subcase of the Bianchi types V and,VII

The k= +1 model is a subcase of the Bianchi type IX.

When considering each case of the classification from Refs. 1-3, one has to recognize from
Fig. 1 which of the four type§, V, VIl o, VI, IX} could possibly be contained in it as a subcase
and then the appropriate specialization of the arbitrary constants and functions in the model has to
be considered. This procedure will be presented in more detail in Sec. Il, later it will be applied
without detailed explanations.

It will turn out that only the stationary models have no Friedmann limit. In every nonstation-
ary case, the Friedmann limit indicated by the Bianchi type indeed exists. Note that the limits are
found for the metrics, without taking into account the Einstein equations. This is why a nonsta-
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FIG. 1. The diagram shows how the different Bianchi types can be specialized by taking the zero limit of one or more of
the structure constants. This allows to recogriizg the rules given at the end of Seg, Wwhich Friedmann models can
possibly be contained as limits in a given class—see text. All the possibilities are actually realized in the collection
considered in the paper.

tionary type Il metric exists in the collection, and is found to admitkke) Friedmann limit, even
though it is knowrt® that spatially homogeneous type Il dust solutions must have zero rotation,
see Sec. lll.

Now we shall systematically go over all the cases presented in Refs. 2 and 3. The two cases
from Ref. 1 are immediately seen to admit no Friedmann limit: In both of them, the velocity field
of the dust is spanned on the Killing fielflsee Eqs(7.7) and (7.8) in Ref. 1], so the particle
number densityn will obey n ,u®=0. Hence, these cases cannot contain any expanding Fried-
mann model because in the latter,u®#0.

Each of the models presented in Refs. 2 and 3 that allows a Friedmann limit will be first
transformed to the Plebaki coordinatesmost of them were found in coordinates adapted to the
Killing fields that are not in the Plebaki clasg. Then, each model will be transformed by a
coordinate transformation and reparametrization of the metric functions and constants to such a
form in which the limit of zero rotation can be calculated explicitly. Then, the Friedmann limits
will be calculated by consecutively imposing on the metric the conditions of zero rotation, zero
tilt, zero shear, and spatial isotrogiye., constant curvature in the three-spaces orthogonal to the
dust flow). This last condition is not superfluous, even though dust with zero rotation and zero
shear must be a Friedmann model in consequence of the Einstein eqdatisnsonceivable that
no Friedmann limit would exist at all in some classes. However, this does not happen, and a
spatially isotropic subcase will be found to exist in all cases. The corresponding limits of the
Killing fields, where nontrivial, will be also calculated and the Bianchi type of the limit deter-
mined.

Since on each of the underlying manifolds five vector fields gxislocity, rotation, and the
three Killing fields, the five vectors must be linearly dependent at each point. This linear relation
allows to identify in each case the parameter that determines the tilt of the velocity field with
respect to the symmetry orbits—see Sec. V. It turns out that this tilt parameter is always simply
proportional to that defined by King and Elfis.

Il. THE CASES 1.1.1 OF REF. 2

We begin with case 1.1.1.1., which is of Bianchi type llI.
The transformation from the coordinates used in Rdl8 of Ref. 2(that were adapted to the
Killing fields) to the Plebaski coordinates is given by E.16) in Ref. 2(where{t’,x’,Y,Z} are
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the coordinates of2.18, and{t,x,y,z} are the Plebaski coordinates The transformed metric is

9oo=1, doi=Y, Yo2=9os=0,

2 1 2
EbY) h22,

1 b
J11= (2—)\3 + 2—)\§YZ+ hll_ )\_3h12Y+
(2.2

012=h1— 3bN3Yhyy,  g13=Cshys— %b2C3Y Mo,

920~ )\ghzz, U25=bC3h3hp3,  gas=(bC3)?hgs,
whereb, C5; and\ 3 are arbitrary constant¥, andZ are given by:
Y:_b)\3t+)\3y+bC3Z, Z:b)\3t+)\3y_bC3Z, (22)

and all theh;;, i,j=1,2,3 are arbitrary functions &. The first line of Eq/(2.1) will be the same
in all the other metrics transformed to the Pletkircoordinates, so it will not be repeated from
now on. Since the argument bf; is determinedby the Killing equationsonly up to a constant
factor, we are allowed to rescale it by an arbitrary factor. For considering thedimi0, it will

be convenient to assume that the argumertt; pfs

This presupposes thhi ;# 0, but this condition is included in the definition of case 1.1.1.1. The
limit A3=0 can be taken into account after a simple reparametrization, and it leads to a stationary
solution. The subcade=0 is degenerate, and it belongs to the 1.1.2 family.

As seen from the last formula if1.8), the simplest way to letv—0 is to transformy as

follows:
y=wgY, (2.9
and then letwg—0, so that the only nonzero component of rotation in the new coordinates
becomes
w1,= wgy —— 0. (2.5
wp—0

Then, however, the componemns,, g5,, andg,; of the transformed metric would simultaneously
go to zero, and the metric would become degenergte()). To avoid thish,, must be rescaled
as follows:

h22: szlwé. (26)
Theng;,= woh1,— 3bA\3Y Hyo/ wo would become infinite in the limitsy— 0. To avoid thish;,

must be reset so that the infinity is cancelled. Sincé;altiepend o, not onY, this can be done
as follows:

hyo=Hao/ wo— 3(bA3)2THa,/ 3. (2.7)

The first term in(2.7) contains thew, in the denominator for greater generality, so tgas

—— H,#0. Then, to cancel the infinities igy;, the functionh;; must be reset as follows:
wp—0

hllell_ %b4()\3T)2H22/wS—b2Th12. (28)
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The reparametrizatiof®.4), (2.6)—(2.8) would be sufficient to make the limity— 0 of the metric
(2.1) nondegenerate. However, the hypersurfaecesonst, that become orthogonal to the velocity
field u® in the limit wy—0, would not yet coincide with the hypersurfaces of constant matter
density. In the Plebaski coordinates, as seen frarh.8), the matter density obeys=—n~2, and

son would depend ont(C3z/\3) in the limit wy—0, i.e., the model would still be tilted. To
untilt it, we must letC5— 0, and this requires at least one more rescaling. It will be convenient to
redefineC; as follows

C3= wC, (2.9
so that the untilting occurs simultaneously with—0. Then we must rescale;s
has=Has/ w3. (2.10
For greater generality, we will also rescdig;
has= st/wé, (2.1)
and thenh;3 must be reset as follows:
hys=H1s/wo— 3b3N5TH,5/ wd. (2.12

The transformation2.4), applied to(2.1) together with all the subsequent reparametrizations,
results in the following metric:

Joo=1, Yo1= oY, Yoo=0903=0,

1
9n=72 [bAgt(—2\5Y+2bc2) o+ (A5Y+bc2)(3N3Y—bc2) w?]
3

1
- Z(bt)2+ Hy1— 2bYH 15+ (bN3Y)?H o5,

, (2.13
012=H1p—bA5YH,,,  g13=CHyz—b2Ch3¥H,3,

U20=MA3H25, Gps=bChgHyps, gsa=(bC)?Hgs,

where theH;; depend only on. Here, similarly as ir{2.1), the first line will be the same for every
metric, and so it will not be repeated from now on.

The metric(2.13 still has nonzero shear. If a Friedmann model is to result from it, the shear
must be set to zero. The coordinafésc,y,z} in (2.13 are now comoving and synchronous, so
zero shear means that

9ij=Gij(x,y,2)RA(1), (2.14

i.e., all the components of the metric must depend on time only through the sameRagtpr
This means:

Hyi(t) = 2b%%—Cy4R3(1),
other H;;(t)=—C;;R?(t), (2.15
whereC;; are unknown constants. With no loss of generality, it may be assumed that

C33: 1. (216)
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The metric(2.13 with H;; as in(2.19 and (2.1 will represent a Friedmann model when the
hypersurface$=const are spaces of constant curvature. In order to calculate this curvature, it is
convenient to introduce the new constabtg, Dq,, andD,, by

D222’= Coo— C232: D12:=(C12—C13C23/b)/(N3D322),

(2.1
D112’:C11_ Clszlbz_ D122-

The correct signs fob ;> andD,,? are guaranteed by the signaturg®f13. Then(2.13 may be
written as follows:

dSZZ dtz_ (DlleX)z_ RZ[( D12_ b)\gDzzy)dX+ )\3D22dy]2
—R?[(Cy3/b—b\3Cpsy)dX+ \3Cosdy+ bcdz]?, (2.18

and the curvature tensor for the spategonst may be easily calculated using the orthonormal set
of differential forms suggested K@.18. The curvature tensor is

R¥,=3F?G?+F?, R'¥;=R%,3=— ;F2G?, (2.19
where
F:=b/(D11R), G==C23/D22. (22@

The Riemann tensd2.19 will represent constant curvature whe?,=R*3 ;. This impliesb
=0, which seems to be a singular limit (£.18. However, the limitb—0 may be easily incor-
porated into(2.18 by the following reparametrization:

C13:D13b, c=Cl/b. (22])

After this, the Riemann tensor of the spaeeconst still has the same for(2.19—(2.20. With
b=0,R,,=0, i.e.,(2.18 represents then the=0 Friedmann model. This is the Friedmann limit
of the metric(2.1), as expected for Bianchi type Il

In this case, the coordinates of the Friedmann limit are similar to those usuallythsgdare
the nonorthogonal Cartesian coordinates for the flat spa@®nst). This will not be so in most
other cases—the coordinate representation of the resulting Friedmann limit will be rather exotic,
and calculating the Riemann tensor of the subspaamnst will be the simplest way to check that
it is the Friedmann metric indeed.

