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The existence of Friedmann limits is systematically investigated for all the
hypersurface–homogeneous rotating dust models, presented in previous papers by
this author. Limiting transitions that involve a change of the Bianchi type are
included. Except for stationary models that obviously do not allow it, the Fried-
mann limit expected for a given Bianchi type exists in all cases. Each of the three
Friedmann models has parents in the rotating class; thek511 model has just one
parent class, the other two each have several parent classes. The type IX class is the
one investigated in 1951 by Go¨del. For each model, the consecutive limits of zero
rotation, zero tilt, zero shear, and spatial isotropy are explicitly calculated.
© 2001 American Institute of Physics.@DOI: 10.1063/1.1378304#

I. MOTIVATION AND SUMMARY OF THE METHOD

In previous papers1–3 a complete set of all metric forms was derived that can repre
hypersurface–homogeneous rotating dust models. For each case, the generators of the s
algebra were found, the Bianchi type determined, and the metric form resulting from the K
equations was explicitly presented. That classification was more detailed than the Bianchi
fication because all possible orientations of the symmetry orbits in the spacetime were al
i.e., the orbits could be spacelike, timelike or null.

In a later paper,4 one of the Bianchi type V models was investigated. Among the probl
considered there was the question whether the model can reproduce thek521 Friedmann model
in the limit of zero rotation,v→0. Since the coordinates that are well-suited to the classifica
are not suitable at all for considering the limitv→0, this limit could be taken only after a
coordinate change and reparametrization of the metric.

In the present paper, the existence of the Friedmann limits is systematically investigated
the other cases found in the classification in Refs. 1–3. The Bianchi type is allowed to cha
the limiting transition. In all Bianchi type I cases the velocity field is tangent to the symm
orbits, i.e., those models have matter density constant along the flow, and no expanding Frie
model can be a subcase there. The same is true for the Bianchi type II from Ref. 1 and for b
subcases of case 1.1.1.2 in Ref. 2 which are of type III. In all the other cases the Friedmann
that can be expected for a given Bianchi type do indeed exist.

The specialization to the Friedmann metrics is possible in so many cases because th
free parameter in them that determines the tilt of the orbits with respect to the velocity field~with
various values of the tilt parameter, the orbits may be spacelike, timelike or null!. Whenever a
Friedmann limit exists, the orbits are made orthogonal to the velocity field~‘‘untilted’’ ! during the
limiting transition.

In order to make this paper readable independently of the other ones, the basic facts are
recalled here. More details can be found in Ref. 1.

The velocity field of a rotating dust,ua, defines three scalar functionst(x),h(x) and j(x)
such that

a!Electronic mail: akr@camk.edu.pl
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ua5t,a1hj,a . ~1.1!

These functions~whose existence follows from the equations of motion via the Darboux theor1!
are determined up to the transformations:

t5t82S~j8,h8!, j5F~j8,h8!, h5G~j8,h8!, ~1.2!

where the functionsF andG obey

F,j8G,h82F,h8G,j851, ~1.3!

and thenS is determined by

S,j85GF,j82h8, S,h85GF,h8 . ~1.4!

@Eq. ~1.3! is the integrability condition of~1.4!.#
Then, the continuity equation, (nua) ;a50, wheren is the number density of the dust particle

implies that there exists one more functionz(x) such that

A2gnua5«abgdj,bh,gz,d , ~1.5!

whereg is the determinant of the metric tensor and«abgd is the Levi-Civita symbol. The function
z is determined up to the transformations

z5z81T~j8,h8!, ~1.6!

whereT is an arbitrary function.
The following relations hold then:

uat,a51, ubj,b5ubh,b5ubz,b50,
~1.7!

]~t,h,j,z!

]~x0,x1,x2,x3!
5A2gnÞ0.

This shows that$t,j,h,z% can be chosen as coordinates, witht being the time coordinate. The
are called the Pleban´ski coordinates. Denoting$t,j,h,z%5$x0,x1,x2,x3%5$t,x,y,z%, we obtain
for the velocity fieldua, the metric tensorgab , the rotation tensorvab and the rotation vectorwa

in these coordinates

ua5da
0 , ua5d0

a1yd1
a ,

g0051, g015y, g025g0350, g[det~gab!52n22,

wa5nd3
a , vab52vba5 1

2 d1
ad2

b . ~1.8!

It is the last property that makes the limiting transitionv→0 impossible without a coordinat
transformation and reparametrization.

In these coordinates, if any Killing field is allowed by the metric it must be of the form

ka5~C1f2yf,y!da
01f,yd

a
12f,xd

a
21lda

3 , ~1.9!

whereC is an arbitrary constant andf(x,y) andl(x,y) are arbitrary functions. Iff ,aÞ0 ~i.e., f
is not constant on an open set!, then the coordinates can be adapted toka within the Pleban´ski
class@by Eqs.~1.2!–~1.4! and ~1.6!# so that

ka5da
1 . ~1.10!
09 May 2008 to 193.0.83.155. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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The metric then becomes independent ofx, and the coordinates preserving~1.10! are determined
up to the transformations:

t85t2E yH,ydy1A, x85x1H~y!, y85y, z85z1T~y!, ~1.11!

whereA is an arbitrary constant andH,T are arbitrary functions.
If f ,a50, then the form of the Killing fieldka5Cda

01lda
3 , is invariant under~1.2!–~1.6!

and the Pleban´ski coordinates cannot be adapted toka. The propertyf5const is equivalent to the
following invariant relation:

ka5Cua1~l/n!wa, ~1.12!

i.e., ka is then spanned on the velocity field and the rotation field.
If three Killing fields exist, then each of them can either be of the special type~1.12! or of the

general type~1.9!. One of the general-type Killing fields can always be transformed to the f
~1.10! by ~1.2!–~1.6!.

This observation gives rise to a complete classification of all hypersurface–homoge
space–times that are possible for a rotating dust. When all three Killing fields are of the s
type ~1.12!, the symmetry orbits are two-dimensional, and this case is not considered. Whe
Killing fields are of the special type, while the third one is general, there exist two class
metrics ~Bianchi types I and II! that were derived in Ref. 1. When one Killing field is of th
special type, while the two others are general, all Bianchi types except VIII and IX appear~Ref.
2!. When all three Killing fields are of the general type, all the Bianchi types appear, some of
hidden as limits of more general types~Ref. 3!. The multitude of cases is a consequence of
many possible alignments or misalignments among the three Killing fields and the velocit
rotation fields.

When the Bianchi classification is introduced, the generators of symmetry are scaled to
dard forms such that all nonzero structure constants~except the free parameters in types VIh and
VII h! become equal either to11 or to21. In general, though, they are arbitrary constants, an
the general form each of those constants can be allowed to become zero. In this way, th
special Bianchi types can be obtained from the more general ones by going to the zero lim
some of the structure constants. The resulting hierarchy of Bianchi types is well-known, a
shown in Fig. 1~adapted from Ref. 5! for easy reference. The specializations that are possible
be instantly guessed from the values of thea, n1 , n2 , andn3 parameters for the different Bianch
types. Type III cannot be specialized to IV or V because, with the arbitrary values of the pa
etersn2 andn3 , the parametera is determined bya5A2n2n3.

Another well-known result6 is the placement of different Robertson–Walker geomet
within the Bianchi classes. This is also recalled for easy reference. Since we are considerin
dust models, we will call these geometries the Friedmann models and Friedmann limits
rotating models.

The k50 model is a subcase of the Bianchi types I and VII0 ~the two Bianchi algebras hav
different bases, but share common orbits!.

The k521 model is a subcase of the Bianchi types V and VIIh .
The k511 model is a subcase of the Bianchi type IX.
When considering each case of the classification from Refs. 1–3, one has to recogniz

Fig. 1 which of the four types$I, V, VII 0, VII h , IX% could possibly be contained in it as a subca
and then the appropriate specialization of the arbitrary constants and functions in the mode
be considered. This procedure will be presented in more detail in Sec. II, later it will be ap
without detailed explanations.

It will turn out that only the stationary models have no Friedmann limit. In every nonsta
ary case, the Friedmann limit indicated by the Bianchi type indeed exists. Note that the lim
found for the metrics, without taking into account the Einstein equations. This is why a no
09 May 2008 to 193.0.83.155. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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tionary type II metric exists in the collection, and is found to admit thek50 Friedmann limit, even
though it is known7,8 that spatially homogeneous type II dust solutions must have zero rota
see Sec. III.

Now we shall systematically go over all the cases presented in Refs. 2 and 3. The two
from Ref. 1 are immediately seen to admit no Friedmann limit: In both of them, the velocity
of the dust is spanned on the Killing fields@see Eqs.~7.7! and ~7.8! in Ref. 1#, so the particle
number densityn will obey n,aua50. Hence, these cases cannot contain any expanding F
mann model because in the lattern,auaÞ0.

Each of the models presented in Refs. 2 and 3 that allows a Friedmann limit will be
transformed to the Pleban´ski coordinates~most of them were found in coordinates adapted to
Killing fields that are not in the Pleban´ski class!. Then, each model will be transformed by
coordinate transformation and reparametrization of the metric functions and constants to
form in which the limit of zero rotation can be calculated explicitly. Then, the Friedmann li
will be calculated by consecutively imposing on the metric the conditions of zero rotation,
tilt, zero shear, and spatial isotropy~i.e., constant curvature in the three-spaces orthogonal to
dust flow!. This last condition is not superfluous, even though dust with zero rotation and
shear must be a Friedmann model in consequence of the Einstein equations.9 It is conceivable that
no Friedmann limit would exist at all in some classes. However, this does not happen,
spatially isotropic subcase will be found to exist in all cases. The corresponding limits o
Killing fields, where nontrivial, will be also calculated and the Bianchi type of the limit de
mined.

Since on each of the underlying manifolds five vector fields exist~velocity, rotation, and the
three Killing fields!, the five vectors must be linearly dependent at each point. This linear rel
allows to identify in each case the parameter that determines the tilt of the velocity field
respect to the symmetry orbits—see Sec. V. It turns out that this tilt parameter is always s
proportional to that defined by King and Ellis.8

II. THE CASES 1.1.1 OF REF. 2

We begin with case 1.1.1.1., which is of Bianchi type III.
The transformation from the coordinates used in Eq.~2.18! of Ref. 2~that were adapted to th

Killing fields! to the Pleban´ski coordinates is given by Eq.~2.16! in Ref. 2~where$t8,x8,Y,Z% are

FIG. 1. The diagram shows how the different Bianchi types can be specialized by taking the zero limit of one or m
the structure constants. This allows to recognize~by the rules given at the end of Sec. I!, which Friedmann models can
possibly be contained as limits in a given class—see text. All the possibilities are actually realized in the col
considered in the paper.
09 May 2008 to 193.0.83.155. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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the coordinates of~2.18!, and$t,x,y,z% are the Pleban´ski coordinates!. The transformed metric is

g0051, g015y, g025g0350,

g115S Y

2l3
D 2

1
1

2l3
2 YZ1h112

b

l3
h12Y1S 1

2
bYD 2

h22,

~2.1!
g125h122

1
2 bl3Yh22, g135C3h132

1
2 b2C3Yh23,

g225l3
2h22, g235bC3l3h23, g335~bC3!2h33,

whereb, C3 andl3 are arbitrary constants,Y andZ are given by:

Y52bl3t1l3y1bC3z, Z5bl3t1l3y2bC3z, ~2.2!

and all thehi j , i , j 51,2,3 are arbitrary functions ofZ. The first line of Eq.~2.1! will be the same
in all the other metrics transformed to the Pleban´ski coordinates, so it will not be repeated fro
now on. Since the argument ofhi j is determined~by the Killing equations! only up to a constant
factor, we are allowed to rescale it by an arbitrary factor. For considering the limitv→0, it will
be convenient to assume that the argument ofhi j is

TªZ/~bl3!5t1y/b2~C3 /l3!z. ~2.3!

