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Rotating dust solutions of Einstein’s equations
with three-dimensional symmetry groups.
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of u a and w a
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Bartycka 18, 00 716 Warszawa, Poland

~Received 18 July 1997; accepted for publication 21 August 1997!

This is the third and last part of a series of three papers. Using the same method and
the same coordinates as in papers I and II, rotating dust solutions of Einstein’s
equations are investigated that possess three-dimensional symmetry groups, under
the assumption that each of the Killing vectors is linearly independent of velocity
ua and rotationwa at every point of the spacetime region under consideration. The
Killing fields are found and the Killing equations are solved for the components of
the metric tensor in every case that arises. No progress was made with the Einstein
equations in any of the cases, and no previously known solutions were identified. A
brief overview of literature on solutions with rotating sources is given. ©1998
American Institute of Physics.@S0022-2488~98!01004-4#

I. SUMMARY OF THE METHOD

This paper is the third and last part of a series of three papers; for papers I and II see R
and 2. For convenience to the readers, this section is repeated after Paper II.

This is a concise summary of results that will be used in this paper. For proofs, motiva
and references see Paper I.1

Every timelike vector fieldua of unit length that has zero acceleration and nonzero rota
defines the functionst(x),h(x) andj(x) such that:

ua5t,a1hj,a . ~1.1!

These functions are defined up to the transformations:

t5t82S~j8,h8!, j5F~j8,h8!, h5G~j8,h8!, ~1.2!

where the functionsF andG obey:

F,j8G,h82F,h8G,j851 ~1.3!

~this guarantees that the Jacobian of the transformation is 1!, andS is determined by:

S,j85GF,j82h8, S,h85GF,h8. ~1.4!

If ua is the velocity field of a fluid whose number of particles is conserved:

~A2gnua! ,a50 ~1.5!

~whereg is the determinant of the metric tensor andn is the particle number density!, then one
more functionz(x) exists such that:

A2gnua5«abgdj,bh,gz,d , ~1.6!

a!Electronic mail: akr@alfa.camk.edu.pl
21480022-2488/98/39(4)/2148/32/$15.00 © 1998 American Institute of Physics
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and it is determined up to the transformations:

z5z81T~j8,h8!. ~1.7!

Note thatn is not defined uniquely by~1.5!. For example, ifua5da
0 andn obeys~1.5!, then

n85n f(x,y,z) ~where f is an arbitrary function! will also obey~1.5!. This nonuniqueness allow
for a greater freedom in the choice ofz than ~1.7!, and the freedom will be used in some case

The following relations hold:

uat,a51, ubj,b5ubh,b5ubz,b50,

]~t,h,j,z!

]~x0,x1,x2,x3!
5A2gnÞ0. ~1.8!

The last of ~1.8! guarantees that$t,j,h,z% can be chosen as coordinates, they will be cal
Pleban´ski coordinates. Then, with$t,j,h,z%5$x0,x1,x2,x3%5$t,x,y,z%:

ua5da
0 , ua5d0

a1yd1
a ,

g0051, g015y, g025g0350, g5det~gab!52n22,

wa5nd3
a , vab52vba5~ 1

2!d
1

ad2
b , ~1.9!

wherewa is the rotation vector field, andvab is the rotation tensor corresponding to the veloc
field ua :

vab5 1
2~ua,b2ub,a2u̇aub1u̇bua!, wa52~1/A2g!«abgdubvgd . ~1.10!

If vabÞ0 andu̇a50 ~what is assumed throughout!, then necessarily the pressurep5const and
kp may be interpreted as the cosmological constant (k:58pG/c4).

If any Killing vector field exists on a manifold~on which all the assumptions specified so f
are fulfilled!, then, in the coordinates of~1.9!, it must be of the form:

ka5~C1f2yf,y!da
01f,yd

a
12f,xd

a
21lda

3 , ~1.11!

whereC is an arbitrary constant andf(x,y) and l(x,y) are arbitrary functions of two coordi
nates. Wheneverf ,aÞ0, a transformation of the class~1.2!–~1.4! can be found that leads to:

ka5da
1 . ~1.12!

The metric then becomes independent ofx, and the coordinates preserving~1.12! are determined
up to the transformations:

t85t2E yH,ydy1A, x85x1H~y!, y85y, z85z1T~y!, ~1.13!

whereA is an arbitrary constant andH,T are arbitrary functions.
The conditionf ,aÞ0 that allows one to fulfill~1.12! means that the Killing vectorka is

linearly independent of the vectorsua and wa at every point of the spacetime region und
consideration. In Paper I, solutions of the Killing equations and of the Einstein equations
considered under the assumption that there exist three Killing vector fields on the manifold,
which havef5 const in~1.11!, while the third one hasf ,aÞ0 and can be transformed to th
form ~1.12!. In Paper II, it was assumed that only one Killing field hasf5 const, while two have
f ,aÞ0. In the present paper, all three Killing fields will be assumed to havef ,aÞ0. One of them
(k(1)) can be transformed to the simple form~1.12!, while the remaining two will have the gener
form ~1.11!.

In this Paper III, no progress was made with the Einstein equations in any of the cases
no related results were found in the literature except in case 1.1.2.2~see the end of Sec. V!.
09 May 2008 to 193.0.83.155. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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II. THE LIE ALGEBRA OF THE SYMMETRY GROUP

According to the assumptions made in the preceding section, there exist the following
Killing vector fields:

k~1!
a 5d1

a ,

k~2!
a 5~C21f2yf,y!d0

a1f,yd1
a2f,xd2

a1l2~x,y!d3
a ,

k~3!
a 5~C31c2yc,y!d0

a1c,yd1
a2c,xd2

a1l3~x,y!d3
a , ~2.1!

whereC2 andC3 are arbitrary constants, andf, c, l2 andl3 are unknown functions of (x,y), to
be determined from the commutation relations. The coordinates of~2.1! are determined up to
~1.13!.