The Killing fields for the metriq2.1) are (see Ref. 2

1)=01, Kkin=e(8-bs5), ks =Csd5+N\355. (2.22

As seen from Fig. 1, the algebra of type Ill can be specialized only to types Il and I, and so the
k=0 Friedmann limit is the only one of the three that can be expected here. Note that the Killing
field k) will have a meaningful limitw—0, b—0 only if the two limits are tuned so that
wo/b ——— 0 (for example b=B\/wy). Thenl{(5:=(wo/b)K) —— 8%, which is indeed a

wo—0 wp—0
Killing field of (2.18 with b=0. The algebrdk ;). ,,K(s)} becomes then Bianchi type | when
wo=0, as expected.

The reasoning behind the reparametrizations, and the subsequent calculation of the limits of
zero rotation, zero tilt, zero shear, and constant curvature of the spacesst, follows the same
scheme in all the other cases. Therefore, it will be presented in less detail from now on. In some
of the cases, the reparametrization that untilts the limit O is a necessary condition for cancel-
ling the infinities introduced by the earlier reparametrizations.
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The other two subcases of case 1.1.1 in Ref. 2, i.e., cases 1.1BH®R(B.16] and 1.1.1.2.2
[Eq.(3.32] are immediately seen to allow no Friedmann limit. For both of them, the Killing fields
are given by(2.22 above withk 3= 0. As seen fron{1.8), the Killing field k3 coincides then with
the velocity field of dust, and so both these models are stationary.

In fact, the last 0f2.22) is the linear relation among the five vectors mentioned at the end of
Sec. |, because it is equivalent(tb12. Since with\ ;=0 the velocity becomes one of the Killing
fields, i.e., becomes tangent to the symmetry orhitsis the tilt parameter. More on this—see
Sec. V.

Ill. CASES 1.1.2 OF REF. 2

The case 1.1.2.1 is again of Bianchi type Ill. The transformation back from the coordinates of
Eq. (4.6) in Ref. 2(adapted to two Killing fieldsto the Plebaski coordinates is given bi.4) in
Ref. 2, with the roles ofx“} and{x’“} interchanged. The transformed metric is

g11=—2(cla)y—(c/a)?+Y2hy;— 2(c/a)h3Y hygt+ (chz/a)?hgs,
Ch3
g12=hyo— a_Yhzsy 913= C3Y hyz—(c/a)N3Cshag, 3.1
020=h2a/Y?,  925=C3hpslY, g33=Chhgs, Y:=ay+c,
wherea, ¢ and\ 3 are arbitrary constants arg; are arbitrary functions of the variable
T:=t—C3z/\;. (3.2
The reparametrization that will allow setting the rotation and tilt to zero is
(y,C3)=wo(Y,D),
hi=Hut+ (A\g/a)®Hgg/wf,  hyp=Hiplwg+ (Ng/a)Hyslwf,
his=Higt (Ns/@)Hgsl 0, (N22,Np3,h33) = (Hpp,Hog, Haa) . (3.3
The reparametrized metrigvithout the limit wy— 0 taken yet is
911= —(c/a)®~2(c/a)wey + Y?H11— 2(c/a)hgYH 13+ (A5¥) ?Has,
912=Hipt (\¥/Y)Hz3,  g13=DwoYHig+ DN3YHs;3, (3.4

022=H2/Y?,  923=DHy3/Y, g33=D?Ha, Y=aowgy+c.

Similarly as before, in the limito,— 0 theH;; will depend only ort, and the subsequent limit
of zero shear i#l ;= — C1;R?(t) +(c/a)?, otherH;;(t) = — C;;R%(t), C33=1. Proceeding exactly
as in Sec. I, we then find that the hypersurfatexonst will have constant curvature whieg
—0; the resulting limit is the Friedmank=0 model, as expected for type Ill. The limi€;
—0 and\3—0 should be tuned so th&@tz/\3—— 0, e.9.,\3=L 3wy

wp—0

The case 1.1.2.PEgs. (4.12—(4.33 in Ref. 2] is of Bianchi type Il. It is known from the
paper by Ozs\i,” and from Theorem 3.1 by King and Elfi¢hat dust models of type Il have zero
rotation. However, that thesis was proven with use of the Einstein equations in Ref. 7 and of the
Ellis evolution equatiorsin Ref. 8, that include consequences of the Einstein equations. In the
approach of Refs. 1-3, the Einstein equations were not used. Moreover, the caggiays the
role of the tilt parameter here—with;=0, the metric becomes stationatthe orbits of the
symmetry group become timelike and tangent to the velocity field of the,dusd this case is not
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covered in Refs. 7 and 8. This is why the case 1.1.2.2 could show up in our consideration. This
observation implies a warning: The existence of a Friedmann limit of the metric does not guar-
antee that the Einstein equations will allow a rotating generalization of a given Bianchi type of the
corresponding Friedmann model. A rotating dust solution and the Friedmann solution may turn out
to be two disjoint subclasses within that type.

The metric[Eq. (4.13 from Ref. 7 transformed back to the Plelski coordinategby the inverse of
(4.4 from Ref. 2 is

911=hy1t 2\ gy his+y2(1+\3ha),
g12= 1o+ Ngyhps,  913=Cs(histAgyhsy), (3.9

(922,923,933 = (hzz,Cahzs,Cghaa)a

where theh;; are arbitrary functions of th& from (3.2). The limit of zero rotation and zero tilt is
achieved after the reparametrization

(y,C3)=wo(¥,D),
(h12,h13) = (H12,H13)/ wg, (h22,h23,h33)=(H22,H23,H33)/w(2), (3.9
and the reparametrized metric is
911= (@0¥)?+ hyg+ 2N 3¥H 15+ (N5Y)*Has,
012=Hiot NgYHzs,  913= D(Hizt A3YH3g), 3.7

(9221923'933):(sz-DH231D2H33)-

The k=0 Friedmann limit will result now whem,=0, H;; = —Cinz, andA;=0.

The theorem by King and Ellis mentioned above implies thgt 0 will follow when (3.7) is
substituted in the Einstein equations.

The Killing fields for the metriq3.1) are

(1)=90%1, k{5 =C36%+N36%3,
(3.8
k{2)=Cxd%+axd"; —(ay+c) 5%+ (ch3/C3)x 5.

[The Killing fields for(3.5) result whera= 0 above] After the reparametrizatio(8.3), in the limit
wp— 0, the basig3.8) becomes

kfyl)= 0%, ?3)‘:(1/}\3)k?3) —O’ 0%,
wo—

(3.9
I&y=— (wo/C)kyy —— 6%~ (\3/D)x8%3.

wo—0

In the Friedmann limit3— 0, the generator3.9) become a Bianchi type | algebra.

IV. CASES 1.2 AND 2 OF REF. 2

All of these allow both th&k=0 and thek=—1 Friedmann limits.

Case 1.2.1.1 is of Bianchi type yWith the free parameteb+ f2)/(b?— f?) (there is a typo
in Ref. 2. In this cas€/Egs. (5.6—(5.7) in Ref. 2], the transformation back to the Plelsan
coordinates is given bgp.5 from Ref. 2, with the roles ox“ andx’* interchanged. The resulting
metric is
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g11=hy;—2bt(y—bh;y) — 2Zh 5+ (bt)2(b2hy,— 1) — 202t Zhys+ Z2hs;,
91o= 1ot b?thyy—Zhys,  g1s=hygtb?thys—Zhgg, (4.1
(922,923,933) = (N22,h33,h39),  Z:=fz,
whereb andf are arbitrary constants, atg are arbitrary functions of
T=t+yl/b. (4.2

The limit of zero rotation(that will automatically untilt the modglis achieved by the reparam-
etrization

y=0y, hp=Hzlwf, hy=Hyslw,,
hy1=H11+ (bT)2=2b?Thy,— b*T?H ./ 0}, (4.3
hip,=H1o/ wo— b2T szlwg, hig=Hq3— bZTH23/wo7
and the reparametrized metric is
911= (@0¥)?+H1y— 2bYH 15— 2ZH 3+ (bY) *Hoot 20YZH 5+ Z%hgs,
012=Hi2= BYH2o—ZHz3,  913=Hi3—bYH33—Zhgs, (4.9

(922,923,933) = (H22,H23,h33).

With wy=0, the shearfree limit will result when ath; = —Cinz(t), and then thé&=—1 Fried-
mann model results whem=f#0. Thek=0 Friedmann limit results wheb=f=0. This is the
first instance where the coordinates of #e —1 Friedmann limit come out rather exotic. From
now on, this will be the rule.

The Killing fields for the metriq4.1)—(4.2) are

kiy=08%, k&H)=e€(8%—bd%), ki =e*5%. (4.5

In the k=—1 Friedmann limit that will result by the first d4.3) andb=T, kf‘l) remains un-
changedk(3, becomes %‘5“(3), while k{3, is replaced by

15)=(— wolb)kiy ——— 5%, (4.6

a)oﬂo

This is of Bianchi type V, and in the further limid=f=0 it becomes type I.

In the case 1.2.1.FEq. (5.10 in Ref. 2], which is of type IV, the transformation back to the
Plebaiski coordinates is given by Ed5.9) there. The whole further calculation is similar to
(4.1)—(4.4) above. Instead of the last formula {.1) we have

Z:=ct+bz (4.7)
wherec is one more arbitrary constant, and(#h3 we have:
h11:H11+(bT)2_2b2Th12+ 20TH13_ b4T2H22/wS+(CT)2h33,
h12: lelwo_ b2TH22/w3+ CTH23/(.L)0, h13: ng_ b2TH23/(Do+ CThg3. (48)

The reparametrized metric is
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011= (oY) *(1+c?hz3/b?) + 2wy (H13/b—FH 3~ zhgg) +Hyy— 2bYH 5
—2bzH; 3+ (bY)2H yp+ 2b%Yz Hyg+ (b 2)?hs3,

g12= wo(C/D)YH 23+ H1o— bYH o~ bz Hy3, 4.9

g13= wo(C/Db)Yh33+Hiz—bYH 53— bZhss, (922,023,933 = (H22,Has,H3g).