This presupposes thatbl3Þ0, but this condition is included in the definition of case 1.1.1.1. T
limit l350 can be taken into account after a simple reparametrization, and it leads to a stat
solution. The subcaseb50 is degenerate, and it belongs to the 1.1.2 family.

As seen from the last formula in~1.8!, the simplest way to letv→0 is to transformy as
follows:

y5v0ỹ, ~2.4!

and then letv0→0, so that the only nonzero component of rotation in the new coordin
becomes

v128 5v0ỹ ——→
v0→0

0. ~2.5!

Then, however, the componentsg128 , g228 , andg238 of the transformed metric would simultaneous
go to zero, and the metric would become degenerate (g50). To avoid this,h22 must be rescaled
as follows:

h225H22/v0
2 . ~2.6!

Theng128 5v0h122
1
2 bl3YH22/v0 would become infinite in the limitv0→0. To avoid this,h12

must be reset so that the infinity is cancelled. Since allhi j depend onT, not onY, this can be done
as follows:

h125H12/v02 1
2 ~bl3!2TH22/v0

2 . ~2.7!

The first term in~2.7! contains thev0 in the denominator for greater generality, so thatg128
——→

v0→0
H12Þ0. Then, to cancel the infinities ing11, the functionh11 must be reset as follows:

h115H112
1
4 b4~l3T!2H22/v0

22b2Th12. ~2.8!
09 May 2008 to 193.0.83.155. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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The reparametrization~2.4!, ~2.6!–~2.8! would be sufficient to make the limitv0→0 of the metric
~2.1! nondegenerate. However, the hypersurfacest5const, that become orthogonal to the veloc
field ua in the limit v0→0, would not yet coincide with the hypersurfaces of constant ma
density. In the Pleban´ski coordinates, as seen from~1.8!, the matter density obeysg52n22, and
so n would depend on (t2C3z/l3) in the limit v0→0, i.e., the model would still be tilted. To
untilt it, we must letC3→0, and this requires at least one more rescaling. It will be convenie
redefineC3 as follows

C35v0c, ~2.9!

so that the untilting occurs simultaneously withv→0. Then we must rescaleh33

h335H33/v0
2 . ~2.10!

For greater generality, we will also rescaleh23

h235H23/v0
2 , ~2.11!

and thenh13 must be reset as follows:

h135H13/v02 1
2 b3l3TH23/v0

2 . ~2.12!

The transformation~2.4!, applied to~2.1! together with all the subsequent reparametrizatio
results in the following metric:

g0051, g015v0ỹ, g025g0350,

g115
1

4l3
2 @bl3t~22l3ỹ12bcz!v01~l3ỹ1bcz!~3l3ỹ2bcz!v0

2#

2
1

4
~bt!21H1122bỹH121~bl3ỹ!2H22,

~2.13!
g125H122bl3

2ỹH22, g135cH132b2cl3ỹH23,

g225l3
2H22, g235bcl3H23, g335~bc!2H33,

where theHi j depend only ont. Here, similarly as in~2.1!, the first line will be the same for ever
metric, and so it will not be repeated from now on.

The metric~2.13! still has nonzero shear. If a Friedmann model is to result from it, the s
must be set to zero. The coordinates$t,x,y,z% in ~2.13! are now comoving and synchronous,
zero shear means that

gi j 5Gi j ~x,y,z!R2~ t !, ~2.14!

i.e., all the components of the metric must depend on time only through the same factorR2(t).
This means:

H11~ t !5 1
4 b2t22C11R

2~ t !,

other Hi j ~ t !52Ci j R
2~ t !, ~2.15!

whereCi j are unknown constants. With no loss of generality, it may be assumed that

C3351. ~2.16!
09 May 2008 to 193.0.83.155. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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The metric~2.13! with Hi j as in ~2.15! and ~2.16! will represent a Friedmann model when th
hypersurfacest5const are spaces of constant curvature. In order to calculate this curvature
convenient to introduce the new constantsD11, D12, andD22 by

D22
2
ªC222C23

2, D12ª~C122C13C23/b!/~l3D22!,
~2.17!

D11
2
ªC112C13

2/b22D12
2.

The correct signs forD11
2 andD22

2 are guaranteed by the signature of~2.13!. Then~2.13! may be
written as follows:

ds25dt22~D11Rdx!22R2@~D122bl3D22y!dx1l3D22dy#2

2R2@~C13/b2bl3C23y!dx1l3C23dy1bcdz#2, ~2.18!

and the curvature tensor for the spacest5const may be easily calculated using the orthonormal
of differential forms suggested by~2.18!. The curvature tensor is

R12
125

3
4 F2G21F2, R13

135R23
2352 1

4 F2G2, ~2.19!

where

Fªb/~D11R!, GªC23/D22. ~2.20!

The Riemann tensor~2.19! will represent constant curvature whenR12
125R13

13. This impliesb
50, which seems to be a singular limit of~2.18!. However, the limitb→0 may be easily incor-
porated into~2.18! by the following reparametrization:

C135D13b, c5C/b. ~2.21!

After this, the Riemann tensor of the spacet5const still has the same form~2.19!–~2.20!. With
b50, Ri j

kl[0, i.e.,~2.18! represents then thek50 Friedmann model. This is the Friedmann lim
of the metric~2.1!, as expected for Bianchi type III.

In this case, the coordinates of the Friedmann limit are similar to those usually used~they are
the nonorthogonal Cartesian coordinates for the flat spacet5const). This will not be so in mos
other cases—the coordinate representation of the resulting Friedmann limit will be rather e
and calculating the Riemann tensor of the subspacet5const will be the simplest way to check th
it is the Friedmann metric indeed.

The Killing fields for the metric~2.1! are ~see Ref. 2!

k(1)
a 5d1

a , k(2)
a 5ebx~d0

a2bd2
a!, k(3)

a 5C3d0
a1l3d3

a . ~2.22!

As seen from Fig. 1, the algebra of type III can be specialized only to types II and I, and s
k50 Friedmann limit is the only one of the three that can be expected here. Note that the K
field k(2) will have a meaningful limitv→0, b→0 only if the two limits are tuned so tha
v0 /b ——→

v0→0
0 ~for example,b5BAv0). Then l (2)

a
ª(v0 /b)k(2)

a ——→
v0→0

da
2 , which is indeed a

Killing field of ~2.18! with b50. The algebra$k(1) ,l (2) ,k(3)% becomes then Bianchi type I whe
v050, as expected.

The reasoning behind the reparametrizations, and the subsequent calculation of the li
zero rotation, zero tilt, zero shear, and constant curvature of the spacest5const, follows the same
scheme in all the other cases. Therefore, it will be presented in less detail from now on. In
of the cases, the reparametrization that untilts the limitv→0 is a necessary condition for cance
ling the infinities introduced by the earlier reparametrizations.
09 May 2008 to 193.0.83.155. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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The other two subcases of case 1.1.1 in Ref. 2, i.e., cases 1.1.1.2.1@Eq. ~3.16!# and 1.1.1.2.2
@Eq. ~3.32!# are immediately seen to allow no Friedmann limit. For both of them, the Killing fie
are given by~2.22! above withl350. As seen from~1.8!, the Killing field k(3) coincides then with
the velocity field of dust, and so both these models are stationary.

In fact, the last of~2.22! is the linear relation among the five vectors mentioned at the en
Sec. I, because it is equivalent to~1.12!. Since withl350 the velocity becomes one of the Killin
fields, i.e., becomes tangent to the symmetry orbits,l3 is the tilt parameter. More on this—se
Sec. V.

III. CASES 1.1.2 OF REF. 2

The case 1.1.2.1 is again of Bianchi type III. The transformation back from the coordina
Eq. ~4.6! in Ref. 2~adapted to two Killing fields! to the Pleban´ski coordinates is given by~4.4! in
Ref. 2, with the roles of$xa% and$x8a% interchanged. The transformed metric is

g11522~c/a!y2~c/a!21Y2h1122~c/a!l3Yh131~cl3 /a!2h33,

g125h122
cl3

aY
h23, g135C3Yh132~c/a!l3C3h33, ~3.1!

g225h22/Y2, g235C3h23/Y, g335C3
2h33, Yªay1c,

wherea, c andl3 are arbitrary constants andhi j are arbitrary functions of the variable

Tªt2C3z/l3 . ~3.2!

The reparametrization that will allow setting the rotation and tilt to zero is

~y,C3!5v0~ ỹ,D !,

h115H111~l3 /a!2H33/v0
2 , h125H12/v01~l3 /a!H23/v0

2 ,

h135H131~l3 /a!H33/v0
2 , ~h22,h23,h33!5~H22,H23,H33!/v0

2 . ~3.3!

The reparametrized metric~without the limit v0→0 taken yet! is

g1152~c/a!222~c/a!v0ỹ1Ỹ2H1122~c/a!l3ỸH131~l3ỹ!2H33,

g125H121~l3ỹ/Ỹ!H23, g135Dv0ỸH131Dl3ỹH33, ~3.4!

g225H22/Ỹ2, g235DH23/Ỹ, g335D2H33, Ỹ5av0ỹ1c.

Similarly as before, in the limitv0→0 theHi j will depend only ont, and the subsequent limi
of zero shear isH1152C11R

2(t)1(c/a)2, otherHi j (t)52Ci j R
2(t), C3351. Proceeding exactly

as in Sec. II, we then find that the hypersurfacest5const will have constant curvature whenl3

→0; the resulting limit is the Friedmannk50 model, as expected for type III. The limitsC3

→0 andl3→0 should be tuned so thatC3 /l3 ——→
v0→0

0, e.g.,l35L3v0
1/2.

The case 1.1.2.2@Eqs. ~4.12!–~4.33! in Ref. 2# is of Bianchi type II. It is known from the
paper by Ozsva´th,7 and from Theorem 3.1 by King and Ellis,8 that dust models of type II have zer
rotation. However, that thesis was proven with use of the Einstein equations in Ref. 7 and
Ellis evolution equations9 in Ref. 8, that include consequences of the Einstein equations. In
approach of Refs. 1–3, the Einstein equations were not used. Moreover, the constantl3 plays the
role of the tilt parameter here—withl350, the metric becomes stationary~the orbits of the
symmetry group become timelike and tangent to the velocity field of the dust!, and this case is no
09 May 2008 to 193.0.83.155. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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covered in Refs. 7 and 8. This is why the case 1.1.2.2 could show up in our consideration
observation implies a warning: The existence of a Friedmann limit of the metric does not
antee that the Einstein equations will allow a rotating generalization of a given Bianchi type
corresponding Friedmann model. A rotating dust solution and the Friedmann solution may tu
to be two disjoint subclasses within that type.