The fieldsk(1) ,k(2) andk(3) will form a Lie algebra if constantsa, . . . ,j exist such that:

@k~1! ,k~2!#5ak~1!1bk~2!1ck~3! ,

@k~1! ,k~3!#5dk~1!1ek~2!1 f k~3! ,

@k~2! ,k~3!#5gk~1!1hk~2!1 jk ~3! . ~2.2!

Equations~2.2! are equivalent to the following set:

f,x2yf,xy5b~C21f2yf,y!1c~C31c2yc,y!, ~2.3a!

f,xy5a1bf,y1cc,y , ~2.3b!

f,xx5bf,x1cc,x , ~2.3c!

l2,x5bl21cl3 , ~2.3d!

c,x2yc ,xy5e~C21f2yf,y!1 f ~C31c2yc,y!, ~2.3e!

c ,xy5d1ef,y1 f c,y , ~2.3f!

c ,xx5ef,x1 f c,x , ~2.3g!

l3,x5el21 f l3 , ~2.3h!

f,y~c,x2yc ,xy!1yf,xc ,yy2c,y~f,x2yf ,xy!2yc,xf ,yy

5h~C21f2yf,y!1 j ~C31c2yc,y!, ~2.3i!

f,yc ,xy2f,xc ,yy2c,yf ,xy1c,xf ,yy5g1hf,y1 j c,y , ~2.3j!

2f,yc ,xx1f,xc ,xy1c,yf ,xx2c,xf ,xy52hf,x2 j c,x , ~2.3k!

f,yl3,x2f,xl3,y2c,yl2,x1c,xl2,y5hl21 j l3 . ~2.3l!

The Eqs.~2.3a!–~2.3c! are integrated with the result:

f,x5ay1bf1cc1bC21cC3 ; ~2.4a!

the Eqs.~2.3e!–~2.3g! are integrated with the result:

c,x5dy1ef1 f c1eC21 f C3 ; ~2.4b!

and the Eqs.~2.3i!–~2.3k! are integrated with the result:
09 May 2008 to 193.0.83.155. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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f,yc,x2f,xc,y5gy1hf1 j c1hC21 jC3 . ~2.4c!

The equations are now sorted as follows. Equations~2.3d! and~2.3h! form a set that determinesl2

and l3, Eqs. ~2.4a!–~2.4b! form a set that determinesf and c, the remaining two equation
@~2.4c! and ~2.3l!# are consistency conditions to be imposed on the solutions of the two fo
sets.

Note that the set~2.4a!–~2.4b! and the set$~2.3d!, ~2.3h!% are of the same general form: eac
of them is an~ordinary differential! linear vector equation of first order:

U,x5AU1W, ~2.5!

where, for~2.4a!–~2.4b!, the constant matrixA and the vectorsU andW are:

A5S b c

e fD , U5S f

c D , W5yS a

dD 1AS C2

C3
D , ~2.6!

while the set$~2.3d!, ~2.3h!% is homogeneous, soW50 in ~2.5!, the matrixA is the same as in
~2.6! and

U5S l2

l3
D .

With the constantsb, c, e and f being all arbitrary, several cases will have to be conside
separately. Just as in Paper II, the cases that arise will be organized into a binary tre
numbered in a positional system that will enable one to quickly identify the complementary p
each alternative~see Fig. 1!.

The first alternative appears in solving the characteristic equation for the matrixA. Its eigen-
values are:

a1,25
1
2 ~b1 f 1«1,2AD!, ~2.7!

where:

D:5~b2 f !214ce, «151, «2521. ~2.8!

We first consider:
Case 1:DÞ0 (i.e., A has two distinct eigenvalues).The second alternative appears imme

ately in finding the eigenvectors ofA: the casescÞ0 andc50 have to be considered separate
Case 1.1: cÞ0. The solution of the set$~2.3d!, ~2.3h!% is then:

l252cL2~y!ea1x12cL3~y!ea2x,

l35~ f 2b1AD!L2~y!ea1x1~ f 2b2AD!L3~y!ea2x, ~2.9!

whereL2(y) and L3(y) are arbitrary functions. The casesD.0 andD,0 could be considered
together for a large part of the reasoning. WhenD,0, a1 anda2 are complex anda25a 1̄. Then,
L2 andL3 have to be complex, too, withL35L2. However, the two cases lead to different sets
Bianchi types, and so it will be convenient to split them here.

Case 1.1.1:D.0 (i.e., both eigenvalues are real).Then, in solving the set~2.4a!–~2.4b!, the
cases detAÞ0 and detA50 have to be considered separately. In the end, however, the
detA50 turns out to be empty, i.e., in all subcases that arise in it there exists a linear combi
of the Killing vectorsk(2) and k(3) with constant coefficients that is spanned onu and w. This
means that all these subcases are in the domain of Paper II and need not be consider
Therefore we will do away with the case detA50 by only indicating the method of verificatio
of the statement above.

When detA50, the following is true~from ~2.7!–~2.8!!:

e5b f /c, D5~b1 f !2, a15b1 f :5a, a250. ~2.10!
09 May 2008 to 193.0.83.155. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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Since we are still in case 1 in whicha2Þa1 by assumption, we can take it for granted thata
Þ0 here. The solutions of~2.3d!, ~2.3h! and ~2.4a!–~2.4b! are:

l252c@L2~y!1L3~y!eax#, l352 f L2~y!22bL3~y!eax,

f5F~y!eax1~a f2cd!xy/a1P~y!2~ab1cd!y/a22C2 ,

c5~ f /c!F~y!eax2~b/c!~a f2cd!xy/a2~b/c!P~y!2~ f /c!~ab1cd!y/a22C3 , ~2.11!

whereF(y) andP(y) are other arbitrary functions. The further procedure goes exactly as fo
case detAÞ0 presented below, and leads to the results specified above.