The limit wy—0 of (4.9 is the same as the limibg—0 of (4.4) with b=f. Hence, thek
=—1 Friedmann limit will result from(4.9) when wy,=0 and h;;= —CinZ(t), without any
further limitations. Thek=0 Friedmann limit will result wherb=0 in addition.

For the case 1.2.2.fIEgs. (5.17) and (5.18 in Ref. 2], which is of Bianchi type W, the
subcase€C=j+a=0 is identical to the subcage=0 of case 1.2.2.2, and so the Friedmann limits
will be the samgsee below.

The case 1.2.2.PEq. (5.19 in Ref. 2], which is of Bianchi type IV, allows the special case
c¢=0, where the Bianchi type becomes V. This special case was investigated in detail in Ref. 4, and
it was shown there how thk=—1 Friedmann limit is obtained. In order to obtain the-0
Friedmann limit, one has to apply the following transformation and rescaling t63E5).in Ref.

4:

y=e", K=Kla, (4.10

and then take the limiz— 0.

All the subcases of case 2 in Ref. 2 have matter density constant along the dust flow: In case
2.1.1(type l) and both cases 2.1(&pes Il and }, the velocity field is tangent to the symmetry
orbits, in case 2.2type ), the velocity field coincides with one of the Killing fields. Therefore, no
Friedmann limits will exist there.

With this, all cases of Ref. 2 are exhausted.

V. CASE 1.1.1.1 OF REF. 3

In the cases considered in Ref. 3, each of the three Killing vectors is linearly independent of
the velocity and rotation. However, the five vectors existing in each four-dimensional tangent
space to the manifold cannot form a linearly independent set. The three-dimensional space
spanned by the Killing vector& ;, must intersect with the two-dimensional plane spanned by the
velocity and rotationH,, along at least one direction. In the models of Ref. 1, the wHolplane
was a subspace of the; space. In consequence, the velocity was a linear combination of the
Killing vectors, and so those models were stationary. In the models of Ref. 2, considered up to
now, the planeH, and the spac&; intersected along the direction of the Killing vectifs,
=C3u“+(Ag/n)w*. From now on, the line of intersection will not coincide with any Killing
direction. Hence, in each case an equation of the following form will have to hold:

ark(1) azk(z)+ agk(zy=byu®+bwe, (5.1)

wherea; andb; are functions on the manifold. Note thatif= 0, then the velocity field is tangent
to the symmetry orbits, and in consequence such a model has zero expansion and matter-density
independent of the comoving tinthe metric may depend on the time only because in general the
metric has shearHence b, is a measure of the tilt of the velocity field with respect to the orbits.
Its relation to the tilt defined by King and Effisvill be explained belowsee after Eq(5.6)].

The case 1.1.1.1, given by Eg®.28 and (2.29 in Ref. 3, is of Bianchi type M]. The
transformation back to the Plelsk coordinates is given by E¢2.27) in Ref. 3, and the result is
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PO+ ey T hiye 2Vhy, 2—— Y Uhoa+v2h
gll_bZ(b_f) - b—f (H'Y)+ 11 12~ bﬁ(b_f) 13t 22
fy fy 17,
T 2hpo—1) Vst W} Uhss.
2 fy
012=V/b“+hy,—Vhy,— WUhB,

(5.2)

fy
913=h13—Vhys— WUh&m

U= —1b%+hyy, (923,939 = (N23,h39),
whereb, f, g andy are arbitrary constants, tlrg; are arbitrary functions of the argument:
T=t+y/b—B(b—1f)zly, (5.3
andU andV stand for
U=bt+y, V=Dbft+(b+f)y. (5.4
The Killing fields for the metriq5.2) are:

k=01, ki=e"{85—fs5+[v/(bB)]153},
(5.9
ks =€"(— 85 +bs5).
From (1.8) it follows then that:
be™ k() + fe™ k5= (b—f)u*+[y/(nB)Jw". (5.6

This is the Eq.(5.1) specified for the case 1.1.1.1. As remarked above, whef, the velocity
field becomes tangent to the symmetry ordiwith y— 0, the argument offi;; given by(5.2) has
to be redefined so that it becom&s- yT —=0” —B(b—1)z.]

This means that the parametey/3) is a measure of the tilt of the velocity field with respect
to the symmetry orbits. Indeed, the measure of tilt defined by King and® Blisroportional to

(v/B). They defined the hyperbolic angle of tl_ﬂby
coshB=u“n, (5.7)

(the difference in sign from their paper is a consequence of the difference in signathesen,,

is the unit vector normal to the orbits of symmetry. This definitiornBofnakes sense only when
bothu® andn® are timelike vectors; the casesmwf being null or spacelike are not considered in
Ref. 8. Howeverp“n, is a measure of the tilt also for nontimelik&. In particular, wheru® is
tangent to the symmetry orbita®n,=0. The vectom® is related to the Killing fields by

Na=Na/V=0,,N“N"=N, /[N, (5.8

where

N =Lg NN (5.9
— aByo™(1)™(2)™(3)

“ V=g
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In our case then

un, = [N| N u®=

b+)x,
Y B. (5.10
INIV-g

Analogs of(5.1) and(5.6) will exist in every case considered from now on. In the models of
Ref. 2, considered up to now, where the Killing fielg) always had the formk(s,=Csu®
+(N3z/n)w?, N3 was a measure of the tilt.

For calculating the limit of zero rotation and zero shear, the following reparametrization is
useful:

(V,8)=wo(V,B), hyy=Haplw§, hyz=Haslwg,

hy1=(fT)2+Hy 4+ 2bfThyy+ 2(F2/D) Thyg/ wo— (DT T)?H po/ w3
—2(bf3/D)T?H y5/ w3 — (f4/D?) T?hgs/ 03,

(5.11)
h12=H12/w0+ bfTH22/w(2)+(f2/D)TH23/w(2),
h13:H13+ bfTH23/w0+(f2/D)Th33/wo,
D:=f(b—f)B/y.
The reparametrized metric is
gll: _2 ftho-i-[(DZ)Z—Z(f/b)'yVV]wS-l- Hll_ZbWHlZ
—2fzHy5+ (bW)2H 5+ 2bFZWHy+ (2)2Hags,
g1=(ft/b) wo+[(b+f )/b?]Jw3+H o~ bWHy,— fZH,g,
(5.12

g13= H13— bWHy3— fzhg,

(922,923,933 = (Hp,H23,h33=Hggy), W:=y+Dz

Thek=—1 Friedmann limit results now frors.12 whenw,=0 (after which allh;; depend only
ont), and

Hij=—CjRt), Cg=1, b=f. (5.13

[The last of(5.13 implies D=0.] Thek=0 Friedmann limit results when in addition
b=f=0. (5.149
The reparametrizatio(b.11) transforms the Killing fieldsk(“z) andké) from (5.5) as follows:

1 %)=(bBly)KG) —— e[ —(bfBly) 82+ 6%a)]

woﬂo

I?B): (wO/b)k?g) e ebx5a(2) . (5.15

wp—0

In thek=—1 Friedmann limit b=1f), together witrkf“l), this becomes a Bianchi type V algebra,
and in thek=0 Friedmann limit b=f=0), it becomes type I.
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VI. CASE 1.1.1.2 OF REF. 3

This case is given by Eq$3.7)—(3.11) in Ref. 3. It is of Bianchi type VIII or V} (wheng
#0 or g=0, respectively, so only thek=0 Friedmann limit may exist here. The limit of zero
rotation and zero tilt can be considered without transforming the metric back to the $keban
form, but the three subcases have to be considered separately.

The Killing fields in this case are

1=, K=o,
, (6.1
kzy=e€ “U[29yd] + a1(gy”+2B) 55+ 53]
The analog of Eq(5.]) is
Ky~ a1(gy?+2B)e™ 21ky, — 2gye” *v'kfy =€ *U[4Bu*+(8cyai /mw?], (6.2
and, consequently, the King—Ellis measure of tilt is

V—gNu*=ay, (6.3

[N, is given by(5.9)].
The argument of the arbitrary functions in the metric is

T=t+yla;— Poya, Z. (6.4

In case | gB+#0), the reparametrization needed is
y= g, B=w03/4l§, alzw(]jIAalv (6.5
(h13,K19) =(G13,K1z)wg, hop= Gzz/wg- (6.6

The full reparametrized metric, withy# 0, is rather complicated here, so only the limig—0
will be quoted:

h
ds?=dt?+ hy;dx2+ G oy — —=- dydz+ hydz2. (6.7)
2Ba;

The k=0 Friedmann limit results when furthér ;= G,,= hz3= — R%(t).

As seen from(6.1), the symmetry group becomes Bianchi type | in the limit— 0 after the
reparametrizatiort6.4) [the Killing field k3y has to be replaced by = woks) in order that the
limit is nonsingulat.

In case Il B=0), Eq.(6.5 remains unchanged, whil§.6) is replaced by

(N12,h29)=(G12,Gr9)wg, =Gyl wf. (6.8
The limit wg— 0 of the reparametrized metric is:
ds?=dt2+ hy,dx?+ 2G,0xdy + 2h g0xdz+ G ,dy 2+ hydz?, (6.9
where all the metric components depend onlytoffhe k=0 Friedmann limit is here
G1=h13=0, hy;=Gyp=hg=—RA(1). (6.10

In case lll (@=0, Bianchi type V}), thek=0 Friedmann limit results again b$.5), (6.9),
(6.9 and(6.10.
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Note two typos in Sec. Il of Ref. 3: 103.7) the correct formula fow® is

o nal

n
chyA(—4Bﬁo+53)=8(:—%(—48504'53), (6.1])

and in(3.10, the correct formula fog,s is
U2s= —29Zhigt hpz— g 7°hgs. (6.12

VIl. CASE 1.1.2.1 OF REF. 3

This model is of Bianchi type V||, and is given by Eqs(4.19—(4.23 in Ref. 3. Two
formulas in(4.23 had typos, the correct expressions are

91,= P ¥ Why,— (y/D)(b+f)cog Dx/2)hyg],
920= P DX[y2(b+ f )2hg/D?+ 1]cos(Dx/2) (7.1)
—2(y/D)(b+f )cog Dx/2)Whys+ W2h,,}.