The metric@Eq. ~4.13! from Ref. 2# transformed back to the Pleban´ski coordinates@by the inverse of
~4.4! from Ref. 2# is

g115h1112l3yh131y2~11l3
2h33!,

g125h121l3yh23, g135C3~h131l3yh33!, ~3.5!

~g22,g23,g33!5~h22,C3h23,C3
2h33!,

where thehi j are arbitrary functions of theT from ~3.2!. The limit of zero rotation and zero tilt is
achieved after the reparametrization

~y,C3!5v0~ ỹ,D !,

~h12,h13!5~H12,H13!/v0 , ~h22,h23,h33!5~H22,H23,H33!/v0
2 , ~3.6!

and the reparametrized metric is

g115~v0ỹ!21h1112l3ỹH131~l3ỹ!2H33,

g125H121l3ỹH23, g135D~H131l3ỹH33!, ~3.7!

~g22,g23,g33!5~H22,DH23,D2H33!.

The k50 Friedmann limit will result now whenv050, Hi j 52Ci j R
2, andl350.

The theorem by King and Ellis mentioned above implies thatv050 will follow when ~3.7! is
substituted in the Einstein equations.

The Killing fields for the metric~3.1! are

k(1)
a 5da

1 , k(3)
a 5C3da

01l3da
3 ,

~3.8!
k(2)

a 5cxda
01axda

12~ay1c!da
21~cl3 /C3!xda

3 .

@The Killing fields for~3.5! result whena50 above.# After the reparametrization~3.3!, in the limit
v0→0, the basis~3.8! becomes

k(1)
a 5da

1 , l (3)
a
ª~1/l3!k(3)

a ——→
v0→0

da
3 ,

~3.9!
l (2)
a 52~v0 /c!k(2)

a ——→
v0→0

da
22~l3 /D !xda

3 .

In the Friedmann limitl3→0, the generators~3.9! become a Bianchi type I algebra.

IV. CASES 1.2 AND 2 OF REF. 2

All of these allow both thek50 and thek521 Friedmann limits.
Case 1.2.1.1 is of Bianchi type VIh with the free parameter (b21 f 2)/(b22 f 2) ~there is a typo

in Ref. 2!. In this case@Eqs. ~5.6!–~5.7! in Ref. 2#, the transformation back to the Pleban´ski
coordinates is given by~5.5! from Ref. 2, with the roles ofxa andx8a interchanged. The resulting
metric is
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g115h1122bt~y2bh12!22Zh131~bt!2~b2h2221!22b2tZh231Z2h33,

g125h121b2th222Zh23, g135h131b2th232Zh33, ~4.1!

~g22,g23,g33!5~h22,h23,h33!, Zª f z,

whereb and f are arbitrary constants, andhi j are arbitrary functions of

T5t1y/b. ~4.2!

The limit of zero rotation~that will automatically untilt the model! is achieved by the reparam
etrization

y5v0ỹ, h225H22/v0
2 , h235H23/v0 ,

h115H111~bT!222b2Th122b4T2H22/v0
2 , ~4.3!

h125H12/v02b2TH22/v0
2 , h135H132b2TH23/v0 ,

and the reparametrized metric is

g115~v0ỹ!21H1122bỹH1222ZH131~bỹ!2H2212bỹZH231Z2h33,

g125H122bỹH222ZH23, g135H132bỹH232Zh33, ~4.4!

~g22,g23,g33!5~H22,H23,h33!.

With v050, the shearfree limit will result when allhi j 52Ci j R
2(t), and then thek521 Fried-

mann model results whenb5 f Þ0. Thek50 Friedmann limit results whenb5 f 50. This is the
first instance where the coordinates of thek521 Friedmann limit come out rather exotic. Fro
now on, this will be the rule.

The Killing fields for the metric~4.1!–~4.2! are

k(1)
a 5da

1 , k(2)
a 5ebx~da

02bda
2!, k(3)

a 5ef xda
3 . ~4.5!

In the k521 Friedmann limit that will result by the first of~4.3! and b5 f , k(1)
a remains un-

changed,k(3)
a becomes ebxda

(3) , while k(2)
a is replaced by

l (2)
a 5~2v0 /b!k(2)

a ——→
v0→0

ebxda
2 . ~4.6!

This is of Bianchi type V, and in the further limitb5 f 50 it becomes type I.
In the case 1.2.1.2@Eq. ~5.10! in Ref. 2#, which is of type IV, the transformation back to th

Pleban´ski coordinates is given by Eq.~5.9! there. The whole further calculation is similar t
~4.1!–~4.4! above. Instead of the last formula in~4.1! we have

Zªct1bz, ~4.7!

wherec is one more arbitrary constant, and in~4.3! we have:

h115H111~bT!222b2Th1212cTH132b4T2H22/v0
21~cT!2h33,

h125H12/v02b2TH22/v0
21cTH23/v0 , h135H132b2TH23/v01cTh33. ~4.8!

The reparametrized metric is
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g115~v0ỹ!2~11c2h33/b2!12cv0ỹ~H13/b2 ỹH232zh33!1H1122bỹH12

22bzH131~bỹ!2H2212b2ỹzH231~bz!2h33,

g125v0~c/b!ỹH231H122bỹH222bzH23, ~4.9!

g135v0~c/b!ỹh331H132bỹH232bzh33, ~g22,g23,g33!5~H22,H23,H33!.

The limit v0→0 of ~4.9! is the same as the limitv0→0 of ~4.4! with b5 f . Hence, thek
521 Friedmann limit will result from~4.9! when v050 and hi j 52Ci j R

2(t), without any
further limitations. Thek50 Friedmann limit will result whenb50 in addition.

For the case 1.2.2.1@Eqs. ~5.17! and ~5.18! in Ref. 2#, which is of Bianchi type VIh , the
subcaseC5 j 1a50 is identical to the subcasec50 of case 1.2.2.2, and so the Friedmann lim
will be the same~see below!.

The case 1.2.2.2@Eq. ~5.19! in Ref. 2#, which is of Bianchi type IV, allows the special cas
c50, where the Bianchi type becomes V. This special case was investigated in detail in Ref.
it was shown there how thek521 Friedmann limit is obtained. In order to obtain thek50
Friedmann limit, one has to apply the following transformation and rescaling to Eq.~3.5! in Ref.
4:

y5eau, K5K̃/a, ~4.10!

and then take the limita→0.
All the subcases of case 2 in Ref. 2 have matter density constant along the dust flow: I

2.1.1 ~type I! and both cases 2.1.2~types II and I!, the velocity field is tangent to the symmetr
orbits, in case 2.2~type I!, the velocity field coincides with one of the Killing fields. Therefore,
Friedmann limits will exist there.

With this, all cases of Ref. 2 are exhausted.

V. CASE 1.1.1.1 OF REF. 3

In the cases considered in Ref. 3, each of the three Killing vectors is linearly independ
the velocity and rotation. However, the five vectors existing in each four-dimensional ta
space to the manifold cannot form a linearly independent set. The three-dimensional
spanned by the Killing vectors,K3 , must intersect with the two-dimensional plane spanned by
velocity and rotation,H2 , along at least one direction. In the models of Ref. 1, the wholeH2 plane
was a subspace of theK3 space. In consequence, the velocity was a linear combination o
Killing vectors, and so those models were stationary. In the models of Ref. 2, considered
now, the planeH2 and the spaceK3 intersected along the direction of the Killing vectork(3)

a

5C3ua1(l3 /n)wa. From now on, the line of intersection will not coincide with any Killin
direction. Hence, in each case an equation of the following form will have to hold:

a1k(1)
a 1a2k(2)

a 1a3k(3)
a 5b1ua1b2wa, ~5.1!

whereai andbi are functions on the manifold. Note that ifb250, then the velocity field is tangen
to the symmetry orbits, and in consequence such a model has zero expansion and matter
independent of the comoving time~the metric may depend on the time only because in genera
metric has shear!. Hence,b2 is a measure of the tilt of the velocity field with respect to the orb
Its relation to the tilt defined by King and Ellis8 will be explained below@see after Eq.~5.6!#.

The case 1.1.1.1, given by Eqs.~2.28! and ~2.29! in Ref. 3, is of Bianchi type VIh . The
transformation back to the Pleban´ski coordinates is given by Eq.~2.27! in Ref. 3, and the result is
09 May 2008 to 193.0.83.155. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



ct

n
in

3639J. Math. Phys., Vol. 42, No. 8, August 2001 Friedmann limits of rotating universes

Downloaded 
g115
f 2~b1 f !

b2~b2 f !
U222

f

b2 f
U~ f t1y!1h1122Vh1222

f g

bb~b2 f !
Uh131V2h22

12
f g

bb~b2 f !
UVh231F f g

bb~b2 f !G
2

U2h33,

g125V/b21h122Vh222
f g

bb~b2 f !
Uh23,

~5.2!

g135h132Vh232
f g

bb~b2 f !
Uh33,

g22521/b21h22, ~g23,g33!5~h23,h33!,

whereb, f , b andg are arbitrary constants, thehi j are arbitrary functions of the argument:

T5t1y/b2b~b2 f !z/g, ~5.3!

andU andV stand for

U5bt1y, V5b f t1~b1 f !y. ~5.4!

The Killing fields for the metric~5.2! are:

k(1)
a 5d1

a , k(2)
a 5ef x$d0

a2 f d2
a1@g/~bb!#d3

a%,
~5.5!

k(3)
a 5ebx~2d0

a1bd2
a!.

From ~1.8! it follows then that:

be2 f xk(2)
a 1 f e2bxk(3)

a 5~b2 f !ua1@g/~nb!#wa. ~5.6!

This is the Eq.~5.1! specified for the case 1.1.1.1. As remarked above, wheng50, the velocity
field becomes tangent to the symmetry orbits.@With g→0, the argument ofhi j given by~5.2! has
to be redefined so that it becomesZ5gT ——→

g→0
2b(b2 f )z.#

This means that the parameter (g/b) is a measure of the tilt of the velocity field with respe
to the symmetry orbits. Indeed, the measure of tilt defined by King and Ellis8 is proportional to
(g/b). They defined the hyperbolic angle of tiltb̄ by

coshb̄5uana ~5.7!

~the difference in sign from their paper is a consequence of the difference in signature!, wherena

is the unit vector normal to the orbits of symmetry. This definition ofb̄ makes sense only whe
bothua andna are timelike vectors; the cases ofna being null or spacelike are not considered
Ref. 8. However,uana is a measure of the tilt also for nontimelikena. In particular, whenua is
tangent to the symmetry orbits,uana50. The vectorna is related to the Killing fields by

na5Na /A2gmnNmNn
ªNa /iNi , ~5.8!

where

Na5
1

A2g
«abgdk(1)

b k(2)
g k(3)

d . ~5.9!
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In our case then

uana5iNi21Naua5
1

iNiA2g
e(b1 f )xg/b. ~5.10!