From now on, in case 1.1.1 we assume that:

det A5b f2ceÞ0. ~2.12!

FIG. 1. The classes of metrics considered in the paper. Arrows point from more general classes to subclasses. The
at arrows are the case-numbers used in the text. The first entry in each rectangle is the property defining the cas
symbols are introduced in Eqs.~2.1!–~2.8!. The subsequent entries give the following information: 1. The Bianchi type
the corresponding algebra~2.2!; 2. The equation-numbers corresponding to the final result in the given case. No pro
was made with the Einstein equations in any of the cases. Apart from case 1.1.2.2 for which a subcase was disc
Ref. 3, none of the cases seem to have appeared in earlier literature~see Sec. XIII!. The diagram does not show the link
to the entries in the corresponding diagram in Paper II; they are numerous and would obscure the drawing.
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Then the solution of~2.4!–~2.4b! is:

f52cF~y!ea1x12cP~y!ea2x2
a f2cd

b f2ce
y2C2 ,

c5~ f 2b1AD!F~y!ea1x1~ f 2b2AD!P~y!ea2x2
2ae1bd

b f2ce
y2C3 . ~2.13!

The solutions~2.9! and~2.13! must now obey the consistency conditions~2.4c! and~2.3l!. Equa-
tion ~2.4c! is a polynomial inea1x andea2x whose coefficients are functions ofy, the polynomial
containse(a11a2)x,ea1x,ea2x and terms independent ofx. The casesa2Þ2a1 and a252a1

require separate consideration. We first consider:
Case 1.1.1.1:a2Þ2a1. Comparison of coefficients ofe(a11a2)x on both sides of~2.4c! leads

to:

2a2F,yP1a1FP,y50. ~2.14!

If F50, then~2.14! is fulfilled identically, and this case has to be considered separately. The r
is similar to the case detA50. The consideration, parallel to the one that follows below, reve
that with F50 either one of the Killing fields becomes collinear with rotation~and this situation
is in the domain of Paper II! or the symmetry group becomes two dimensional~which case is not
considered here at all!. Consequently, we proceed assumingFÞ0. The solution of~2.14! is then:

P5bFa2 /a1, ~2.15!

whereb is an arbitrary constant;a1Þ0 because detAÞ0.
The coefficients ofFea1x on both sides of~2.4c! imply:

h5@a1 /~b f2ce!#F2
1

2c
~a f2cd!~ f 2b1AD!2ae1bdG2

j

2c
~ f 2b1AD!. ~2.16!

In considering the coefficients ofea2x in ~2.4c! we have to set aside the caseP50 for separate
consideration because the terms withea2x all vanish identically whenP50. However, the case
P50 is in fact empty in the same sense as the caseF50: either the Killing fieldk(3) becomes
collinear with rotation, and this situation is in the domain of Paper II, or the symmetry g
becomes two-dimensional. Hence, we shall follow the casePÞ0 only. Then the coefficients o
Pea2x on both sides of~2.4c! imply:

j 5~b f2ce!21@2~a f2cd! f 1~2ae1bd!c#, ~2.17!

and the terms independent ofx imply:

g5~b f2ce!21@2~a f2cd!d1~2ae1bd!a#. ~2.18!

Equation~2.3l! is a polynomial in exponential functions ofx that involvese2a1x, e2a2x, e(a11a2)x,
ea1x, andea2x. In consequence of~2.9!–~2.18! most of the resulting equations are fulfilled ide
tically, the only one that brings in new information is:

22a2F,yL312a1FL3,y12~ba2Fa2 /a1!~L2F,y /F2L2,y!50. ~2.19!

This is integrated with the result:

L35~1/a1!Fa2 /a1~g1ba2L2 /F !, ~2.20!

whereg is a new arbitrary constant.
Finally, the following Killing fields resulted:
09 May 2008 to 193.0.83.155. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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k~1!
a 5d1

a ,

k~2!
a 5F2c~F2yF,y!ea1x12cbFa2 /a1S 12

a2

a1
yF,y /F Dea2xGd0

a

1S 2cF,ye
a1x12cb

a2

a1
Fa2 /a121F,ye

a2x2
a f2cd

b f2ceD d1
a

2~2ca1Fea1x12ca2bFa2 /a1ea2x!d2
a

1F2cL2ea1x12
c

a1
Fa2 /a1~g1ba2L2 /F !ea2xGd3

a ,

k~3!
a 5F ~ f 2b1AD!~F2yF,y!ea1x1~ f 2b2AD!bFa2 /a1S 12

a2

a1
yF,y /F Dea2xGd0

a

1F ~ f 2b1AD!F,ye
a1x1~ f 2b2AD!b

a2

a1
Fa2 /a121F,ye

a2x2
2ae1bd

b f2ce Gd1
a

2@~ f 2b1AD!a1Fea1x1~ f 2b2AD!ba2Fa2 /a1ea2x#d2
a

1F ~ f 2b1AD!L2ea1x1~ f 2b2AD!
1

a1
Fa2 /a1~g1ba2L2 /F !ea2xGd3

a . ~2.21!

These formulae are simplified by changing the basis in the algebra of the Killing vectors. T
k8(2)

a 5k(2)
a 1 @(a f2cd)/(b f2ce)#k(1)

a and k8(3)
a 5k(3)

a 1 @(2ae1bd)/(b f2ce)#k(1)
a instead of

k(2)
a andk(3)

a we obtain the same result as if:

a5d50. ~2.22!