The transformation back to the Plelskincoordinates is given bi@.21) in Ref. 3, and the resulting
metric is

911=Y?+hy+2Uh;,—2(y/D)(b+f )yhis+U?hy,
—2(y/D)(b+f)yUhy+[(¥/D)(b+f)y]*has,

910= —2h15+ 2(y/D)hyz— 2Uh+2(y/D)Uhygt 2( /D) (b+ f )yhys—2(y/D)?(b+f )yhgs,
913=hyzt Uhgs—(y/D)(b+f)yhss, (7.2
U2o=4h,—8(y/D)hyat4(y/D)?hg3,  gog= —2hg+2(y/D)hgs,
gss=has, U:=3[(b+f)?+D?]t+2(b+f)y,
whereb, f D, andy are arbitrary constants, amg, are arbitrary functions of the variable

2y D

=ttt e n

z. (7.3

The Killing fields for the metriq7.2) are
(=05, kiy=e® 2 cogDx/2) 85— W5~ ysin(Dx/2) 5],

k(s =D sin(Dx/2) 55— 3V 5+ y cog Dx/2) 851,

(7.4
W:=(b+f )cogDx/2)—D sin(Dx/2),
V:=D cogDx/2)+ (b+ f )sin(Dx/2).
The analog of5.1) is here
VK, — WK = Delb+ X2 a_ %(bJrf Jelb+ Dxizyya. (7.5
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and the King—Ellis measure of the tilt is:

V=gueN,=— 3(b+f)yeltHx (7.6)
Equation(7.5) shows that withy(b+ f ) =0, the model should be nonexpanding. This is so indeed,
but in order to be able to consider the subcagb+f)—0, we have to takey/(b+f)T as the
argument ofh;; in (7.2) instead of theT given by (7.3).
We define
E:=(b+f)2+D? (7.7)

and then the reparametrization needed for the limit of zero rotation and zero tilt is

(¥,D)=wo(¥.d),  hop=Haolwg, hag=Haslwo,
hll:Hll_ ETH12/(1)0+(%ET)2H22/(1)S, (78)

h12=H12/w0— %ETsz/(DS, h13:H13_ %ETH23/(1}0.
After the reparametrization we have

Sio=b+f+es{wed)?/(b+f) —— b+f, s;=+1g,=—1,
wo—0

3:=Sy— 3(dly)Siz,

g11=(w0y)* + H+ 25 Hyp— 2(y/d) (b+f)YHia+ 3°Ha,
—2(yld)(b+f)YEH e+ [(/d)(b+f)¥]%has,

012= —2H 1+ 2(y/d)H 13— 22 Hpp+ 2(y/d)YH 3
+2('y/d)(b+f+E)H23—2('y/d)2(b+f)Y/h33, (7.9

913= H1a+ Y2 Hos— (y/d)(b+f )¥has,
U2o=4H 2~ 8(y/d)Hg+ 4(y/d)%hg;,
U23= —2H3+2(y/d)ha3,  g33=haz:=Has.
In the limit wy,— 0, all theH;; will depend only ort. The limit of zero shear is then obtained by
Hij=—CjRt), Cg=1. (7.10

To obtain the Friedmann limits, a further reparametrization of the constapis necessary. We
define

Ca3=Dogty/d, Dp*=Cy—Cof,
(7.11
D1,=(C15—C135C23)/ D>y, D112:C11— C132—|3122-

The metric(7.9) may then be written
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d
d32=dt2—(D11Rdx)2—R2[ { —Dy,—(b+f )DZZ(Y/— 257
_RZ[

The k=—1 Friedmann limit results now whed=0, the k=0 limit results whenb+f=0 in
addition. The first of7.11) was necessary to eliminagd from (7.9) so that the limitd— 0 could
be subsequently taken.

We have found aboviafter Eq.(7.6)] thatb+ f =0 corresponds to zero expansion. This is so
when b+ f—0 with other parameters unchanged. In consideringkth® Friedmann limit,b
+f is set to zero after the limid— 0 had already been taken. In order to make these two limits
compatible, we have to assume that f—0 slowly enough so thab/(b+f)—0 andy/(b
+f)—0. With the reparametrizatiof¥.8), this is achieved wheb+f=Bwg, where 06<e<1.

After the reparametrizatioti7.8), in the limit wy— 0, the Killing fields become

2
dx+ 2D22d37]

2

dx—2D,dy+dz; , (7.12

1
Cizt(b+f)Doy— E(b-l—f )

d
1+ ;D23 z

k= 0%w), 1iy=—[2w0/(b+f )]k, —— &b D252 )

wp—0

d 1
I(5= (y)ki3) —— e(b+f)X/2| 5|1t 5 (bf)x

2y

5a(2)+ 50{(3)] . (713

wo—0

This is a Bianchi type IV algebra, and in the Friedmann linkits—1 (d=0) andk=0 (d=b
+f=0) it becomes type V and I, respectively.

VIII. CASE 1.1.2.2 OF REF. 3, BIANCHI TYPE IX SUBCASE

The case 1.1.2.2 contains three different subcases that are of Bianchi types 1X, VIII, gnd VI
The type IX subcase requires some adaptation of the formulas given in Ref. 3.

For type IX,g/c>0. Then, as seen from E¢.16) in Ref. 3,B/c<0, or else(5.16 would
lead to a contradiction. These two inequalities imply thB& 0, while Egs.(5.26) and (5.27) in
Ref. 3 are adapted to the cag8>0. Hence, a re-adaptation of these formulas to type IX is
necessary first. We define

B:i=—B, A=i\, Kp=ikip Koz=iKyg 8.1

(the overbars simply denote new symbols that will be)resal that instead db.16), (5.23, (5.26),
and(5.27 from Ref. 3, we obtain

e 1/2 -
1 [2B-gy? o T2 2 »._ 98B
K—ﬁ(T) ) 5 0—(B/D) +(20‘)’) 1 )\ ._W,
_ 4c?D*
R=2cD?y/(BK), fK‘SRdy= —, (8.2
gBK?
v=Bt+2cDyz, U=hy,sin(2\v)+Kky,Co82N0),
cyD (cyD)?
011= Y2+ K?Hy+4 —yKH 3+ 8 ———Hg;3,
B gB
cyD cyD
912:H12+2§YH23- 913:KH13+2?YH33- (8.3
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02=H2o/K?,  p3=Hza/K, Q3= Has,

cD? - =
Hl]_:— _U+h]_1, H12:h12C012)\U)_k125in(2)\U),

25°\

cD? — =
H13:_ _[hzgslrl()\v)+k23COS()\v)],

25°\

(8.9

2Oy, 9B | 8

Hs=h,3c08\v) —k_23$in(rv), Hzs=hgs,

where B, ¢, D, g, and y are arbitrary constants, and all tig , k_12 andk_23 are arbitrary
functions of the argument

T=t— 2chZ' (8.5

Equations(8.2)—(8.5) are written in the Plebaki coordinates.
The Killing fields for metrics(8.3) and(8.4) are

(1)=91,
o X X ‘y X 1 H Y
()= COSDX/2)| (K—YK,y) 8+ K,y 85+ 5 85| + 5 DK sin(Dx/2) 85
(8.6
o H Y X ‘y X 1 Y
ke, =sin(Dx/2) (K—yK,y)5O+K,y51+WQ}—EDK cogDx/2) 5.

(Note: the first commutator in E@5.20 in Ref. 3 should have a minus on the right-hand gide.
The analog of5.1) here is

cog Dx/2)k{5)+sin(Dx/2)k{3)— K, ki = (K=yK, )u“+[ y/(DKn)Jw*. (8.7

In agreement with this, the King—Ellis measure of tilt is here

V—gN u*= /2. (8.9
Note that
) _ B
=" zepe N TYKYTaepC 69

The case presently considered is the only one of type IX in the whole classification. Therefore,

(1) This is the only place where the=+1 Friedmann model will appear as a limit;

(2) The models represented by E¢®.2—(8.6) include those considered by @el1° (Ours are in
fact more general because the tilt of the symmetry orbits with respect to the velocity field is an
arbitrary parameter hepeWe shall deal with this point further on.
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For later considerations, it will be convenient to reparametrize the n&wrdgonce more, as
follows:

Gi=(hi2+kiAY2  hyp=—Gsin(2B), k=G cod2p),
(8.10

Fi=(h,?+kpD)Y2  hy=Fcoga), ky=F sin(a),

where G, F, e, and B are new functions of th@ given by (8.3); and also to transform the
coordinatey by

y=\2B/g cog 9). 8.11)

From now on, the?>-coordinate will bed. Then, in order to set the rotation and the tilt to zero, the
following further reparametrization is needed:

B=bw?, y=hw,, G=Glwg, hy;=G/w3. (8.12)
Let us note that

— bgD(wpht+2cDhz b

Ny = \/—9 (wo ) \/—9 8.13

v= Z.
2V2[(wob)?+(2cDh)?] o,—0 4v2ch

The metric(8.5), reparametrized by8.10—(8.12), becomes

2 02 90t o Gysir? D 4ChD3\/2CF i\ in9 cosd
gll_ECO w0+m 11Si 43 o sin(Av + a)sind cos

D\/bG 2\v+2B)sir? & 8(ChD)2h
- E COS( Av+ B)S' + b—g 33

01,=\2b/gG sin(2\v +28)sin ¥ — 4v2(chD?/g)\/c/bF cog \v + a)cosd,

chD , € . — )
g13=2ﬁfgh33cosﬁ—D §FSII’1()\U+(1)SIH1‘}, (8.19

=2 b G 32(Ch)2h 2\/21\ﬁe 2\v+2
922=2 ;pa Gut 327 ~hast 2V2 5 \ cog2 v +2p),

C —
923:_2D \[EF COS()\U-I—a), 933: h33.