Analogs of~5.1! and~5.6! will exist in every case considered from now on. In the models
Ref. 2, considered up to now, where the Killing fieldk(3)

a always had the formk(3)
a 5C3ua

1(l3 /n)wa, l3 was a measure of the tilt.
For calculating the limit of zero rotation and zero shear, the following reparametrizati

useful:

~y,b!5v0~ ỹ,B!, h225H22/v0
2 , h235H23/v0 ,

h115~ f T!21H1112b f Th1212~ f 2/D !Th13/v02~b f T!2H22/v0
2

22~b f3/D !T2H23/v0
22~ f 4/D2!T2h33/v0

2 ,
~5.11!

h125H12/v01b f TH22/v0
21~ f 2/D !TH23/v0

2 ,

h135H131b f TH23/v01~ f 2/D !Th33/v0 ,

Dª f ~b2 f !B/g.

The reparametrized metric is

g11522 f tWv01@~Dz!222~ f /b!ỹW#v0
21H1122bWH12

22 f zH131~bW!2H2212b f zWH231~ f z!2H33,

g125~ f t/b!v01@~b1 f !/b2# ỹv0
21H122bWH222 f zH23,

~5.12!
g135H132bWH232 f zh33,

~g22,g23,g33!5~H22,H23,h335H33!, Wªy1Dz.

Thek521 Friedmann limit results now from~5.12! whenv050 ~after which allhi j depend only
on t), and

Hi j 52Ci j R
2~ t !, C3351, b5 f . ~5.13!

@The last of~5.13! implies D50.# The k50 Friedmann limit results when in addition

b5 f 50. ~5.14!

The reparametrization~5.11! transforms the Killing fieldsk(2)
a andk(3)

a from ~5.5! as follows:

l (2)
a 5~bb/g!k(2)

a ——→
v0→0

ef x@2~b fb/g!da
(2)1da

(3)#

l (3)
a 5~v0 /b!k(3)

a ——→
v0→0

ebxda
(2) . ~5.15!

In thek521 Friedmann limit (b5 f ), together withk(1)
a , this becomes a Bianchi type V algebr

and in thek50 Friedmann limit (b5 f 50), it becomes type I.
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VI. CASE 1.1.1.2 OF REF. 3

This case is given by Eqs.~3.7!–~3.11! in Ref. 3. It is of Bianchi type VIII or VI0 ~wheng
Þ0 or g50, respectively!, so only thek50 Friedmann limit may exist here. The limit of zer
rotation and zero tilt can be considered without transforming the metric back to the Pleb´ski
form, but the three subcases have to be considered separately.

The Killing fields in this case are

k(1)
a 5d1

a , k(3)
a 5ea1xd2

a ,
~6.1!

k(2)
a 5e2a1x@2gyd1

a1a1~gy212B!d2
a1d3

a#.

The analog of Eq.~5.1! is

k(2)
a 2a1~gy212B!e22a1xk(3)

a 22gye2a1xk(1)
a 5e2a1x@4Bua1~8cga1 /n!wa#, ~6.2!

and, consequently, the King–Ellis measure of tilt is

A2gNaua5a1 , ~6.3!

@Na is given by~5.8!#.
The argument of the arbitrary functions in the metric is

T5t1y/a12
B

2cga1
z. ~6.4!

In case I (gBÞ0), the reparametrization needed is

y5v0ỹ, B5v0
3/4B̃, a15v0

1/4a1 , ~6.5!

~h13,k13!5~G13,K13!v0 , h225G22/v0
2 . ~6.6!

The full reparametrized metric, withv0Þ0, is rather complicated here, so only the limitv0→0
will be quoted:

ds25dt21h11dx21G22dy22
h33

2B̃a1

dydz1h33dz2. ~6.7!

The k50 Friedmann limit results when furtherh115G225h3352R2(t).
As seen from~6.1!, the symmetry group becomes Bianchi type I in the limitv0→0 after the

reparametrization~6.4! @the Killing field k(3) has to be replaced byl (3)5v0k(3) in order that the
limit is nonsingular#.

In case II (B50), Eq. ~6.5! remains unchanged, while~6.6! is replaced by

~h12,h23!5~G12,G23!v0 , h225G22/v0
2 . ~6.8!

The limit v0→0 of the reparametrized metric is:

ds25dt21h11dx212G12dxdy12h13dxdz1G22dy21h33dz2, ~6.9!

where all the metric components depend only ont. Thek50 Friedmann limit is here

G125h1350, h115G225h3352R2~ t !. ~6.10!

In case III (g50, Bianchi type VI0), the k50 Friedmann limit results again by~6.5!, ~6.8!,
~6.9! and ~6.10!.
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Note two typos in Sec. III of Ref. 3: In~3.7! the correct formula forwa is

wa5
na1

2cgD
~24Bd0

a1d3
a!5

n

8cga1
~24Bd0

a1d3
a!, ~6.11!

and in ~3.10!, the correct formula forg23 is

g23522gzh131h232a1gz2h33. ~6.12!

VII. CASE 1.1.2.1 OF REF. 3

This model is of Bianchi type VIIh , and is given by Eqs.~4.19!–~4.23! in Ref. 3. Two
formulas in~4.23! had typos, the correct expressions are

g125e(b1 f )x/2@Wh122~g/D !~b1 f !cos~Dx/2!h13#,

g225e(b1 f )x$@g2~b1 f !2h33/D211#cos2~Dx/2!

22~g/D !~b1 f !cos~Dx/2!Wh231W2h22%.

~7.1!

The transformation back to the Pleban´ski coordinates is given by~4.21! in Ref. 3, and the resulting
metric is

g115y21h1112Uh1222~g/D !~b1 f !yh131U2h22

22~g/D !~b1 f !yUh231@~g/D !~b1 f !y#2h33,

g12522h1212~g/D !h1322Uh2212~g/D !Uh2312~g/D !~b1 f !yh2322~g/D !2~b1 f !yh33,

g135h131Uh232~g/D !~b1 f !yh33, ~7.2!

g2254h2228~g/D !h2314~g/D !2h33, g23522h2312~g/D !h33,

g335h33, Uª

1
2@~b1 f !21D2#t12~b1 f !y,

whereb, f D, andg are arbitrary constants, andhi j are arbitrary functions of the variable

T5t1
2y

b1 f
1

D

g~b1 f !
z. ~7.3!

The Killing fields for the metric~7.2! are

k(1)
a 5d1

a , k(2)
a 5e(b1 f )x/2@cos~Dx/2!d0

a2 1
2 Wd2

a2g sin~Dx/2!d3
a#,

k(3)
a 5e(b1 f )x/2@sin~Dx/2!d0

a2 1
2 Vd2

a1g cos~Dx/2!d3
a#,

~7.4!
Wª~b1 f !cos~Dx/2!2D sin~Dx/2!,

VªD cos~Dx/2!1~b1 f !sin~Dx/2!.

The analog of~5.1! is here

Vk(2)
a 2Wk(3)

a 5De(b1 f )x/2ua2
g

n
~b1 f !e(b1 f )x/2wa, ~7.5!
09 May 2008 to 193.0.83.155. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



ed,

y

3643J. Math. Phys., Vol. 42, No. 8, August 2001 Friedmann limits of rotating universes

Downloaded 
and the King–Ellis measure of the tilt is:

A2guaNa52 1
2 ~b1 f !ge(b1 f )x. ~7.6!

Equation~7.5! shows that withg(b1 f )50, the model should be nonexpanding. This is so inde
but in order to be able to consider the subcaseg(b1 f )→0, we have to takeg(b1 f )T as the
argument ofhi j in ~7.2! instead of theT given by ~7.3!.

We define

Eª~b1 f !21D2, ~7.7!

and then the reparametrization needed for the limit of zero rotation and zero tilt is

~y,D !5v0~ ỹ,d!, h225H22/v0
2 , h235H23/v0 ,

h115H112ETH12/v01~ 1
2 ET!2H22/v0

2 , ~7.8!

h125H12/v02 1
2 ETH22/v0

2 , h135H132
1
2 ETH23/v0 .

After the reparametrization we have

S1,2ªb1 f 1«1,2~v0d!2/~b1 f ! ——→
v0→0

b1 f , «1511,«2521,

SªS2ỹ2 1
2 ~d/g!S1z,

g115~v0y!21H1112SH1222~g/d!~b1 f !ỹH131S2H22

22~g/d!~b1 f !ỹSH231@~g/d!~b1 f !ỹ#2h33,

g12522H1212~g/d!H1322SH2212~g/d!ỹH23

12~g/d!~b1 f 1S!H2322~g/d!2~b1 f !ỹh33, ~7.9!

g135H131 ỹSH232~g/d!~b1 f !ỹh33,

g2254H2228~g/d!H2314~g/d!2h33,

g23522H2312~g/d!h33, g335h33ªH33.

In the limit v0→0, all theHi j will depend only ont. The limit of zero shear is then obtained b

Hi j 52Ci j R
2~ t !, C3351. ~7.10!

To obtain the Friedmann limits, a further reparametrization of the constantsCi j is necessary. We
define

C235D231g/d, D22
25C222C23

2,
~7.11!

D125~C122C13C23!/D22, D11
25C112C13

22D12
2.

The metric~7.9! may then be written
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ds25dt22~D11Rdx!22R2H F2D122~b1 f !D22S ỹ2
d

2g
zD Gdx12D22dỹJ 2

2R2H FC131~b1 f !D23ỹ2
1

2
~b1 f !S 11

d

g
D23D zGdx22D23dỹ1dzJ 2

, ~7.12!

The k521 Friedmann limit results now whend50, the k50 limit results whenb1 f 50 in
addition. The first of~7.11! was necessary to eliminateg/d from ~7.9! so that the limitd→0 could
be subsequently taken.

We have found above@after Eq.~7.6!# thatb1 f 50 corresponds to zero expansion. This is
when b1 f→0 with other parameters unchanged. In considering thek50 Friedmann limit,b
1 f is set to zero after the limitd→0 had already been taken. In order to make these two lim
compatible, we have to assume thatb1 f→0 slowly enough so thatD/(b1 f )→0 and y/(b
1 f )→0. With the reparametrization~7.8!, this is achieved whenb1 f 5Bv0

« , where 0,«,1.
After the reparametrization~7.8!, in the limit v0→0, the Killing fields become

k(1)
a 5da

(1) , l (2)
a 52@2v0 /~b1 f !#k(2)

a ——→
v0→0

e(b1 f )x/2da
(2)

l (3)
a 5~1/g!k(3)

a ——→
v0→0

e(b1 f )x/2H 2
d

2g F11
1

2
~b1 f !xGda

(2)1da
(3)J . ~7.13!

This is a Bianchi type IV algebra, and in the Friedmann limitsk521 (d50) andk50 (d5b
1 f 50) it becomes type V and I, respectively.

VIII. CASE 1.1.2.2 OF REF. 3, BIANCHI TYPE IX SUBCASE

The case 1.1.2.2 contains three different subcases that are of Bianchi types IX, VIII, and0 .
The type IX subcase requires some adaptation of the formulas given in Ref. 3.

For type IX, g/c.0. Then, as seen from Eq.~5.16! in Ref. 3,B/c,0, or else~5.16! would
lead to a contradiction. These two inequalities imply thatgB,0, while Eqs.~5.26! and ~5.27! in
Ref. 3 are adapted to the casegB.0. Hence, a re-adaptation of these formulas to type IX
necessary first. We define

Bª2B̄, l5 i l̄, k125 i k12, k235 i k23 ~8.1!