With ~2.22!, we take k8(3)
a 5(2AD)21@k(3)

a 2(1/2c)( f 2b2AD)k(2)
a # instead of k(3)

a and
k8(2)

a 5(2cb)21(k(2)
a 22ck(3)

’ a ) instead ofk(2)
a . Further simplification results from the transform

tion ~1.13! with:

H5a1
21 ln F, T,y5L2 /~a1F !. ~2.23!

The Killing field k(1)
a does not change, while the other two become~all primes dropped!:

k~2!
a 5ea2x$d0

a2a2d2
a1@g/~ba1!#d3

a%, k~3!
a 5ea1x~d0

a2a1d2
a!. ~2.24!

Using ~2.22! in ~2.16!–~2.18! we obtain:

g5h5 j 50. ~2.25!

Looking at the commutation relations one can see that in effect we have also achievedc5e50,
a15b, a25 f , even though the initial basis~2.21! was calculated under the assumptioncÞ0. This
allows us to predict that in the casec50, set aside for separate consideration, we will obtain~2.24!
again; see case 1.2 in Sec. VI. In view of the assumptions made earlier, we have:

b1 f Þ0Þb2 f , bÞ0Þ f , ~2.26!

and consequently the Bianchi type is VIh , with the free parameter beingaB5(b1 f )/(b2 f ).
The Killing fields are simplified even further after the following transformation that leads

of the Pleban´ski class:
09 May 2008 to 193.0.83.155. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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t85~b2 f !21e2 f x~bt1y!, x85x, y85~b2 f !21be2bx~ f t1y!,

z852g@b~b2 f !#21~ t1y/b!1z, ~2.27!

that results in~primes dropped!:

k~1!
a 52 f td0

a1d1
a2byd2

a , k~2!
a 5d0

a , k~3!
a 5d2

a ,

ua5~b2 f !21@be2 f xd0
a1b f e2bxd2

a2~g/b!d3
a#, wa5nd3

a . ~2.28!

In the new coordinates, the Killing equations imply for the metric:

g005e2 f x@12~ f /b!21g2g33/~bb!222 f gh23/~bb!1 f 2h22#,

g015ef x@gg13/~bb!2 f h12#, g025e~b1 f !x@gh23/~bb!2~b2 f !/b22 f h22#,

g035ef x@gg33/~bb!2 f h23#, g125ebxh12, g225e2bxh22, g235ebxh23, ~2.29!

whereg11, h12, g13, h22, h23 andg33 are arbitrary functions ofz.

III. CASE 1.1.1.2: a252a1

All equations up to~2.13! still apply, but ~2.4c! has to be reconsidered. Witha252a1 the
following equations hold:

f 52b, D54~b21ce!, a15AD/252a2 . ~3.1!

In considering Eqs.~2.4c! and~2.3l! it may be assumed thatFÞ0ÞP because the opposite cas
lead, just as before, out of the domain of this paper. WithFÞ0ÞP, the coefficients ofea1x, of
e2a1x and the terms independent ofx ~which now include the coefficients ofe(a11a2)x) in ~2.4c!
imply, respectively:

h5D21/2@2~ab/c1d!~22b1AD!22~2ae1bd!#2 j ~22b1AD!/~2c!,

j 5a, cDFP5~1/2!$g1D21@2h~ab1cd!1a~2ae1bd!#%y21B, ~3.2!

whereB is an arbitrary constant.
In Eq. ~2.3l! only the terms independent ofx provide a piece of new information, the othe

parts of the equation are fulfilled identically in consequence of~3.1!–~3.2!. The new information
is:

L35g/~a1F !2PL2 /F ~3.3!

~the integration constantg was chosen so as to correspond to~2.20!!. Like in Sec. II, we first
construct the Killing fields by substituting~3.1!–~3.3!, ~2.9! and~2.13! into ~2.1!, then simplify the
result by changing the basis in the Lie algebra and carrying out the coordinate transform
~1.13! ~the difference is that here the coefficient in the formula fork8(2)

a is D instead of (2cb)21).
The result is:

a5d50, k~1!
a 5d1

a , k~3!
a 5ea1x~d0

a2a1d2
a!,

k~2!
a 5e2a1x@~2gy212B!d0

a12gyd1
a1a1~gy212B!d2

a12~cgD/a1!d3
a#. ~3.4!

The commutation relations are:

@k~1! ,k~2!#52a1k~2! , @k~2! ,k~3!#52ga1k~1! , @k~3! ,k~1!#52a1k~3! , ~3.5!

and they correspond to the Bianchi type VIII whengÞ0 and type VI0 wheng50 ~note thata1

Þ0 by the assumption defining case 1.1.1!.
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The Killing fields are further simplified by the coordinate transformation:

t85t1y/a12@2Ba1 /~cgD!#z, x85x, y85y, z85@a1 /~2cgD!#z ~3.6!

that results~with primes dropped! in:

k~1!
a 5d1

a , k~2!
a 5e2a1x@2gyd1

a1a1~gy212B!d2
a1d3

a#, k~3!
a 52a1ea1xd2

a ,

ua5d0
a , wa5@na1 /~2cgD!#~24Bd0

a1d0
a!,

g0051, g015y, g02521/a1 , g0354B, ~3.7!

the other components ofgi j being just unknown functions. The Killing equations fork(1)
a now

imply that the metric is independent ofx, while those fork(3)
a are solved by:

g115~a1y!2g2222a1yH121H11,

g1252a1yg221H12, g1352a1yg231H13, ~3.8!