In the limit wg—0, the velocity fieldu*= 6%, will have zero shear when
a=const, B=const,
(8.195
(G,F,G11,h35) = —(C12,Cp3,Ce1, HRA(H).

With use of(8.13 it may be verified now that thke= +1 Friedmann limit will result from(8.14)
and(8.15 whenwy—0 and

C12: C23: C11: 0. (816)
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The resulting representation of the Friedmann maddelin an exotic oneis identical, up to
rescalings of coordinates, to the one derived by Behr

(chD)? chD (ch)?
dx“+ 4v2 —cosddxdz+ 32

bg Jbg bg

The k=0 Friedmann model will result from this after the transformation—reparametrization

ds?=dt?>— R?(t)| 8 d9?+dz?|.  (8.17)

d=arccogky), h=H/k, x=kx’, (8.189

in the limit k—0.

For thek= + 1 Friedmann limit, the algebra of the Killing field8.6), suitably transformed by
use of (8.9, (8.11), and (8.12), is still of Bianchi type IX. For thek=0 limit, the algebra
{l(l) ,|(2) ,|(3)} = k{k(l) ,k(z) ,k(3)} is of Bianchi type | wherk— 0.

As stated above, the class of models defined®g—(8.5 must contain the one considered
by Gadel in Ref. 10. This is so because two of d&bis assumptiongdust source and nonzero
rotation place his class within our collection, and the third assumptiocompact spaces$
=const, i.e., Bianchi type IX; the Bianchi classification and terminology had not yet been in
common use in Gdel’s timg uniquely points to the subcase | of our case 1.1.2.2lébpresented
several properties of these models in the form of theorems, but mostly without proofs and almost
without formulas. It would be an interesting exercise to see howe@otheorems apply to the
explicitly given metric(8.2—(8.5).

In particular, one of his statements seems to need a refinement. He said that there® exist
rotating solutions satisfying all his requirements. This means that the collection of all solutions of
the Einstein equations fai8.2)—(8.5 should be labeled by eight arbitrary constants. One can
understand how this happens from Ref. 4, where the Einstein equations were investigated for an
equally general Bianchi type V class. Of the six unknown functions in the initial metric(foge
in Ref. 4 is determined by an algebraic relation, two of the Einstein equations are of first order
and can be used to eliminate two more functions, and then the remaining three functions obey
equations of second order. This gives eight constants indeed. However, the tilt paryneter
(8.7 and (8.8)] is one more arbitrary constant that is contained in the metric even before the
Einstein equations are considered.

Rotating dust models of Bianchi type IX were considered by B&tith simplifying assump-
tions about the metric. Similarly as in Ref. 4, the main conclusion seems to be that whatever one
does with the Einstein equations, no solution comes within sight.

IX. CASE 1.1.2.2 OF REF. 3, BIANCHI TYPES VIII AND VIl ¢

The subcase of case 1.1.2.2 that corresponds to the Bianchi type VIl is defined by
g/c<0, 9.9
in Egs.(5.16—(5.27) in Ref. 3. ThenB/c and, consequentlBg can have any sign at this point.
Only thek=0 Friedmann model can be contained as a subcase here.
The case8g+#0 andBg=0 have to be considered separately. WiBag# 0, we take Egs.
(5.23—(5.28 in Ref. 3 with the following specializations:
h12=Kio=has=kz3=0,
B=bwj, (v.y)=(hY)wo, hy=Gulwp. (92

Then
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- o~ 1 gy°+2b
K= wOK, K= ﬁ -

C l

cDh)?2
911:((00&)7)2_8!

bg hast+ K2Gyy,

(9.3
912=0, di3= —2(cDh/b)¥hss,

g2 bg ch?
22—

_Well_sb_[)ih% . 023=0, gz3=has.
It is now seen that the proper signature will result only when
b/c>0.

(9.9
In order to obtain thé&c<=0 Friedmann model fron©.3), we then rescale the constants again
as follows:

b=bovVg, D=dg"*

h= Hg3/4
and take the limig— 0. The limiting metric is

(9.5
) ) bg 1
ds?=dt?+ G| z— dx2+ =z dy? | + hyxdz?, (9.6)
2cd d
indeed.

and in the limit of zero sheaG ;= C;jhzs= — C1;R?(t), this becomes thke=0 Friedmann model
The Killing fields for this case are given by.6). After the rescaling$9.2) and (9.5), the
following basis of the symmetry algebra is obtained:
kzyl): 5“1 y

o [be1 . 1
)= k

’y a 1 a a
Tgﬁ (3)?@(_65 1+§bodX5 2 +(S 3,
2¢c - a a
(3= 2 \/b_og lM"‘(s)—’ 0%.
g—0

WhenBg=0, and the Bianchi type is VIII, we must have:

9.7

This is of Bianchi type VIj.

B=0+#g.

9.9

The metric is then found from Eq$5.28 and(5.23—(5.26) in Ref. 3, suitably adapted. WitB
=0, the arbitrary functions depend only bnThe metric needs then to be rescaled as follows:
(v.Y)=(hPwo, (hi2,h13,hp9)=(G12,G13,Goa)lwg, h1y=Gy1/w] 9.9
and the result of the rescaling is
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., Gy Dg_ g -
911= (woy)*— 4C_D2Gll+ ﬁYZZGm—zV —c/ghGy3— 25%h V—¢/g(Y2)?Gy3

D4g

1 cDh\?
Tz(yz) hzz+ —~D%YzGya+ v has

Dg \2
>ch )(y2)3623+4

1 Dg _ .\?
+§(DZ)2h33+(ﬁyZZ) hss,

g D3 cDh
ng_GlZ_ZC_D\/ c/gzGyz— Zh22+2 9y Ga3

Dg cDh Dg
+3 555 Y2 C2st 2 57 2t sz,
s 9 cDh Dg
gl3 2D g/CYG13+ hy ZG23+2 gy h33—|— 25 hy22h331 (910

cD?
020= _4W hoot 2(2/Y) G st (2/Y)?has,
025=Go3t(2/¥)h33,  g33=hgs.

In the limit w,—0 one term ing,, disappears and thig; depend only ort. The shearfree
limit is then attained when

Gij: _Cinz(t), h33:_R2(t), h22=—C22R2(t). (9.1)
To find the Friedmann limit we then assume that
C12: C13:C23:O, h:HD, g:_CGZDZ, (912

whereH andG are new constantghe last definition takes into account tligt <0 in type VIII),
and letwg—0, D—0. The resulting metric is:

1 2 R 2
ds’=dt’>~C (—G”R) dx>—C ( )or ( ~dx+ d~+dz . (9.1
1 5 y 22 Gy \ G2y v y (9.13

The k=0 Friedmann limit results from this when
=€V, Cp=(Dyplk)?, k—0. (9.19

With (9.8), (9.9), and(9.12), the Killing fields become
(1)=901,

1 1 _ 2H
kzy=7G cogDx/2) 5{+ 5 GDY sin(Dx/2) &5+ Gy o Dx/2)6¢,

1 ) 1 ~ N 2H "
k(“3)=§G sin(Dx/2) 57— ZGDy cogDx/2) 85+ G—,ysm(DXIZ) 85, (9.15

Before the limitD—0 can be takerk sy needs to be redefined tky3)=(1/D)k(3). The basis in
the limit becomes

Downloaded 09 May 2008 to 193.0.83.155. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



3650 J. Math. Phys., Vol. 42, No. 8, August 2001 Andrzej Krasinski

k(l):5l' k(z):§G51+G_y53,

ra 1 (03 1 ~ a H a
This is of type V}. We now transforny by (9.10, and redefiné<(’3) once more

In the limit k— 0, the following basis then results:

2H
k=01, kin= G51 < % lm=% (9.18

(u being now thex?), which is clearly of Bianchi type I.

Finally, when the Bianchi type is \{I(i.e., g=0), the metric results by a simple specializa-
tion of Egs.(5.23—(5.295 and(5.28 in Ref. 3. In this case necessarllyc<0 and

k=2 J22= 9.1
-5 E—const. (9.19

The rescaling that will allow to calculate the limity— 0 is
(B,y)=(b,¥)w, D=dwy,

(h12,h29)=(G12,Goa) @y, hyy=Gool w}. (9.20

The argument of the arbitrary functions must then be redefined so that it becomes:

z—t. (9.21)

B
T = =1+
U=u/(2cDvy)=t 2cDy o

The limit w— 0 of the metric is then:
S chz 110X 12dX y 2c 13dX VA

cd? ) )
_ZTC22dy +ZG2 ydz+h33dz . (922

The k=0 Friedmann limit results from here when shear is set to zero, i.e., when
:_CIJRZ(t)
The basis of the Killing fields in the limitvg— 0 is found as follows:

K 2

wo—vo w0~>0

X. CASES 2.1 OF REF. 3

In the case 2.1.1 the transformation back to the Plskiasoordinates is the inverse 6.16)
in Ref. 3, and when applied t@.18 there, it gives the following metric:
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011= Y%= (y+V)?+hyy+ (b+)[(y+V)hy+ (y/c)Vhys]
+3(b+1)2[(y+V)2hy+2(y/c)V(y+V)hy+ (yV/c)hgg],

1
G1o=p 7 (Y+ V) —hip— 5 (b )[(Y+V)hoot (/€)Vhygl, (10.9

g15=higt 3(b+F)[(y+V)hast (y/c)Vhg],
Uoo=—4/(b+f)*+hy, gr=—hps, Jss=has,
where
V:i=1(b+f)t+y, (10.2
and the arbitrary functionk;; depend on

2y 2c
— 7.