~the overbars simply denote new symbols that will be real!, so that instead of~5.16!, ~5.23!, ~5.26!,
and ~5.27! from Ref. 3, we obtain

K5
1

2D
S 2B̄2gy2

c
D 1/2

, d2
ª~B̄/D !21~2cg!2, l̄2

ª

gB̄

8d4D2 ,

R52cD2y/~B̄K !, E K23Rdy5
4c2D4

gB̄K2
, ~8.2!

v5B̄t12cDgz, U5h12sin~2l̄v !1k12cos~2l̄v !,

g115y21K2H1114
cgD

B̄
yKH1318

~cgD !2

gB̄
H33,

g125H1212
cgD

B̄K
yH23, g135KH1312

cgD

B̄
yH33, ~8.3!
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g225H22/K2, g235H23/K, g335H33,

H1152
cD2

2d2l̄
U1h11, H125h12cos~2l̄v !2k12sin~2l̄v !,

H1352
cD2

2d2l̄
@h23sin~ l̄v !1k23cos~ l̄v !#,

~8.4!

H2252
d2l̄

cD2
U1

gB̄

2c2D6
h111

8cg2

B̄D2
h33,

H235h23cos~ l̄v !2k23sin~ l̄v !, H335h33,

where B̄, c, D, g, and g are arbitrary constants, and all thehi j , k12, and k23 are arbitrary
functions of the argument

T5t2
B̄

2cDg
z. ~8.5!

Equations~8.2!–~8.5! are written in the Pleban´ski coordinates.
The Killing fields for metrics~8.3! and ~8.4! are

k(1)
a 5d1

a ,

k(2)
a 5cos~Dx/2!F ~K2yK,y!d0

a1K,yd1
a1

g

DK
d3

aG1
1

2
DK sin~Dx/2!d2

a ,

~8.6!

k(3)
a 5sin~Dx/2!F ~K2yK,y!d0

a1K,yd1
a1

g

DK
d3

aG2
1

2
DK cos~Dx/2!d2

a .

~Note: the first commutator in Eq.~5.20! in Ref. 3 should have a minus on the right-hand sid!
The analog of~5.1! here is

cos~Dx/2!k(2)
a 1sin~Dx/2!k(3)

a 2K,yk(1)
a 5~K2yK,y!ua1@g/~DKn!#wa. ~8.7!

In agreement with this, the King–Ellis measure of tilt is here

A2gNaua5g/2. ~8.8!

Note that

K,y52
gy

4cD2K
, K2yK,y5

B̄

2cD2K
. ~8.9!

The case presently considered is the only one of type IX in the whole classification. Ther

~1! This is the only place where thek511 Friedmann model will appear as a limit;
~2! The models represented by Eqs.~8.2!–~8.6! include those considered by Go¨del.10 ~Ours are in

fact more general because the tilt of the symmetry orbits with respect to the velocity field
arbitrary parameter here.! We shall deal with this point further on.
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For later considerations, it will be convenient to reparametrize the metric~8.4! once more, as
follows:

Ḡª~h12
21k12

2!1/2, h1252Ḡ sin~2b!, k125Ḡ cos~2b!,
~8.10!

Fª~h23
21k23

2!1/2, h235F cos~a!, k235F sin~a!,

where Ḡ, F, a, and b are new functions of theT given by ~8.3!; and also to transform the
coordinatey by

y5A2B̄/g cos~q!. ~8.11!

From now on, thex2-coordinate will beq. Then, in order to set the rotation and the tilt to zero, t
following further reparametrization is needed:

B̄5bv0
2 , g5hv0 , Ḡ5G/v0 , h115G11/v0

2 . ~8.12!

Let us note that

l̄v5
AbgD~v0bt12cDhz!

2&@~v0b!21~2cDh!2#
——→
v0→0

Abg

4&ch
z. ~8.13!

The metric~8.5!, reparametrized by~8.10!–~8.12!, becomes

g115
2b

g
cos2 qv0

21
2b

4cD2 G11sin2 q24
chD3

g
A2c

b
F sin~ l̄v1a!sinq cosq

2DA b

2g
G cos~2l̄v12b!sin2 q18

~chD!2

bg
h33,

g125A2b/gG sin~2l̄v12b!sinq24&~chD2/g!Ac/bF cos~ l̄v1a!cosq,

g1352&
chD

Abg
h33cosq2D2Ac

g
F sin~ l̄v1a!sinq, ~8.14!

g2252
b

cD4 G11132
~ch!2

bg
h3312&

1

D
Ab

g
G cos~2l̄v12b!,

g23522DAc

g
F cos~ l̄v1a!, g335h33.

In the limit v0→0, the velocity fieldua5da
0 will have zero shear when

a5const, b5const,
~8.15!

~G,F,G11,h33!52~C12,C23,C11,1!R2~ t !.

With use of~8.13! it may be verified now that thek511 Friedmann limit will result from~8.14!
and ~8.15! whenv0→0 and

C125C235C1150. ~8.16!
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The resulting representation of the Friedmann model~again an exotic one! is identical, up to
rescalings of coordinates, to the one derived by Behr11

ds25dt22R2~ t !F8
~chD!2

bg
dx214&

chD

Abg
cosqdxdz132

~ch!2

bg
dq21dz2G . ~8.17!

The k50 Friedmann model will result from this after the transformation–reparametrization

q5arccos~ky!, h5H/k, x5kx8, ~8.18!

in the limit k→0.
For thek511 Friedmann limit, the algebra of the Killing fields~8.6!, suitably transformed by

use of ~8.9!, ~8.11!, and ~8.12!, is still of Bianchi type IX. For thek50 limit, the algebra
$ l (1) ,l (2) ,l (3)%ªk$k(1) ,k(2) ,k(3)% is of Bianchi type I whenk→0.

As stated above, the class of models defined by~8.2!–~8.5! must contain the one considere
by Gödel in Ref. 10. This is so because two of Go¨del’s assumptions~dust source and nonzer
rotation! place his class within our collection, and the third assumption~compact spacest
5const, i.e., Bianchi type IX; the Bianchi classification and terminology had not yet bee
common use in Go¨del’s time! uniquely points to the subcase I of our case 1.1.2.2. Go¨del presented
several properties of these models in the form of theorems, but mostly without proofs and a
without formulas. It would be an interesting exercise to see how Go¨del’s theorems apply to the
explicitly given metric~8.2!–~8.5!.

In particular, one of his statements seems to need a refinement. He said that there e`8

rotating solutions satisfying all his requirements. This means that the collection of all solutio
the Einstein equations for~8.2!–~8.5! should be labeled by eight arbitrary constants. One
understand how this happens from Ref. 4, where the Einstein equations were investigated
equally general Bianchi type V class. Of the six unknown functions in the initial metric, one~h33

in Ref. 4! is determined by an algebraic relation, two of the Einstein equations are of first
and can be used to eliminate two more functions, and then the remaining three function
equations of second order. This gives eight constants indeed. However, the tilt paramete@g in
~8.7! and ~8.8!# is one more arbitrary constant that is contained in the metric even befor
Einstein equations are considered.

Rotating dust models of Bianchi type IX were considered by Behr,11 with simplifying assump-
tions about the metric. Similarly as in Ref. 4, the main conclusion seems to be that whatev
does with the Einstein equations, no solution comes within sight.

IX. CASE 1.1.2.2 OF REF. 3, BIANCHI TYPES VIII AND VII 0

The subcase of case 1.1.2.2 that corresponds to the Bianchi type VIII is defined by

g/c,0, ~9.1!

in Eqs.~5.16!–~5.27! in Ref. 3. Then,B/c and, consequently,Bg can have any sign at this poin
Only thek50 Friedmann model can be contained as a subcase here.

The casesBgÞ0 andBg50 have to be considered separately. WhenBgÞ0, we take Eqs.
~5.23!–~5.28! in Ref. 3 with the following specializations:

h125k125h235k2350,

B5bv0
2 , ~g,y!5~h,ỹ!v0 , h115G11/v0

2 . ~9.2!

Then
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K5v0K̃, K̃5
1

2D
A2

gỹ212b

c
,

g115~v0ỹ!228
~cDh!2

bg
h331K̃2G11,

~9.3!
g1250, g13522~cDh/b!ỹh33,

g225K̃22S 2
bg

2c2D6 G1128
ch2

bD2 h33D , g2350, g335h33.

It is now seen that the proper signature will result only when

b/c.0. ~9.4!

In order to obtain thek50 Friedmann model from~9.3!, we then rescale the constants aga
as follows:

b5b0Ag, D5dg1/4, h5Hg3/4, ~9.5!

and take the limitg→0. The limiting metric is

ds25dt21G11S b0

2cd2 dx21
1

d4 dỹ2D1h33dz2, ~9.6!

and in the limit of zero shear,G115C11h3352C11R
2(t), this becomes thek50 Friedmann model

indeed.
The Killing fields for this case are given by~8.6!. After the rescalings~9.2! and ~9.5!, the

following basis of the symmetry algebra is obtained:

k(1)
a 5da

1 ,

l (2)
a 5A b0

2cg

1

H
k(3)

a ——→
g→0

1

4cH S 2
ỹ

d
da

11
1

2
b0dxda

2D1da
3 , ~9.7!

l (3)
a 522A2c

b0
g21/4k(3)

a ——→
g→0

da
2 .

This is of Bianchi type VII0 .
WhenBg50, and the Bianchi type is VIII, we must have:

B50Þg. ~9.8!

The metric is then found from Eqs.~5.28! and ~5.23!–~5.26! in Ref. 3, suitably adapted. WithB
50, the arbitrary functions depend only ont. The metric needs then to be rescaled as follow

~g,y!5~h,ỹ!v0 , ~h12,h13,h23!5~G12,G13,G23!/v0 , h115G11/v0
2 ~9.9!

and the result of the rescaling is
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g115~v0ỹ!22
gỹ2

4cD2 G111
Dg

8ch
ỹ2zG1222A2c/ghG132

g2

25c2h
A2c/g~ ỹz!2G13

2
D4g

26ch2 ~ ỹz!2h221
1

4
D2ỹzG231S Dg

24chD 2

~ ỹz!3G2314S cDh

gỹ D 2

h33

1
1

8
~Dz!2h331S Dg

25ch
ỹz2D 2

h33,

g125G122
g

2cD
A2c/gzG132

D3

4h
zh2212

cDh

gỹ
G23

13
Dg

25ch
ỹz2G2312

cDh

gỹ2 zh331
Dg

25ch
z3h33,

g135
1

2D
A2g/cỹG131

Dg

25ch
ỹ2zG2312

cDh

gỹ
h331

Dg

25ch
ỹz2h33, ~9.10!

g22524
cD2

gỹ2 h2212~z/ ỹ!G231~z/ ỹ!2h33,

g235G231~z/ ỹ!h33, g335h33.

In the limit v0→0 one term ing11 disappears and thehi j depend only ont. The shearfree
limit is then attained when

Gi j 52Ci j R
2~ t !, h3352R2~ t !, h2252C22R

2~ t !. ~9.11!

To find the Friedmann limit we then assume that

C125C135C2350, h5HD, g52cG2D2, ~9.12!

whereH andG are new constants~the last definition takes into account thatg/c,0 in type VIII!,
and letv0→0, D→0. The resulting metric is:

ds25dt22C11S 1

2
GỹRD 2

dx22C22S 2
R

GỹD
2

dỹ22R2S 22
H

G2ỹ
dx1

z

ỹ
dỹ1dzD 2

. ~9.13!