whereH11, H12, H13, g22, g23 andg33 are arbitrary functions oft andz.
In solving the Killing equations fork(2)

a , three cases have to be considered separately:
Case I: gBÞ0. In fact, the casesgB.0 andgB,0 lead to different results, but the formula

for gB,0 can be easily reconstructed from those forgB.0 by taking real combinations of th
complex solutions. Hence, we shall only present the formulae forgB.0. The solution of the
Killing equations is:

m:5~2gB!1/2a1 , U:5h12 cos~4mz!2k12 sin~4mz!,

V:5h13 cos~2mz!2k13 sin~2mz!,

H1152~2Ba1
2/m!U1h11, H125h12 sin~4mz!1k12 cos~4mz!2H13/~4Ba1!,

H135h13 sin~2mz!1k13 cos~2mz!, g225~g/m!U2@g/~2Ba1m!#V1h22,

g235@m/~2Ba1
2!#V2h33/~4Ba1!, g335h33, ~3.9!

where thehi j (t) andki j (t) are arbitrary functions.
WhengB,0, m is imaginary. Then the trigonometric functions go over into the appropr

hyperbolic functions, andh12 andh13 have to be taken imaginary, too.
Case II: B50. The solution of the Killing equations fork(2)

a is then:

H115h33~a1z!212a1h13z1h11,

H1252a1
2gh33z

323a1gh13z
21~a1h2322gh11!z1h12, H135a1h33z1h13,

g225~a1g!2h33z
414a1g2h13z

322g~a1h2322gh11!z
224gh12z1h22,

g2352a1gh33z
222gh13z1h13, g335h33, ~3.10!

where thehi j (t) are arbitrary functions.
Case III: g50. The Killing equations fork(2)

a imply here:

H115@~4Ba1!2h2218Ba1h231h33#~a1z!21~8Ba1h1212h13!a1z1h11,

H125~4Ba1h221h23!a1z1h12, H135~4Ba1h231h33!a1z1h13,

g225h22, g235h23, g335h33, ~3.11!

where thehi j (t) are arbitrary functions.
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With this, case 1.1.1 is exhausted and we go back to~2.9! to consider the other branch of th
alternative.

IV. CASE 1.1.2: D<0 „i.e., THE EIGENVALUES a1 AND a2 ARE COMPLEX AND
CONJUGATE TO EACH OTHER …

As stated before, it is more convenient to reparametrize~2.9! so that it contains only rea
quantities, and then repeat the procedure of case 1.1.1 in this new parametrization. We de

A2D5D, F5G1 iJ, P5G2 iJ, L25M1 iN, L35M2 iN, ~4.1!

whereG, J, M andN are new unknown functions ofy, and then:

a1,25
1
2~b1 f !1 1

2i«1,2D, «151, «2521. ~4.2!

In this notation, Eqs.~2.9! and ~2.13! adapted to the caseD,0 are:

l254ce~b1 f !x/2@M cos~Dx/2!2N sin~Dx/2!#,

l35
1

2c
~ f 2b!l222De~b1 f !x/2@M sin~Dx/2!1N cos~Dx/2!#,

f54ce~b1 f !x/2@G cos~Dx/2!2J sin~Dx/2!#2
a f2cd

b f2ce
y2C2 ,

c52~ f 2b!e~b1 f !x/2@G cos~Dx/2!2J sin~Dx/2!#

22De~b1 f !x/2@G sin~Dx/2!1J cos~Dx/2!#2
2ae1bd

b f2ce
y2C3 .

~4.3!

Just as in case 1.1.1, these expressions must now satisfy the consistency conditions~2.4c! and
~2.3l!. However, in considering them, the casesb1 f Þ0 andb1 f 50 have to be taken separatel

Case 1.1.2.1: b1 f Þ0. Both sides of~2.4c! are then polynomials ine(b1 f )x/2, and some of
their coefficients involve cos(Dx/2) and sin(Dx/2). The coefficient ofe(b1 f )x leads to the equation

4cD@2D~GG,y1JJ,y!1~b1 f !~GJ,y2G,yJ!#50. ~4.4!

We are working in the casecÞ0ÞD, so only the expression in square brackets can vanish
form suggests the substitution:

G5K cosL, J5K sin L, ~4.5!

whereK andL are new functions ofy. Equation~4.4! becomes then2DKK,y1(b1 f )K2L,y50,
and its solution is:

K5Be~b1 f !L/D, ~4.6!

whereB is an arbitrary constant;BÞ0 or else we are back in the domain of Paper II. Equatio
~4.5! and ~4.6! provide a parametric representation ofG andJ in terms of the functionL, which
is arbitrary at this stage.

The coefficients ofe(b1 f )x/2 in ~2.4c! involve sin and cos that always go in fixed pairs. T
coefficients of$e(b1 f )x/2@G cos(Dx/2)2J sin(Dx/2)#% imply:

h5@4c~b f2ce!#21@~a f2cd!~b22 f 21D2!12c~b1 f !~2ae1bd!#2 j ~ f 2b!/~2c!,
~4.7!

and the coefficients of$e(b1 f )x/2@G sin(Dx/2)1J cos(Dx/2)#% imply:
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j 52~b f2ce!21@ f ~a f2cd!2c~2ae1bd!#. ~4.8!

Finally, the terms independent ofx imply:

g52~b f2ce!21@h~a f2cd!1 j ~2ae1bd!#. ~4.9!

With ~4.7!–~4.8!, Eq. ~2.3l! is reduced to:

4cDe~b1 f !x@2D~GM,y1G,yM1JN,y1J,yN!1~b1 f !~GN,y2G,yN2JM,y1J,yM !#50.

~4.10!