T= e Y St 1) (103

[Note two typos in Ref. 3: In Eq(7.18), the coefficient ofWhy3 in gy, is 2y, not 2b, and in
(7.17), in the formula foru®, there should be aW/c) in front of 5%y.] The Killing fields for this
metric are

kiy=07, k)=e® M exsg—c[1+ 3(b+f)x]85+ yd5},

(10.9
kig)=e®" 55— 3 (b+1)53],
and they form a Bianchi type IV algebra.
The analog of5.5) is
2c 2c y
@ 1 a _ A(b+f)x/2 a a
k(o) = 5L+ 2(b+F)x]kg)=eCT D2 s Zw ) (10.5
and the King—Ellis measure of tilt is
V=guN,=— 3(b+f)yelP*Dx, (10.6

The redefinitions needed to make the limig— 0 finite are
(Y,€)=wo(¥,C),
hys=Hy1— 3 (b+1)?T[hypt (¥/C)hig]— 75 (b4 )*T?[H po/ 0§+ 2(y/C)H 25/ wo+ (7/C)*hag],
hyo=H 1ol wo— §(b+T)2T[Hap/ wi+ (¥/C)H sl wo],
hiz=H13— 7(b+f)?T[Hos/ wo+ (y/c)has],
(10.9
hoo= sz/wé has=Hys/ wg,

and the resulting metric is
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011= (@0g¥) 2 =[5 (b+f)t+2weY ]2+ Hyg+ (b+)[ Y Hyp— zHy3]
+2(b+f)?[Y?Hy—2Y zHpat+ 7°H 3],

4wg~ .
g1o= wot + orf) Hio— 2(b+f)[YHy—zHys),

g13=Haat+ 3(b+f)[Y Hys—2zHz3], (10.8
U2=Ho— 403/ (b+1)%  gps=—Haz,  gaz=has=Has,
Y:=y—C2zZ .

In the limit wo—0, all H;; become functions of, and the Killing fields become
a Y
(1)~ 91

18y=lim k=" 02— C[1+ 5 (b+1)x] 85+ ya5}, (10.9

w0—>

H 2 [e3 Y
I{3)= lim (__b+f wok(s)) =elPt D25,

wp—0

still of type IV.
The shearfree limit 0f10.8) is

Hyy= —CyR%(t) +[ 5 (b+f)t]?,
other H;;=—C;R%(t), Cgz=1. (10.10

The k=—1 Friedmann model will then result whed=0 (and, consequentlyf=V), thek
=0 Friedmann model will result whem+ f =0, with no condition orC. Both limits can be easily
taken also in the Killing fieldg10.9, with C=0 they become of type V, wittb+f=0 they
become of type I.

The case 2.1.2 was shown in Ref. 3 to be included in 2.1.1 as a subcase.

Xl. CASE 2.2.1.1 OF REF. 3

This case includes two subcasgls~ 0 and.A=0, given by Eqs(9.11)—(9.15 in Ref. 3. Both
are of Bianchi type VIII. The coordinates used there are those of Pd&ban

With A#0, Egs.(9.14 in Ref. 3 are adapted to the cage<0. However, when4<0, the
limit of constant curvature in the spaces const has a wrong signature. Therefore, the formulas
must be re-adapted td>0. This is the result:

yW

U
=y —+ ——=—=+hy]|,
9 y(m AVZA “)

J10= hlchE(Z)\v) - klzsin(Z)\U) + %4“123003)\1)) - kzgsin()\l))],

vV ooy B ¥
g13=Y \/T_A + ﬂhss) v 0207y 2( —V2AU+2Ahy,— ﬂhgg) ; (11
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U25=Y '[N23C0gNv) —KpgSiN(Av)],  g33=H3zz=has,
U:=hy,Sin(2\v) + K508 2\v), V:=h,sSin(Av)+Kky3CogAv),
N2=2AI(4A%+ %2, v=2At+yz
and theh;; are arbitrary functions of
T=t—2Az/y. (11.2
The Killing fields for (11.1) are

)=01, kizy=(2Aly) 85+ (= Aly*+x?/2) 61 —xy &5+ (yly) &5,

k{3)=Xd1—yd53. (11.3
The analog of5.]) is
2 2 a a @ a Y a
(Aly“+x12)k() + k(o) — Xk = (2Aly)u +%W , (11.49
and the King—Ellis measure of tilt is
V=gUu*N,=7y. (11.5

The redefinitions needed to make the limig— 0 of (11.1) finite are
(y!Y):wO(ylh)u A: %(a(‘)O)Zl
hi=Hi/wg,  (N2.k1)=(H1p,Kip)/ wy. (11.9
Note that with(11.6) we have

Nv —— az/h. (117

wg—0

The reparametrized metric is

gu=Y42hV/ia®+Hy+a {H,sin(2\v) + Ky,co8 20v) 1},
91o=(h/a?)[h,3cogAv) —KygSin(Av) ]+ H,c08 2 v) — K 1,Sin(2\0),
913=(¥/a)(V+hhgs/a), (118
022=Y~ 4 —a[H,sin(2\v) +K1,c09 2N ) ] +a’Hy;— (h/a)?Hag),
025=Y '[N23C0OgNv) —KpgSiN(Av)],  g33=H3zz=has.

In the limit wg— 0, all the arbitrary functions will depend only dn

The k=0 Friedmann limit follows from(11.8 when the following further specialization and
transformation is made:

hgg=—R?(t), Hy=—(Cyy+h*)R¥(t)/a%,

(119
H12:K12: h23: k23: 0, X:ale, ?=eau,
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and then the limia— 0 is taken. The metric becomes then
ds?=dt?— R?[C,(dx’?+ du?) + (gdx+ dz)?], (11.10

which is clearly thek=0 Friedmann model.

The rescaling11.6), followed by wy—0, and the rescalingl1.9, followed bya—0 trans-
form the Killing fields(11.3 into an almost-standard Bianchi type | bai;, has to be replaced
by I{1,=ak{,, andk(s, has to be replaced by, =akd, before taking the limia— 0).

The case4=0 is given by Eqs(9.11) and(9.15 in Ref. 3. The rescalings needed there are

y=oy, h1=Gii/w§, (hi2,hi=(G1pG1a)wo. (11.11

The arbitrary functions;; depend only ort from the beginning. The limitw,—0 of the
rescaled metric is

ds?= dt? +Y2G110x% + 2(2Gyz+ G1p) dXAY + 2§ G 130XdZ+Y %oyt 2Z hyg+ 2% 33 dy?
+ 2V~ Y(hygt zhgg) dydz+ hyq072. (11.12
The k=0 Friedmann model results now when
G1p=G13=0, Gyp=-CyRA(1),
hjj=—CjjR? Cg=1, Cy=1/a% (11.13
y=¢e*, a—0.

The Killing fields need not be reconsidered becadse0 is an allowed subcase f¢11.3.

XIl. CASES 2.2.1.2 OF REF. 3

In considering these cases, we first have to correct two errors. The first error is that the
arbitrary constany, actually must be equal to zero in all the formulas. The second error is that
one subcase was overlooked—it needs special treatment and is not included in the formulas given
in Sec. X of Ref. 3. This special case is defined by

g=0, (12.1)
and consequentlyg,=0 andu,=]. It is because of.; =0 that some of the formulas do not apply
to this case.

The conclusion that
a=0, c=1, (12.2

can be achieved by a change of the basis of the Killing fields is still valid. W&kl and(12.2),
the solutions of Eqs10.2 and(10.3 in Ref. 3 are

P=—jy+M, Lz=4v, (123
wherej, M, andy are arbitrary constants. The resulting Killing fields gog (10.6 from Ref. 3
kf‘l)= o1, kf2)= Mx8y—jx 81+ (jy—M) 85+ yxd3,

_ (12.9
kzy=M &y —j o1+ vd3,

and they form a Bianchi type Il algebra.
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The coordinates are still those of Plébkiat this point, sau® andw® andg,, have their
standard forms. The solution of the Killing equations is

911=(2M/})y—(M/})+(jy = M)?hs+ 2(¥/]) (jy = M) hya+ (¥/])has,

Gi=hizt B g Gy~ M)hyst (/)N
12— 12 iGy—M)’ 13 137 (Y 33y
. . (12.95
U22=hoo!(jy=M)?,  g2s=hps/(jy—M), gss=hgs,
where theh;; are arbitrary functions of the argument
T=t—(M/y)z. (12.9

The Killing fieds(12.4) are a subcase of the general expression that will apply to the whole
case 2.2.1.2 collection. The analog(6f1) will be given further on for the whole class.
The rescalings needed to find the nonrotating limit1#.5 and(12.6) are

(y,M)=wo(¥,m), hy=Hy /0],

(12.7
(h1z,h19)=(H12,H1g)/ wp.
The rescaled metric is
911= (2m/]) 0¥ — (Mwo /)2 + (jT = m)2H 11+ 2( 7)) (jT = m)Hyz+ (7/])?has,
Guz=Hizt 2 g (- m)Hgt (4
12 12 iGy—m)’ 13 137 (Y 33,
(12.8

922=H22/(j7—m)2, 925=ho3/(j¥—m), g33=hgs.