The k50 Friedmann limit results from this when

ỹ5eku, C225~D22/k!2, k→0. ~9.14!

With ~9.8!, ~9.9!, and~9.12!, the Killing fields become

k(1)
a 5d1

a ,

k(2)
a 5

1

2
G cos~Dx/2!d1

a1
1

4
GDỹ sin~Dx/2!d2

a1
2H

Gỹ
cos~Dx/2!d3

a ,

k(3)
a 5

1

2
G sin~Dx/2!d1

a2
1

4
GDỹ cos~Dx/2!d2

a1
2H

Gỹ
sin~Dx/2!d3

a . ~9.15!

Before the limitD→0 can be taken,k(3) needs to be redefined byk(3)8 5(1/D)k(3) . The basis in
the limit becomes
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k(1)
a 5d1

a , k(2)
a 5

1

2
Gd1

a1
2H

Gỹ
d3

a ,

k8(3)
a 5

1

4
Gxd1

a2
1

4
Gỹd2

a1
Hx

Gỹ
d3

a . ~9.16!

This is of type VI0 . We now transformỹ by ~9.10!, and redefinek(3)8 once more

l (3)
a 52~4k/G!k8(3)

a . ~9.17!

In the limit k→0, the following basis then results:

k(1)
a 5d1

a , k(2)
a 5

1

2
Gd1

a1
2H

G
d3

a , l (3)
a 5d2

a ~9.18!

~u being now thex2!, which is clearly of Bianchi type I.
Finally, when the Bianchi type is VII0 ~i.e., g50!, the metric results by a simple specializ

tion of Eqs.~5.23!–~5.25! and ~5.28! in Ref. 3. In this case necessarilyb/c,0 and

K5
1

D
A2b

2c
5const. ~9.19!

The rescaling that will allow to calculate the limitv0→0 is

~B,y!5~b,ỹ!v0
2 , D5dv0 ,

~h12,h23!5~G12,G23!/v0 , h225G22/v0
2 . ~9.20!

The argument of the arbitrary functions must then be redefined so that it becomes:

ũ5u/~2cDg!5t1
B

2cDg
z ——→

v0→0
t. ~9.21!

The limit v→0 of the metric is then:

ds25dt22
b

2cd2 h11dx222G12dxdỹ1
2

d
A2b

2c
h13dxdz

22
cd2

b
C22dỹ212G23dỹdz1h33dz2. ~9.22!

The k50 Friedmann limit results from here when shear is set to zero, i.e., whengi j

52Ci j R
2(t).

The basis of the Killing fields in the limitv0→0 is found as follows:

k(1)
a 5d1

a , l (2)
a 5 lim

v0→0
S Kv0

dg
k2

aD5d3
a , l (3)

a 5 lim
v0→0

S 2
2

dK
v0k3

aD5d2
a . ~9.23!

X. CASES 2.1 OF REF. 3

In the case 2.1.1 the transformation back to the Pleban´ski coordinates is the inverse of~7.16!
in Ref. 3, and when applied to~7.18! there, it gives the following metric:
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g115y22~y1V!21h111~b1 f !@~y1V!h121~g/c!Vh13#

1 1
4 ~b1 f !2@~y1V!2h2212~g/c!V~y1V!h231~gV/c!2h33#,

g125
2

b1 f
~y1V!2h122

1

2
~b1 f !@~y1V!h221~g/c!Vh23#, ~10.1!

g135h131
1
2 ~b1 f !@~y1V!h231~g/c!Vh33#,

g22524/~b1 f !21h22, g2352h23, g335h33,

where

Vª 1
2 ~b1 f !t1y, ~10.2!

and the arbitrary functionshi j depend on

Tªt1
2y

b1 f
1

2c

g~b1 f !
z. ~10.3!

@Note two typos in Ref. 3: In Eq.~7.18!, the coefficient ofWh23 in g22 is 2g, not 2b, and in
~7.17!, in the formula forua, there should be a (W/c) in front of da

0 .# The Killing fields for this
metric are

k(1)
a 5d1

a , k(2)
a 5e(b1 f )x/2$cxd0

a2c@11 1
2 ~b1 f !x#d2

a1gd3
a%,

~10.4!

k(3)
a 5e(b1 f )x/2@d0

a2 1
2 ~b1 f !d2

a#,

and they form a Bianchi type IV algebra.
The analog of~5.5! is

k(2)
a 2

2c

b1 f
@11 1

2 ~b1 f !x#k(3)
a 5e(b1 f )x/2S 2c

b1 f
ua1

g

n
waD , ~10.5!

and the King–Ellis measure of tilt is

A2guaNa52 1
2 ~b1 f !ge(b1 f )x. ~10.6!

The redefinitions needed to make the limitv0→0 finite are

~y,c!5v0~ ỹ,C!,

h115H112
1
2 ~b1 f !2T@h121~g/c!h13#2 1

16 ~b1 f !4T2@H22/v0
212~g/c!H23/v01~g/c!2h33#,

h125H12/v02 1
4 ~b1 f !2T@H22/v0

21~g/c!H23/v0#,

h135H132
1
4 ~b1 f !2T@H23/v01~g/c!h33#,

~10.7!
h225H22/v0

2 , h235H23/v0 ,

and the resulting metric is
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g115~v0ỹ!22@ 1
2 ~b1 f !t12v0ỹ#21H111~b1 f !@YH122zH13#

1 1
4 ~b1 f !2@Y2H2222YzH231z2H33#,

g125v0t1
4v0

2

b1 f
ỹ2H122

1
2 ~b1 f !@YH222zH23#,

g135H131
1
2 ~b1 f !@YH232zH33#, ~10.8!

g225H2224v0
2/~b1 f !2, g2352H23, g335h335H33,

Yª ỹ2Cz/g.

In the limit v0→0, all Hi j become functions oft, and the Killing fields become

k(1)
a 5d1

a ,

l (2)
a 5 lim

v0→0
k(2)

a 5e(b1 f )x/2$2C@11 1
2 ~b1 f !x#d2

a1gd3
a%, ~10.9!

l (3)
a 5 lim

v0→0
S 2

2

b1 f
v0k(3)

a D5e(b1 f )x/2d2
a ,

still of type IV.
The shearfree limit of~10.8! is

H1152C11R
2~ t !1@ 1

2 ~b1 f !t#2,

other Hi j 52Ci j R
2~ t !, C3351. ~10.10!

The k521 Friedmann model will then result whenC50 ~and, consequently,Y5 ỹ), the k
50 Friedmann model will result whenb1 f 50, with no condition onC. Both limits can be easily
taken also in the Killing fields~10.9!, with C50 they become of type V, withb1 f 50 they
become of type I.

The case 2.1.2 was shown in Ref. 3 to be included in 2.1.1 as a subcase.

XI. CASE 2.2.1.1 OF REF. 3

This case includes two subcases,AÞ0 andA50, given by Eqs.~9.11!–~9.15! in Ref. 3. Both
are of Bianchi type VIII. The coordinates used there are those of Pleban´ski.

With AÞ0, Eqs.~9.14! in Ref. 3 are adapted to the caseA,0. However, whenA,0, the
limit of constant curvature in the spacest5const has a wrong signature. Therefore, the formu
must be re-adapted toA.0. This is the result:

g115y2S U

A2A 1
gV

AA2A 1h11D ,

g125h12cos~2lv !2k12sin~2lv !1
g

2A @h23cos~lv !2k23sin~lv !#,

g135yS V

A2A 1
g

2Ah33D , g225y22S 2A2AU12Ah112
g2

2Ah33D , ~11.1!
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g235y21@h23cos~lv !2k23sin~lv !#, g335H335h33,

Uªh12sin~2lv !1k12cos~2lv !, Vªh23sin~lv !1k23cos~lv !,

l252A/~4A 21g2!2, v52At1gz,

and thehi j are arbitrary functions of

T5t22Az/g. ~11.2!

The Killing fields for ~11.1! are

k(1)
a 5d1

a , k(2)
a 5~2A/y!d0

a1~2A/y21x2/2!d1
a2xyd2

a1~g/y!d3
a ,

k(3)
a 5xd1

a2yd2
a . ~11.3!

The analog of~5.1! is

~A/y21x2/2!k(1)
a 1k(2)

a 2xk(3)
a 5~2A/y!ua1

g

yn
wa, ~11.4!

and the King–Ellis measure of tilt is

A2guaNa5g. ~11.5!

The redefinitions needed to make the limitv0→0 of ~11.1! finite are

~y,g!5v0~ ỹ,h!, A5 1
2 ~av0!2,

h115H11/v0
2 , ~h12,k12!5~H12,K12!/v0 . ~11.6!

Note that with~11.6! we have

lv ——→
v0→0

az/h. ~11.7!

The reparametrized metric is

g115 ỹ2$2hV/a31H111a21@H12sin~2lv !1K12cos~2lv !#%,

g125~h/a2!@h23cos~lv !2k23sin~lv !#1H12cos~2lv !2K12sin~2lv !,

g135~ ỹ/a!~V1hh33/a!, ~11.8!

g225 ỹ22$2a@H12sin~2lv !1K12cos~2lv !#1a2H112~h/a!2H33%,

g235 ỹ21@h23cos~lv !2k23sin~lv !#, g335H335h33.

In the limit v0→0, all the arbitrary functions will depend only ont.
The k50 Friedmann limit follows from~11.8! when the following further specialization an

transformation is made:

h3352R2~ t !, H1152~C111h2!R2~ t !/a4,
~11.9!

H125K125h235k2350, x5a2x8, ỹ5eau,
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and then the limita→0 is taken. The metric becomes then

ds25dt22R2@C11~dx821du2!1~gdx1dz!2#, ~11.10!

which is clearly thek50 Friedmann model.
The rescaling~11.6!, followed by v0→0, and the rescaling~11.9!, followed by a→0 trans-

form the Killing fields~11.3! into an almost-standard Bianchi type I basis~k(1)
a has to be replaced

by l (1)
a 5a2k(1)

a , andk(3)
a has to be replaced byl (3)

a 5ak(3)
a before taking the limita→0!.

The caseA50 is given by Eqs.~9.11! and ~9.15! in Ref. 3. The rescalings needed there a

y5v0ỹ, h115G11/v0
2 , ~h12,h13!5~G12,G13!/v0 . ~11.11!

The arbitrary functionshi j depend only ont from the beginning. The limitv0→0 of the
rescaled metric is

ds25dt21 ỹ2G11dx212~zG131G12!dxdỹ12ỹG13dxdz1 ỹ22~h2212zh231z2h33!dỹ2

12ỹ21~h231zh33!dỹdz1h33dz2. ~11.12!

The k50 Friedmann model results now when

G125G1350, G1152C11R
2~ t !,

hi j 52Ci j R
2, C3351, C2251/a2, ~11.13!

ỹ5eau, a→0.

The Killing fields need not be reconsidered becauseA50 is an allowed subcase for~11.3!.

XII. CASES 2.2.1.2 OF REF. 3

In considering these cases, we first have to correct two errors. The first error is th
arbitrary constanty0 actually must be equal to zero in all the formulas. The second error is
one subcase was overlooked—it needs special treatment and is not included in the formula
in Sec. X of Ref. 3. This special case is defined by

g50, ~12.1!

and consequentlym150 andm25 j . It is because ofm150 that some of the formulas do not app
to this case.