Only the expression in square brackets can vanish in the case now considered. After~4.5! and
~4.6! are substituted into~4.10!, the resulting equation integrates to:

e2~b1 f !L/D$2M @D cosL1~b1 f !sin L#1N@~b1 f !cosL2D sin L#%5gB~b1 f !5const.

~4.11!

Sinceb1 f Þ0ÞD by assumption, this can be solved forN:

N5@~b1 f !cosL2D L#21$gB~b1 f !e2~b1 f !L/D1M @D cosL1~b1 f !sin L#%. ~4.12!

The resulting Killing fields are:

k~1!
a 5d1

a ,

k~2!
a 54ce~b1 f !x/2@~G2yG,y!cos~Dx/2!2~J2yJ,y!sin~Dx/2!#d0

a

1H 4ce~b1 f !x/2@G,ycos~Dx/2!2J,ysin~Dx/2!#2
a f2cd

b f2ceJ d1
a

22ce~b1 f !x/2$~b1 f !@G cos~Dx/2!2J sin~Dx/2!#2D@G sin~Dx/2!1J cos~Dx/2!#%d2
a

14ce~b1 f !x/2@M cos~Dx/2!2N sin~Dx/2!#d3
a ,

k~3!
a 52e~b1 f !x/2$~ f 2b!@~G2yG,y!cos~Dx/2!2~J2yJ,y!sin~Dx/2!#

2D@~G2yG,y!sin~Dx/2!1~J2yJ,y!cos~Dx/2!#%d0
a

12e~b1 f !x/2H~ f2b![G,y cos~Dx/2!2J,y sin~Dx/2!] 2D@G,y sin~Dx/2!1J,y cos~Dx/2!#

2
2ae1bd

b f2ce Jd1
a2e~b1 f !x/2$~ f 22b22D2!@G cos~Dx/2!2J~Dx/2!#22 f D@G sin~Dx/2!

1J cos~Dx/2!#%d2
a1e~b1 f !x/2$2~ f 2b!@M cos~Dx/2!2N sin~Dx/2!#22D@M sin~Dx/2!

1N cos~Dx/2!#%d3
a . ~4.13!

Again, the formulae simplify when the basis in the Lie algebra is changed. First, we
k8(2)

a 5k(2)
a 1@(a f2cd)/(b f2ce)#k(1)

a and k8(3)
a 5k(3)

a 1@(2ae1bd)/(b f2ce)#k(1)
a instead of

k(2)
a andk(3)

a , respectively. The result is equivalent to:

a5d50, ~4.14!

and then~4.7!–~4.9! simplify to:

g5h5 j 50. ~4.15!

With ~4.14! taken into account, we change the basis again by takingk8(3)
a

5(22BD)21$k(3)
a 2@( f 2b)/2c#k(2)

a % andk8(2)
a 5(4cB)21k(2)

a instead ofk(3)
a andk(2)

a , and carry
out the transformation~1.13! with:

H52L/D, T,y52@B~b1 f !#21e2~b1 f !L/D~M cosL1N sin L !. ~4.16!
09 May 2008 to 193.0.83.155. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



n

s

n

e

2159J. Math. Phys., Vol. 39, No. 4, April 1998 Andrzej Krasiński
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The result is equivalent toL505M , i.e.:

G5B, J50, N5gB. ~4.17!

The resulting Killing fields are:

k~1!
a 5d1

a ,

k~2!
a 5e~b1 f !x/2@cos~Dx/2!d0

a2 1
2Wd2

a2g sin~Dx/2!d3
a#,

k~3!
a 5e~b1 f !x/2@sin~Dx/2!d0

a2 1
2Vd2

a1g cos~Dx/2!d3
a#, ~4.18!

where:

W:5~b1 f !cos~Dx/2!2D sin~Dx/2!,

V:5D cos~Dx/2!1~b1 f !sin~Dx/2!. ~4.19!

The commutation relations are:

@k1 ,k2#5 1
2~b1 f !k22 1

2Dk3 , @k2 ,k3#50, @k3 ,k1#52 1
2Dk22 1

2~b1 f !k3 , ~4.20!

and they correspond to Bianchi type VIIh with the free parameteraB52(b1 f )/D. Since
@k2 ,k3#50, coordinates can be adapted tok2 andk3 simultaneously. The following transformatio
does it:

t852D21e2~b1 f !x/2@Wt12cos~Dx/2!y#, x85x,

y85e2~b1 f !x/2$D21Vt22W21@12D21 cos~Dx/2!V#y%,

z85~g/D !~b1 f !t12~g/D !y1z, ~4.21!

but the new coordinates are no longer in the Pleban´ski class. After the transformation, with prime
dropped:

k~1!
a 5 1

2@2~b1 f !t1Dy#d0
a1d1

a2 1
2@Dt1~b1 f !y#d2

a , k~2!
a 5d2

a , k~3!
a 5d0

a ,

ua5D21e2~b1 f !x/2~2Wd0
a1Vd2

a!1~g/D !~b1 f !d3
a , wa5nd3

a . ~4.22!

The formulae forg0a (a50,1,2,3) in terms ofgi j ( i , j 51,2,3) in the new coordinates are give
in Appendix A.

In the new coordinates, the metric is independent oft andy, while the Killing equations for
k(1)

a have the following solution:

g115h11, g125e~b1 f !x/2@Wh1222~g/D2!~b1 f !cos~Dx/2!h13#, g135h13,

g225e~b1 f !x$@g2~b1 f !2/D21 1
2D#cos2~Dx/2!22~g/D !~b1 f !cos~Dx/2!Wh231W2h22%,

g235e~b1 f !x/2@Wh232~g/D !~b1 f !cos~Dx/2!h33#, g335h33, ~4.23!

where thehi j (z) are arbitrary functions. The componentsg0a in terms of those given above ar
given in Appendix A.