The k=0 Friedmann limit is now obtained froni12.8 when shear is set to zerd;;
=—Cj;R?(t), Cz3=1], and in addition

v=hj, j—0. (12.9

In order to make the limitsny— 0 andj—0 compatible, it has to be assumed thatwg , where
0<a<l, e.g.,a=1/2. The Killing fields(12.4 become then an almost-standard Bianchi type |
basis in the limitw,— 0, butk(s, has to be replaced Hys) = wo~ %k, .

The case 2.2.1.2 consists of three subcases, each of a different Bianchi type. The gubcase
<j?/4 is of Bianchi type V},, with the free parametgr(j2—4g)Y%. However, the parametriza-
tion of the metric used in Ref. 3 is inconvenient for calculating the Friedmann limit. It will be
more convenient to rewrite it in the parametrization in whichand w, appear symmetrically.
Therefore, instead afL0.15—(10.17 from Ref. 3, we will use the following formulas:

U:=M cosiDY)+Nsinh(DY), V:=M sinhDY)+NcoshDY),

. Y
(124 12 o
D_(] 14 g) ' F_D(MZ_NZ),
. j D .
P=e Y2y, y=—_—P——e ¥y,
" T2g" g

_ _ (12.10
g11=y?+hy P2+ 2I'e YUVh.3+ (yI'/D)e Vhgs,
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012= o+ T (VIU)hyz,  gi3=hysP+Te Y2/ hg,

J22= h22/P2, 923=hp3/P,  g33=has,

wherej, g, M, N, andy are arbitrary constantyg,is one of the coordinate¥, is just a parameter
used to represerR(y), andh;; are arbitrary functions of the coordinate Since the coordinates
used in(12.10 are not those of Plebaki, theu® andg,, do not have their standard forms, they
are given by Egs(10.9 in Ref. 3. The transformation back to the Pléskincoordinates is the
inverse of(10.8 in Ref. 3, after which we obtain

1
912:gthll+ h12+ th( V/U_ EJ/D

iv
hl3+F(V/U)h23_Fzgt( l+ m) h33,

022= P~ H{(gt)*hys+2gth,— (jT9/D)t(gthig+ hyg) +hopt g(Igt/D)%hgg},  (12.19)

jrgt
023=(1/P)| gthyz+hys— ﬁhss

with 911, 913, @andgs; being the same as i{12.10. The h;; depend now on

D
T=t+mz. (12.12

The Killing fields corresponding t¢12.11) and (12.12 [and to all the other subcases of case

(2.2.1.2] are
k()=07, k&y=x(P—yP,))85+xP,,87~Ps5+x(yIP)e Vo5,
. (12.13
kisy=(P—yP,,) 85+ P, 87+ (y/P)e 1Y 55,
The analog 0f5.1) (again valid for all the subcasews
Ky~ P gk = (P—y P, U+ —=e iwe 12.1
(3) " Py (1)—( -y vy)u +ﬁe W+, (12.14
and the King—Ellis measure of tilt is
V—gu®N,=—ye IV, (12.15
The rescalings needed to make the limj— 0 finite are
(M,N,y)=(m,n,h)wy, hy=Hy/0j, hiz=His/wg. (12.16
In consequence of this we have
(y,PyU;V):(’y,ﬁ;U;v)woy (12'13

where the symbols with a tilde are obtained from those on the left by repladihdN)
—(m,n), and they do not depend a#y,. Also, from now onY will be used as th&?-coordinate
in place ofy, so

dy= woPdY. (12.18

The rescaling$12.16 have to be accompanied by the following redefinitions of other functions in
the metric:
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2 JFgT 2
h12: _gTH11/w0+ H12/w0+ mng‘l‘F gTh33,

_ 2 2 irg, 2
hoo=—(9T)*H11/ 05— 29 Thyp+ Hopt D (9TH 3/ wo+ Thyy) —g(I'gT/D)“hgg,
(12.19

jroT
h23: —gTH13/w0+ H23+ Th33.

The metric resulting after the redefinitions and the coordinate transformation is
T h
“D(m?—n?)’

911= (w0¥)?+H P2+ Te 1Y[20VH 53— (h/D)hgg],

| (12.20
913: H13P+FeilY/Z—\7h33,

U20=(DZ/T)?H 13— (DIT)(2zHyp+ j22H13) + Hoot jZHas+ 9Z2has,

U2s= — (D/T)zHya+ Host (j/2)zhag,  gas=hag=Has.

In the limit wy—0, all theH;; will depend only ort.
The limit of zero shear is then, as usudl; = — C;; R2(t), Ca3=1, and the&k=—1 Friedmann
limit results from(12.20 when, in addition

h=HD, Cj;5=0, D—O0. (12.22)

With D=0 we haveU=m, V=n. The, again rather exotic, representation of the limiting Fried-
mann model is

ds?=dt?— R?(t)(mDy,e /Y2dx+ D1,dY)2— (D ,RdY)?

Hn 2

-R? e’jY’zmz_nzdx+(Cz3+ jz/2)dY+dz| , (12.22
where
2
D112‘=C112_(m2_n2>a D12:=C15/D13,
Dy,*:=Cp—Cps”~ Dy (12.23

The k=0 Friedmann limit results froni12.22 whenj=0.
The rescaling12.16 and the limitwg— 0 transform the Killing fields as follows:

k=07, k&y=(—j2+DVI0)x8y— 85+ (hiU)xe 1255,
| (12.24
?3):(—j/2+ DV/U)5§+(h/U)e‘lW25§'
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the algebra still being of type Yl
The further rescaling12.21) and the limitD—0 transform(12.24 into a Bianchi type V
algebra, buk{3, has to be replaced by

@ ] a @ —j @
@)t 5"(1)) ? (n/m) 8§+ (HIm)e Y255, (12.29

_ -1
(3=D

Whenj=0 on top ofD—0, the Bianchi type reduces to I.

The subcase witly>j?/4 (Bianchi type VI}, with the free parametgr (4g—j?)*?) is given
by Egs.(10.18 and(10.19 in Ref. 3, withy,=0. It is transformed back to the Plelskn coor-
dinates by the inverse dfl0.8 there, and the result is very similar to o{ir2.10 and (12.11).
Only the definitions oU, V, andy, and a few signs in the metric are different

. Y
D=(g-1"™ T=gryz

U:=M cogDY)+NsinDY), V:i=M sin(DY)—NcogDY),
j

P=e Y2y, y=- EP+ %e—imv,

911: y2+ h11P2+ 2Fe_jYUVh13+ ( ’yF/D)e_th33,

(12.26
1. iV
01o=9gthy;+h,+ gt V/U+§J/D h13+(FV/U)h23+Fzgt 1+m hss,
913=h13P+Fe_jY/2Vh33,
U20= P~ 2[(gt)?hy1+ 2gthy+ (jT/D)gt(gthys+ hys) +haypt+ g(I'gt/D)?hag],
,1 jr'gt
g25= P~ 7| gthygt+host ﬁhgs , Osz=hss.
The h;; are here functions of the argument
T= b 12.2

=t— F—gZ. ( . 7)

The redefinitions in the constants and functions needed here are(agdif and(12.17 together
with

2 jrgT 2
hi,= —gTH/wg+ H12/wo_mH13_r gThgs,
hgo=—(9T)?H11/ 05— 29 Thyp+ Hao— (jT9/D) (9 T?H 3/ wo+ Thyg) —g(I'gT/D)?has,
jroT
h23: - gTH13/(1)0+ H23_ Whgg. (1228

The metric resulting after all the redefinitions is
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~ h
P =5z

011= (0gy)?+H P2+ Te Y[2UVH 15+ (h/D)hsg],

01,=P[(D/T)zHyy+ H o+ (j/2+ DVIU) zH 5+ (TV/U)H s+ T (D + £jV/U) zhgg],
(12.29
913: H13A|:‘)+Tein/ZY/h33,

22— (D2Z/T)?Hy3+ (DIT)(22H 0+ j22H 9 + Hypt jzHps+ gZ%hss,

U25= (D/T)ZHya+ Hog+ (j/2) 213, 933=hga=Has.
Just as before, in the limib,— 0 the H;; will depend only ont, and the shearfree limit is

found in the same way;;= —C;;R?, Cz3=1.
The k= —1 Friedmann limit is now obtained in two ways: either

h=HD, D—0, (12.30
or
C1;=C13=0. (12.39)
In the first case the Friedmann limit is
ds?=dt?— R?(t)(mDy,e Y2dx+ D1,dY)?— (D p,RdY)?
—R[e 1Y2(mCyz+nT)dx+ (Cyat jz/2)dY +dz]?, (12.32
where
D1,%:=Cy4°— Cy# +H?/(m?+n?)2, (12.33

D,, andD,, being the same as i{12.23.
In the second case, the= —1 Friedmann limit is

ds?=dt?—R3(t)[ Dy, Y2Udx+ (D 1o+ D2z)dY]?— (Dy,RdY)?

— R e VAT dx+ (Cygt jz/2)dY +dz]?, (12.34

whereD 4 is defined as i12.33, but with C;;=C3=0.

The Killing fields before redefinitions are still given §%2.13, but, in consequence of the
different definitions of® andy in the present subcase, the Bianchi type is,VIh the Friedmann
limit defined by(12.31), the Killing fields are transformed only b{12.16 and(12.17% followed
by wy— 0, and they still form a type Vjlalgebra. Whert12.30 is imposed on top 0f12.16 and
(12.17 and wy— 0, the Killing fields become the same as the libit-0 of (12.24 and(12.29,
i.e., the Bianchi type becomes V. This is an illustration of the fact, mentioned in Sec. I, that the
k= —1 Robertson—Walker geometry is a subcase of two Bianchi types simultaneously, they are
exactly V and VI|,.
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In both cases, the=0 Friedmann limit follows from(12.32 and(12.34 whenj=0. In the
first case, the algebra of the Killing fields becomes type |, in the second case it becomes gype VI
which is another illustration of the same kind of duality.