The conclusion that

a50, c51, ~12.2!

can be achieved by a change of the basis of the Killing fields is still valid. With~12.1! and~12.2!,
the solutions of Eqs.~10.2! and ~10.3! in Ref. 3 are

P52 jy1M , L35g, ~12.3!

where j , M , andg are arbitrary constants. The resulting Killing fields are@by ~10.6! from Ref. 3#

k(1)
a 5d1

a , k(2)
a 5Mxd0

a2 jxd1
a1~ jy2M !d2

a1gxd3
a ,

~12.4!
k(3)

a 5Md0
a2 j d1

a1gd3
a ,

and they form a Bianchi type III algebra.
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The coordinates are still those of Pleban´ski at this point, soua and wa and g0a have their
standard forms. The solution of the Killing equations is

g115~2M / j !y2~M / j !21~ jy2M !2h1112~g/ j !~ jy2M !h131~g/ j !2h33,

g125h121
gh23

j ~ jy2M !
, g135~ jy2M !h131~g/ j !h33,

~12.5!
g225h22/~ jy2M !2, g235h23/~ jy2M !, g335h33,

where thehi j are arbitrary functions of the argument

T5t2~M /g!z. ~12.6!

The Killing fieds ~12.4! are a subcase of the general expression that will apply to the w
case 2.2.1.2 collection. The analog of~5.1! will be given further on for the whole class.

The rescalings needed to find the nonrotating limit of~12.5! and ~12.6! are

~y,M !5v0~ ỹ,m!, h115H11/v0
2 ,

~12.7!
~h12,h13!5~H12,H13!/v0 .

The rescaled metric is

g115~2m/ j !v0
2ỹ2~mv0 / j !21~ j ỹ2m!2H1112~g/ j !~ j ỹ2m!H131~g/ j !2h33,

g125H121
gh23

j ~ j ỹ2m!
, g135~ j ỹ2m!H131~g/ j !h33,

~12.8!
g225H22/~ j ỹ2m!2, g235h23/~ j ỹ2m!, g335h33.

The k50 Friedmann limit is now obtained from~12.8! when shear is set to zero@hi j

52Ci j R
2(t), C3351], and in addition

g5h j , j→0. ~12.9!

In order to make the limitsv0→0 and j→0 compatible, it has to be assumed thatj }v0
a , where

0,a,1, e.g.,a51/2. The Killing fields~12.4! become then an almost-standard Bianchi typ
basis in the limitv0→0, butk(3)

a has to be replaced byl (3)
a 5v0

21/2k(3)
a .

The case 2.2.1.2 consists of three subcases, each of a different Bianchi type. The subg
, j 2/4 is of Bianchi type VIh , with the free parameterj /( j 224g)1/2. However, the parametriza
tion of the metric used in Ref. 3 is inconvenient for calculating the Friedmann limit. It will
more convenient to rewrite it in the parametrization in whichm1 and m2 appear symmetrically.
Therefore, instead of~10.15!–~10.17! from Ref. 3, we will use the following formulas:

UªM cosh~DY!1N sinh~DY!, VªM sinh~DY!1Ncosh~DY!,

Dª~ j 2/42g!1/2, Gª
g

D~M22N2!
,

P5e2 jY/2U, y52
j

2g
P2

D

g
e2 jY/2V,

~12.10!
g115y21h11P

212Ge2 jYUVh131~gG/D !e2 jYh33,
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g125h121G~V/U !h23, g135h13P1Ge2 jY/2Vh33,

g225h22/P2, g235h23/P, g335h33,

wherej , g, M , N, andg are arbitrary constants,y is one of the coordinates,Y is just a parameter
used to representP(y), andhi j are arbitrary functions of the coordinatez. Since the coordinates
used in~12.10! are not those of Pleban´ski, theua andg0a do not have their standard forms, the
are given by Eqs.~10.9! in Ref. 3. The transformation back to the Pleban´ski coordinates is the
inverse of~10.8! in Ref. 3, after which we obtain

g125gth111h121GgtS V/U2
1

2
j /D Dh131G~V/U !h232G2gtS 11

jV

2DU Dh33,

g225P22$~gt!2h1112gth122~ j Gg/D !t~gth131h23!1h221g~Ggt/D !2h33%, ~12.11!

g235~1/P!H gth131h232
j Ggt

2D
h33J ,

with g11, g13, andg33 being the same as in~12.10!. Thehi j depend now on

T5t1
D

Gg
z. ~12.12!

The Killing fields corresponding to~12.11! and ~12.12! @and to all the other subcases of ca
~2.2.1.2!# are

k(1)
a 5d1

a , k(2)
a 5x~P2yP,y!d0

a1xP,yd1
a2Pd2

a1x~g/P!e2 jYd3
a ,

~12.13!
k(3)

a 5~P2yP,y!d0
a1P,yd1

a1~g/P!e2 jYd3
a .

The analog of~5.1! ~again valid for all the subcases! is

k(3)
a 2P,yk(1)

a 5~P2yP,y!ua1
g

nP
e2 jYwa, ~12.14!

and the King–Ellis measure of tilt is

A2guaNa52ge2 jY. ~12.15!

The rescalings needed to make the limitv0→0 finite are

~M ,N,g!5~m,n,h!v0 , h115H11/v0
2 , h135H13/v0 . ~12.16!

In consequence of this we have

~y,P,U,V!5~ ỹ,P̃,Ũ,Ṽ!v0 , ~12.17!

where the symbols with a tilde are obtained from those on the left by replacing (M ,N)
→(m,n), and they do not depend onv0 . Also, from now onY will be used as thex2-coordinate
in place ofy, so

dy5v0P̃dY. ~12.18!

The rescalings~12.16! have to be accompanied by the following redefinitions of other function
the metric:
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h1252gTH11/v0
21H12/v01

j GgT

2Dv0
H131G2gTh33,

h2252~gT!2H11/v0
222gTh121H221

j Gg

D
~gT2H13/v01Th23!2g~GgT/D !2h33,

~12.19!

h2352gTH13/v01H231
j GgT

2D
h33.

The metric resulting after the redefinitions and the coordinate transformation is

G̃ª
h

D~m22n2!
,

g115~v0ỹ!21H11P̃
21G̃e2 jY@2ŨṼH132~h/D !h33#,

g125 P̃$H122~D/G̃ !zH111~ j /22DṼ/Ũ !zH131G̃@~Ṽ/Ũ !H231~D1 1
2 j Ṽ/Ũ !zh33#%,

~12.20!
g135H13P̃1G̃e2 jY/2Ṽh33,

g225~Dz/G̃ !2H112~D/G̃ !~2zH121 jz2H13!1H221 jzH231gz2h33,

g2352~D/G̃ !zH131H231~ j /2!zh33, g335h335H33.

In the limit v0→0, all theHi j will depend only ont.
The limit of zero shear is then, as usual,Hi j 52Ci j R

2(t), C3351, and thek521 Friedmann
limit results from~12.20! when, in addition

h5HD, C1350, D→0. ~12.21!

With D50 we haveŨ5m, Ṽ5n. The, again rather exotic, representation of the limiting Frie
mann model is

ds25dt22R2~ t !~mD11e
2 jY/2dx1D12dY!22~D22RdY!2

2R2Fe2 jY/2
Hn

m22n2 dx1~C231 jz/2!dY1dzG2

, ~12.22!

where

D11
2
ªC11

22S H

m22n2D 2

, D12ªC12/D11,

D22
2
ªC222C23

22D12
2. ~12.23!

The k50 Friedmann limit results from~12.22! when j 50.
The rescaling~12.16! and the limitv0→0 transform the Killing fields as follows:

k(1)
a 5d1

a , k(2)
a 5~2 j /21DṼ/Ũ !xd1

a2d2
a1~h/Ũ !xe2 jY/2d3

a ,
~12.24!

k(3)
a 5~2 j /21DṼ/Ũ !d1

a1~h/Ũ !e2 jY/2d3
a ,
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the algebra still being of type VIh .
The further rescaling~12.21! and the limitD→0 transform~12.24! into a Bianchi type V

algebra, butk(3)
a has to be replaced by

l (3)
a 5D21S k(3)

a 1
j

2
k(1)

a D ——→
D→0

~n/m!d1
a1~H/m!e2 jY/2d3

a . ~12.25!

When j 50 on top ofD→0, the Bianchi type reduces to I.
The subcase withg. j 2/4 ~Bianchi type VIIh with the free parameterj /(4g2 j 2)1/2) is given

by Eqs.~10.18! and ~10.19! in Ref. 3, withy050. It is transformed back to the Pleban´ski coor-
dinates by the inverse of~10.8! there, and the result is very similar to our~12.10! and ~12.11!.
Only the definitions ofU, V, andy, and a few signs in the metric are different

D5~g2 j 2/4!1/2, Gª
g

D~M21N2!
,

UªM cos~DY!1N sin~DY!, VªM sin~DY!2N cos~DY!,

P5e2 jY/2U, y52
j

2g
P1

D

g
e2 jY/2V,

g115y21h11P
212Ge2 jYUVh131~gG/D !e2 jYh33,

~12.26!

g125gth111h121GgtS V/U1
1

2
j /D Dh131~GV/U !h231G2gtS 11

jV

2DU Dh33,

g135h13P1Ge2 jY/2Vh33,

g225P22@~gt!2h1112gth121~ j G/D !gt~gth131h23!1h221g~Ggt/D !2h33#,

g235P21S gth131h231
j Ggt

2D
h33D , g335h33.

The hi j are here functions of the argument

T5t2
D

Gg
z. ~12.27!

The redefinitions in the constants and functions needed here are again~12.16! and~12.17! together
with

h1252gTH11/v0
21H12/v02

j GgT

2Dv0
H132G2gTh33,

h2252~gT!2H11/v0
222gTh121H222~ j Gg/D !~gT2H13/v01Th23!2g~GgT/D !2h33,

h2352gTH13/v01H232
j GgT

2D
h33. ~12.28!

The metric resulting after all the redefinitions is
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G̃ª
h

D~m21n2!
,

g115~v0ỹ!21H11P̃
21G̃e2 jY@2ŨṼH131~h/D !h33#,

g125 P̃@~D/G̃ !zH111H121~ j /21DṼ/Ũ !zH131~ G̃Ṽ/Ũ !H231G̃~D1 1
2 j Ṽ/Ũ !zh33#,

~12.29!

g135H13P̃1G̃e2 jY/2Ṽh33,

g225~Dz/G̃ !2H111~D/G̃ !~2zH121 jz2H13!1H221 jzH231gz2h33,

g235~D/G̃ !zH131H231~ j /2!zh33, g335h335H33.

Just as before, in the limitv0→0 the Hi j will depend only ont, and the shearfree limit is
found in the same way:Hi j 52Ci j R

2, C3351.
The k521 Friedmann limit is now obtained in two ways: either

h5HD, D→0, ~12.30!

or

C115C1350. ~12.31!

In the first case the Friedmann limit is

ds25dt22R2~ t !~mD11e
2 jY/2dx1D12dY!22~D22RdY!2

2R2@e2 jY/2~mC131nG̃ !dx1~C231 jz/2!dY1dz#2, ~12.32!

where

D11
2
ªC11

22C13
21H2/~m21n2!2, ~12.33!