V. CASE 1.1.2.2: f 52b

We go back to Eqs.~4.3! which simplify as follows:

l254c@M cos~Dx/2!2N sin~Dx/2!#,

l352~b/c!l222D@M sin~Dx/2!1N cos~Dx/2!#, ~5.1!
09 May 2008 to 193.0.83.155. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



the

2160 J. Math. Phys., Vol. 39, No. 4, April 1998 Andrzej Krasiński

Downloaded 
f54c@G cos~Dx/2!2J sin~Dx/2!#2
ab1cd

b21ce
y2C2 ,

c524b@G cos~Dx/2!2J sin~Dx/2!#

22D@G sin~Dx/2!1J cos~Dx/2!#1
2ae1bd

b21ce
y2C3 , ~5.2!

With these new forms off,c,l2 andl3 we reconsider~2.4c! and~2.3l!. Equation~2.4c! is now
linear inhomogeneous in sin(Dx/2) and cos(Dx/2). The coefficients of cos(Dx/2), of sin(Dx/2) and
the terms independent ofx imply, respectively:

ab1cd

b21ce
D2G22aDJ54chG24b jG22 jDJ, ~5.3!

2
ab1cd

b21ce
D2J22aDG524chJ14b jJ22 jDG, ~5.4!

24cD2~GG,y1JJ,y!5gy1~b21ce!21@2h~ab1cd!1 j ~2ae1bd!#y. ~5.5!

From ~5.3! and ~5.4! it follows that 2(j 2a)D(G21J2)50. SinceDÞ0 by assumption, and
G5J50 leads to the domain of Paper II, this implies:

j 5a. ~5.6!

With ~5.6!, Eqs.~5.3! and ~5.4! reduce to:

h5@4c~b21ce!#21~ab1cd!D21ab/c. ~5.7!

The integral of~5.5! is:

22cD2~G21J2!5$g1~b21ce!21@2h~ab1cd!1a~2ae1bd!%y2/21B, ~5.8!

whereB5const.
Equation~2.3l! leads now to two additional equations, one of which has the solution:

GM1JN5g/D5const, ~5.9!

and what remains of~2.3l! is then:

4aD@M sin~Dx/2!1N cos~Dx/2!#50. ~5.10!

This has two solutions,a50 andM5N50, that must be considered separately. However,
caseM5N50 turns out to be included as the subcaseg50 of the formulae below. Hence:

a5 j 50, h5 1
4~b21ce!21dD2. ~5.11!

The resulting Killing fields are:

k~1!
a 5d1

a ,

k~2!
a 54c@~G2yG,y!cos~Dx/2!2~J2yJ,y!sin~Dx/2!#d0

a

1H 4c@G,y cos~Dx/2!2J,y sin~Dx/2!#2
cd

b21ce
J d1

a

12cD@G sin~Dx/2!1J cos~Dx/2!#d2
a14c@M cos~Dx/2!2N sin~Dx/2!#d3

a ,
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k~3!
a 5$24b@~G2yG,y!cos~Dx/2!2~J2yJ,y!sin~Dx/2!#

22D@~G2yG,y!sin~Dx/2!1~J2yJ,y!cos~Dx/2!#%d0
a

1H24b@G,y cos~Dx/2!2J,y sin~Dx/2!#22D@G,ysin~Dx/2!1J,y cos~Dx/2!#1
bd

b21ce
Jd1

a

1$2bD@2G sin~Dx/2!2J cos~Dx/2!#1D2@G cos~Dx/2!2J sin~Dx/2!#%d2
a

1$24b@M cos~Dx/2!2N sin~Dx/2!#22D@M sin~Dx/2!1N cos~Dx/2!#%d3
a . ~5.12!

By changing the basis tok8(2)
a 5k(2)

a 1(b21ce)21cdk(1)
a andk8(3)

a 5k(3)
a 2(b21ce)21bdk(1)

a the
result equivalent to:

d5h50 ~5.13!

is achieved, and then, from~5.8!:

G21J252~gy212B!/~4cD2!. ~5.14!

Equation~5.14! suggests the parametrization:

G5K cosL, J5K sin L, ~5.15!

then, from~5.14!:

K25G21J252~gy212B!/~4cD2!, ~5.16!

andL remains arbitrary. Witha5d50 we change the basis again tok(2)9a 5(4c)21k(2)8a andk(3)9a

5(22D)21@k(3)8a 1(b/c)k(2)8a # and we carry out the transformation~1.13! with:

H52L/D, T,y522~M sin L2N cosL !/~DK !. ~5.17!

The result is equivalent toL505N which implies:

J50, G5K, M5g/~DK !, ~5.18!

and the Killing fields become:

k~1!
a 5d1

a ,

k~2!
a 5~K2yK,y!cos~Dx/2!d0

a1K,y cos~Dx/2!d1
a

1 1
2DKsin~Dx/2!d2

a1@g/~DK !#cos~Dx/2!d3
a ,

k~3!
a 5~K2yK,y!sin~Dx/2!d0

a1K,ysin~Dx/2!d1
a

2 1
2DK cos~Dx/2!d2

a1@g/~DK !#sin~Dx/2!d3
a . ~5.19!

The commutation relations are:

@k1 ,k2#5 1
2 Dk3 , @k2 ,k3#52@g/~8cD!#k1 , @k3 ,k1#52 1

2Dk2 . ~5.20!

The Bianchi type depends on the constantg: for g/c.0 it is type IX, for g/c,0 it is type VIII
and forg50 it is type VII0. The last case is contained in~4.20!–~4.23! as the subcaseb1 f 50.