Finally, the third subcase of case 2.2.1.2 is given by E$.20 and(10.2]) in Ref. 3, with
Yo=0. There is one more typo there, the correct formulayfos

y=—2P/j—4Me Y722, (12.35

This one is of Bianchi type IV. When transformed back to the Plskianoordinatedby the
inverse of(10.8 in Ref. 3, it becomes

P=e Y2(MY+N),
g11= Y2+ hP2=2(y/M)e V2P hya+ (yIM)%e Vhys,

J 7 h Y
8MZ'8 M(MY+N) |4

1 iyt
J %thyz+hys+ 8M2h33 ,

012= (jt/2)%nyy+hypt

(12.36
g13= 1P — (¥/M)e ¥72hg,,

12 jSyt2 Syt jiyt)?
922:P 2[<ZJZt> h11+2] th12+ 16M2h13 h22 4M2h23+ 8M2 h33,

(1 it
023=P 1(ijth13+ host ths), g33= has,

where theh;; are arbitrary functions of

T=t-——z 12.3
iz (12.37

The redefinitions needed to calculate the limjg—0 are
(M,N,y)=(m,n,hwg, hy=Hy/wj, hiz=Hislwg,

1, ) i*hT
hi=— 2! TH11/wg+H o/ wg— WHB’
(12.39

27142 1 j°hT? i°’nT ih |®
hoz= = (2T/4)H 11/ 0§~ 5 Thip— (Amag)2 118t Ha2™ gz Nas™| gz | Nas,

1, i°hT
hos= — 2! THi3/wg+Hps— mhss-

We will denote, as beforey(P)= w,(V,P), and choose&' as the newk?-coordinate, so that
dy=woPdY. The metric that results is
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911= (0eY)2+H1,P2—2(h/m)e 1Y2PH 3+ (h/m)2e 1Y hag,
910= P{(M?/h)ZHy1+ Hyo+ (j/2)ZHyg— (MY+n) Y mzHyg+ (h/m)Ha+ 3 (jh/m)zhgs]},
g15=H1sP— (h/m)e 1Y 2hg,, (12.39
U2o=(M?2/h)2H 11+ 2(m?/h)zHyp+ (jM?/h) 22H 15+ H oot jZHog+ (j2/2)?hag,

U23= (M?/N)ZH 3+ Hoat (j/2)2hss,  g33=haz=Has.

In the limit wy—0, theH;; will depend only ont.
The k= —1 Friedmann limit is now obtained when

Hij=—C;Rt), h=Hm, m—o0. (12.40

The k=0 limit will result whenj=0 in addition.

XIll. THE CASES 2.2.2 OF REF. 3

The case 2.2.2.1.1 is given by Eq$1.11) and(11.12 in Ref. 3. The transformation back to
the Plebaski coordinates is the inverse (f1.10, and the transformed metric is

g11=Y?h11,  91o=(jt/a)(1—hyp) +hyp— Ajthys,

g13=B(j+a)yhys,

(13.1)
jt)? jt (jt)? ) o o
020= ay (hll_1)_2a_yzh12+2Aa_y2h13+h22/y —2(Ajtly*)hyst+ (Ajtly)“hss,
_ it Ajt .
g23=B(j+a) —ahm*‘ h23/y—7h33 , O33=B“(j+a)hgs,

wherea, A, B, andj are arbitrary constants, and thg are arbitrary functions of the argument

B(j+a)

=t+
T=t a

z. (13.2

The Killing fields for the metriq13.1) are
k(yy=961, kp=x01-yd3,
a —jla H @ : -1 o @ (133
3=y "[B(jla+1)55—Bj(ay) ~67—.As],

and they form a Bianchi type Ylalgebra, with the free parametgr<a)/(j +a). The analog of
(5.2 is

k(s —Bij(ay) 'ky=y AB(j/a+1)u*—(Anw], (13.9
and the King-Ellis measure of tilt is
V—gueN, = Ayt i, (13.5
By a simple transformation of the coordinate we can achieve the same result as if

B(j+a)=1, (13.6

Downloaded 09 May 2008 to 193.0.83.155. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



3662 J. Math. Phys., Vol. 42, No. 8, August 2001 Andrzej Krasinski

and we will assume this now.
The redefinitions needed to calculate the limg— 0 are

y=woy, A=Alwg, h11=H11/w%, hi3=Hi3/wg,

hio=— (j/@) T+ (JT/a)H11/ 02+ Hypl 0o+ AjTHysl 02,

(13.7
hy,=(jT/a)%(1—Hqi/w3)+2(jT/a)hy,— 2(Aj2T?a)H 3/ w5+ Hopp

+2AjThys/ wo— (AjT)?hgs/ wf,
h23: (jT/a)H13/w0+ H23+ AjTh33/w0.

The redefined metric is

- j . -
01:=Y%H1a, glzzﬁz(Hll_ wé) +Hyt+(jla)zHy,  913=YHi3,

2 i i2

_ J J . :
2 (H 11— wS) + ZﬁZle'f' ZﬁZZH 13+ H22+ 2(] /a)Z H23+ (JZ/a)2h33 y

a’A

922=Y
(13.8

] .
023=Y 1[ﬁZH13+H23+(J/a)Zh33, g33= h3z=Hss.

In the limit wy,— 0, theH;; will depend only ont. Thek=—1 Friedmann limit will then result
when

Hij=-C;RXt), j=—a, A—wx. (13.9
The k=0 Friedmann limit will result when
Hij=—CijR%(t), Ci3=j=0, Cp=(Dp/k)?
V=& k—0. (13.10
The limit (13.9 transforms the Killing field€13.3 into a Bianchi type V algebra, provided
&, is redefined tok(§)= —(wh?/A)kf,, and the limitsA—c and j=—a are tuned so that
A(] +a)— [for example A= a/(j +a) anda—oc]. The limit (13.10 will transform (13.3) into
a type | algebra, buk (3, has to be redefined as above, and in addikigy has to be redefined to
ki =kk?, .
(3) (2)
The formulas for the case 2.2.2.1.2 simply follow from those above. This case has a com-

pletely different outlook only in the coordinates adapted to the Killing fields that were used in Ref.
3. When transformed to the Plelskin coordinates, it becomes the subcas€18t1) given by

B(j+a)=1, j=—a, A=A la, (13.1)

where the.4; defined above stands in place of thefrom Eg. (11.17 in Ref. 3. Then the
redefinitions needed arf@3.7) with A;=A/wy andj=—a, and the redefined metric is

911=Y?H11,  91o= —(ZA)(Hy— 0d) +Hiz—zHyz,  915=YH3,
920=Y A[(Z/A)2(Hy1— w5) = 2(Z A H 1o+ 2(Z% A)H 15+ Hopp— 22Hp5+ 2%hgg], (13.12

025=Y [~ (Z/@a)H1a+ Hoz— ZMa3],  U33=haz=Has.
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The k=—1 Friedmann limit results now by13.9 when wy=0, and thek=0 Friedmann limit
results from(13.12 when

wo=0, Hj=-CyRX1), (7.2)=(",€"),
(H12,H19)=(G12,G13)/K, (Hzp,H23,H39)=(G2,,G23,G39)/k?, k—0. (13.13
The Killing field k{3, is different here
k(“3)=y5“0—ln yo%— Ay s, (13.19

while the two others are as i13.3. The case 2.2.2.1.2 required a separate consideration in Ref.
3 only because of the logarithm term in the Killing field. In calculating the limigs—~0 andA

—oo, this vector field has to be redefined similarly as before. For calculatinig=tte Friedmann
limit, k(3y andk{3) have to be redefined byk(3),k3)) =k(k2) k(3 ﬁ (=8%%,—As8%).

Finally, the case 2.2.2.2 from Ref. [Egs. (11.18—(11.27] is of Bianchi type I, with the
velocity field being tangent to the symmetry orbits, so it has no Friedmann limit at all.

XIV. SUMMARY

All the metrics derived in Refs. 1-3, that correspond to rotating hypersurface—homogeneous
dust models, have been checked here for the existence of a Friedmann limit. It was found that such
a limit exists for all those cases listed in Refs. 2 and 3, where the matter-density is not constant
along the flow. However, in at least one cldsse Sec. I, the Friedmann model will have no
rotating parent solution, but will instead be a separate subclass.

Along the way, the nonstationary metrics were all transformed to such a form, in which the
limit of zero rotation can be explicitly calculated. The transformation—reparametrization leading to
this form is nonsingular and invertible in each case, but it becomes singular &hed. The
limits =0 all have nonzero shear. Thus, a whole collection of metrics generalizing those of
Friedmann was found that can be used in studying spatially homogeneous exact perturbations of
the latter.

The Class A Bianchi-type metrigshose in which the structure constants have the property
C?,.,=0) are known to admit a Lagrangian—Hamiltonian formulafidithose of them that obey
the Einstein equations with a rotating dust souitgpes Vi, Vi, VI, and 1X) were studied by
Ozsvah."*®* The Lagrangians and Hamiltonians were explicitly found in Refs. 7 and 13, and the
Einstein equations in the Hamiltonian form were then transformed to such variables, in which they
become analytic. This should prove the existence of solutions.

Two more papers, specifically devoted to rotating spatially homogeneous dust solutions, are
those of Behi! (where a subclass of type IX models was investigagea! of this authdr (dis-
cussing a subclass of type V modelt both of these, the Einstein equations were transformed,
simplified, investigated for known limiting cases and for Lie symmetries, but no explicit solutions
were found. A(hopefully) complete overview of other solutions with rotating matter source is
given at the end of Ref. 3.

It is hoped that the present paper will be helpful in picking out those models for future
investigation that promise interesting physics or geometry.
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