D12 andD22 being the same as in~12.23!.
In the second case, thek521 Friedmann limit is

ds25dt22R2~ t !@D11e
2 jY/2Ũdx1~D121Dz!dY#22~D22RdY!2

2R2@e2 jY/2ṼG̃dx1~C231 jz/2!dY1dz#2, ~12.34!

whereD11 is defined as in~12.33!, but with C115C1350.
The Killing fields before redefinitions are still given by~12.13!, but, in consequence of th

different definitions ofP andy in the present subcase, the Bianchi type is VIIh . In the Friedmann
limit defined by~12.31!, the Killing fields are transformed only by~12.16! and ~12.17! followed
by v0→0, and they still form a type VIIh algebra. When~12.30! is imposed on top of~12.16! and
~12.17! andv0→0, the Killing fields become the same as the limitD→0 of ~12.24! and~12.25!,
i.e., the Bianchi type becomes V. This is an illustration of the fact, mentioned in Sec. I, tha
k521 Robertson–Walker geometry is a subcase of two Bianchi types simultaneously, th
exactly V and VIIh .
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In both cases, thek50 Friedmann limit follows from~12.32! and ~12.34! when j 50. In the
first case, the algebra of the Killing fields becomes type I, in the second case it becomes typ0 ,
which is another illustration of the same kind of duality.

Finally, the third subcase of case 2.2.1.2 is given by Eqs.~10.20! and~10.21! in Ref. 3, with
y050. There is one more typo there, the correct formula fory is

y522P/ j 24Me2 jY/2/ j 2. ~12.35!

This one is of Bianchi type IV. When transformed back to the Pleban´ski coordinates@by the
inverse of~10.8! in Ref. 3#, it becomes

P5e2 jY/2~MY1N!,

g115y21h11P
222~g/M !e2 jY/2Ph131~g/M !2e2 jYh33,

g125~ j t /2!2h111h121
j 3gt

8M2 h132
g

M ~MY1N! S 1

4
j 2th131h231

j 3gt

8M2 h33D ,

~12.36!

g135h13P2~g/M !e2 jY/2h33,

g225P22F S 1

4
j 2t D 2

h111
1

2
j 2th121

j 5gt2

16M2 h131h221
j 3gt

4M2 h231S j 3gt

8M2D 2

h33G ,
g235P21S 1

4
j 2th131h231

j 3gt

8M2 h33D , g335h33,

where thehi j are arbitrary functions of

T5t2
4M2

j 2g
z. ~12.37!

The redefinitions needed to calculate the limitv0→0 are

~M ,N,g!5~m,n,h!v0 , h115H11/v0
2 , h135H13/v0 ,

h1252
1

4
j 2TH11/v0

21H12/v02
j 3hT

8~mv0!2 H13,

~12.38!

h2252~ j 2T/4!2H11/v0
22

1

2
j 2Th122

j 5hT2

~4mv0!2 H131H222
j 3hT

4m2v0
h232S j 3hT

8m2v0
D 2

h33,

h2352
1

4
j 2TH13/v01H232

j 3hT

8m2v0
h33.

We will denote, as before, (y,P)5v0( ỹ,P̃), and chooseY as the newx2-coordinate, so that
dy5v0P̃dY. The metric that results is
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g115~v0ỹ!21H11P̃
222~h/m!e2 jY/2P̃H131~h/m!2e2 jYh33,

g125 P̃$~m2/h!zH111H121~ j /2!zH132~mY1n!21@mzH131~h/m!H231
1
2 ~ jh/m!zh33#%,

g135H13P̃2~h/m!e2 jY/2h33, ~12.39!

g225~m2z/h!2H1112~m2/h!zH121~ jm2/h!z2H131H221 jzH231~ jz/2!2h33,

g235~m2/h!zH131H231~ j /2!zh33, g335h335H33.

In the limit v0→0, theHi j will depend only ont.
The k521 Friedmann limit is now obtained when

Hi j 52Ci j R
2~ t !, h5Hm, m→0. ~12.40!

The k50 limit will result when j 50 in addition.

XIII. THE CASES 2.2.2 OF REF. 3

The case 2.2.2.1.1 is given by Eqs.~11.11! and~11.12! in Ref. 3. The transformation back t
the Pleban´ski coordinates is the inverse of~11.10!, and the transformed metric is

g115y2h11, g125~ j t /a!~12h11!1h122Aj th13,

g135B~ j 1a!yh13,
~13.1!

g225S j t

ayD
2

~h1121!22
j t

ay2 h1212A ~ j t !2

ay2 h131h22/y222~Aj t /y2!h231~Aj t /y!2h33,

g235B~ j 1a!S 2
j t

ay
h131h23/y2

Aj t

y
h33D , g335B2~ j 1a!2h33,

wherea, A, B, and j are arbitrary constants, and thehi j are arbitrary functions of the argumen

T5t1
B~ j 1a!

Aa
z. ~13.2!

The Killing fields for the metric~13.1! are

k(1)
a 5d1

a , k(2)
a 5xd1

a2yd2
a ,

~13.3!
k(3)

a 5y2 j /a@B~ j /a11!d0
a2B j~ay!21d1

a2Ad3
a#,

and they form a Bianchi type VIh algebra, with the free parameter (j 2a)/( j 1a). The analog of
~5.1! is

k(3)
a 2B j~ay!21k(1)

a 5y2 j /a@B~ j /a11!ua2~A/n!wa#, ~13.4!

and the King-Ellis measure of tilt is

A2guaNa5Ay12 j /a. ~13.5!

By a simple transformation of thez coordinate we can achieve the same result as if

B~ j 1a!51, ~13.6!
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and we will assume this now.
The redefinitions needed to calculate the limitv0→0 are

y5v0ỹ, A5A/v0 , h115H11/v0
2 , h135H13/v0 ,

h1252~ j /a!T1~ jT/a!H11/v0
21H12/v01A jTH13/v0

2 ,
~13.7!

h225~ jT/a!2~12H11/v0
2!12~ jT/a!h1222~A j2T2/a!H13/v0

21H22

12A jTh23/v02~A jT!2h33/v0
2 ,

h235~ jT/a!H13/v01H231A jTh33/v0 .

The redefined metric is

g115 ỹ2H11, g125
j

a2A
z~H112v0

2!1H121~ j /a!zH13, g135 ỹH13,

g225 ỹ22F S jz

a2AD 2

~H112v0
2!12

j

a2A
zH1212

j 2

a3A
z2H131H2212~ j /a!zH231~ jz/a!2h33G ,

~13.8!

g235 ỹ21F j

a2A
zH131H231~ j /a!zh33G , g335h335H33.

In the limit v0→0, theHi j will depend only ont. The k521 Friedmann limit will then result
when

Hi j 52Ci j R
2~ t !, j 52a, A→`. ~13.9!

The k50 Friedmann limit will result when

Hi j 52Ci j R
2~ t !, C135 j 50, C225~D22/k!2,

ỹ5eku, k→0. ~13.10!

The limit ~13.9! transforms the Killing fields~13.3! into a Bianchi type V algebra, provide
k(3)

a is redefined tok(3)8a 52(v0
j /a/A)k(3)

a , and the limitsA→` and j 52a are tuned so tha
A( j 1a)→` @for example,A5a/( j 1a) anda→`]. The limit ~13.10! will transform ~13.3! into
a type I algebra, butk(3)

a has to be redefined as above, and in additionk(2)
a has to be redefined to

k(3)8a 5kk(2)
a .

The formulas for the case 2.2.2.1.2 simply follow from those above. This case has a
pletely different outlook only in the coordinates adapted to the Killing fields that were used in
3. When transformed to the Pleban´ski coordinates, it becomes the subcase of~13.1! given by

B~ j 1a!51, j 52a, A5A1 /a, ~13.11!

where theA1 defined above stands in place of theA from Eq. ~11.17! in Ref. 3. Then the
redefinitions needed are~13.7! with A15A/v0 and j 52a, and the redefined metric is

g115 ỹ2H11, g1252~z/A!~H112v0
2!1H122zH13, g135 ỹH13,

g225 ỹ22@~z/A!2~H112v0
2!22~z/A!H1212~z2/A!H131H2222zH231z2h33#, ~13.12!

g235 ỹ21@2~z/a!H131H232zh33#, g335h335H33.
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The k521 Friedmann limit results now by~13.9! when v050, and thek50 Friedmann limit
results from~13.12! when

v050, Hi j 52Ci j R
2~ t !, ~ ỹ,z!5~eku,ekv!,

~H12,H13!5~G12,G13!/k, ~H22,H23,H33!5~G22,G23,G33!/k
2, k→0. ~13.13!

The Killing field k(3)
a is different here

k(3)
a 5yda

02 ln yda
12Ayda

3 , ~13.14!

while the two others are as in~13.3!. The case 2.2.2.1.2 required a separate consideration in
3 only because of the logarithm term in the Killing field. In calculating the limitsv0→0 andA
→`, this vector field has to be redefined similarly as before. For calculating thek50 Friedmann
limit, k(3)

a andk(2)
a have to be redefined by (k(2)8a ,k(3)8a )5k(k(2)

a ,k(3)
a ) ——→

k→0
(2da

2 ,2Ada
3).

Finally, the case 2.2.2.2 from Ref. 3@Eqs. ~11.18!–~11.27!# is of Bianchi type I, with the
velocity field being tangent to the symmetry orbits, so it has no Friedmann limit at all.

XIV. SUMMARY

All the metrics derived in Refs. 1–3, that correspond to rotating hypersurface–homoge
dust models, have been checked here for the existence of a Friedmann limit. It was found th
a limit exists for all those cases listed in Refs. 2 and 3, where the matter-density is not co
along the flow. However, in at least one class~see Sec. III!, the Friedmann model will have no
rotating parent solution, but will instead be a separate subclass.

Along the way, the nonstationary metrics were all transformed to such a form, in whic
limit of zero rotation can be explicitly calculated. The transformation–reparametrization lead
this form is nonsingular and invertible in each case, but it becomes singular whenv→0. The
limits v50 all have nonzero shear. Thus, a whole collection of metrics generalizing tho
Friedmann was found that can be used in studying spatially homogeneous exact perturba
the latter.

The Class A Bianchi-type metrics~those in which the structure constants have the prop
Ca

ac50) are known to admit a Lagrangian–Hamiltonian formulation.12 Those of them that obey
the Einstein equations with a rotating dust source~types VI0 , VII 0 , VIII, and IX! were studied by
Ozsváth.7,13 The Lagrangians and Hamiltonians were explicitly found in Refs. 7 and 13, and
Einstein equations in the Hamiltonian form were then transformed to such variables, in whic
become analytic. This should prove the existence of solutions.

Two more papers, specifically devoted to rotating spatially homogeneous dust solution
those of Behr11 ~where a subclass of type IX models was investigated! and of this author4 ~dis-
cussing a subclass of type V models!. In both of these, the Einstein equations were transform
simplified, investigated for known limiting cases and for Lie symmetries, but no explicit solu
were found. A~hopefully! complete overview of other solutions with rotating matter source
given at the end of Ref. 3.

It is hoped that the present paper will be helpful in picking out those models for fu
investigation that promise interesting physics or geometry.
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