The Killing equations fork(1)
a imply that the metric tensor is independent ofx. Knowing this,

one can simplify the Killing equations fork(2)
a andk(3)

a . Sincek(2)
a andk(3)

a are linear in sin(Dx/2)
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and cos(Dx/2), while gab are independent ofx, each Killing equation implies two equations: th
coefficients of cos(Dx/2) and of sin(Dx/2) have to vanish separately. The pair of equations imp
by k(2)

a is identical to the pair implied byk(3)
a , and it is:

~K2yK,y!gab,t1@g/~DK !#gab,z1
1
4D

2Kda
1g2b

1da
2$2yK,yyg0b1K,yyg1b2@gK,y /~DK2!#g3b%1 1

4D
2Kdb

1ga2

1db
2$2yK,yyga01K,yyga12@gK,y /~DK2!#ga3%50, ~5.21!

Kgab,y1da
1$2~K2yK,y!g0b2K,yg1b2@g/~DK !#g3b%1K,yda

2g2b

1db
1$2~K2yK,y!ga02K,yga12@g/~DK !#ga3%1K,ydb

2ga250. ~5.22!

The solution of~5.22! is:

g115y212H33~gK/D !2E K23R~y!dy12~g/D !K2H13R~y!1K2H11,

g125~g/D !H23R~y!1H12, g135~g/D !H33KR~y!1KH13,

g225H22/K2, g235H23/K, g335H33, ~5.23!

where theHi j (t,z) are arbitrary functions, andR(y) is:

R~y!:5E K23dy. ~5.24!

With K given by~5.16!, R(y) and*K23R(y)dy can be easily calculated, but the result has to
given separately forgBÞ0, for g50 and forB50, so Eq.~5.24! is the most compact notation~but
see below!.

Note thatg andB cannot vanish simultaneously; ifg505B, thenK2yK,y505K,yy , and
then Eq.~5.21! implies g125g225g2350. Together withg0250 ~we are still in the Pleban´ski
class! this means that det(gab)50. Also, g and B cannot vanish simultaneously because w
g505B we are back in the domain of Paper II. Withg21B2Þ0, the following new variables can
be introduced for solving~5.21!:

u52cDgt1Bz, v52Bt12cDgz. ~5.25!

With g andB running through all possible values, the hypersurfacesu 5 const are timelike, null
or spacelike. However, the solution of the Killing equations has the same dependence onu andv
in every case.

For solving~5.21!, the casesgBÞ0 andgB50 have to be separated.
Case I: gBÞ0. ~This means we are considering the Bianchi types IX and VIII here, but

VII 0 .) In this case:

R522cD2y/~BK!, ~5.26!

and the solution of~5.21! ~with ~5.23!–~5.24! already taken into account! is:

l2:5gB/~8d4D2!, d2:5~B/D !21~2cg!2, U:5h12 sinh~2lv !1k12 cosh~2lv !,

H1152cD2U/~2d2l!1h11, H125h12 cosh~2lv !1k12 sinh~2lv !,

H1352@cD2/~2d2l!#@h23 sinh~lv !1k23cosh~lv !#,

H22522d2lU/~cD2!2@gB/~2c2D6!#h112@8cg2/~BD2!#h33,

H235h23 cosh~lv !1k23 sinh~lv !,H335h33, ~5.27!
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where thehi j (u) andki j (u) are arbitrary functions.
Equations~5.27! are adapted to the casegB.0. WhengB,0, l2,0, i.e., l is imaginary.

Thenk12 andk23 have to be taken imaginary~andU becomes imaginary in consequence of thi!,
the hyperbolic functions go over into the corresponding trigonometric functions in the well-kn
way, and the functionsHi j remain real.

Case II: gB50. ThenK,yy50. The form ofR(y) still depends on whethergÞ0 or g50 and
BÞ0 or B50. The formulae below apply in each case. The solution of~5.21! ~again with~5.23!–
~5.24! already taken into account! is here:

H115
~cggy!2

64d8D2K2
h33v

42
c2gDgy

8d6
h23v

31S c2D4

4d4
h221

cggy

4d4DK
h13D v22

cD2

d2
h12v1h11,

H1252
c~ggy!2

16d6D4K2
h33v

31
3cggy

8d4D
h23v

22S cD2

2d2
h221

ggy

2d2D3K
h13D v1h12,

H135
cggy

8d4DK
h33v

22
cD2

2d2
Kh23v1h13, H225

~ggy!2

4d4D6K2
h33v

22
ggy

d2D3
h23v1h22,

H2352
ggy

2d2D3K
h33v1Kh23,H335h33. ~5.28!

The subcase of~5.28! in which g50 and the hypersurfacesu5const are spacelike should have
common subset with the class considered by Demian´ski and Grishchuk.3 These authors considere
Bianchi type VII0 models with nonzero rotation, with spacelike orbits of the symmetry gr
which are flat and with the source being a perfect fluid~the pressure is not constant in their clas!.
A member of the present collection should result whenp5const. However, Ref. 3 does no
contain sufficient information to identify it.

With this, case 1.1 is exhausted. We go back to~2.8! with DÞ0 and consider:

VI. CASE 1.2: c 50

Just as it was announced in the paragraph after~2.25!, this case brings no new information
Three situations occur here:

~1! The group becomes two-dimensional~because two Killing vectors become collinear!; these
cases are not considered here.

~2! A linear combination of the Killing fields with constant coefficients is spanned onua andwa;
these cases are in the domain of Paper II.

~3! In the case when the group is three-dimensional and none of the Killing fields is spann
ua andwa, the formulae are equivalent to~2.25!–~2.29! and~3.2!–~3.11! ~both sets reappear!.

The proof consists simply in retracing the whole reasoning from~2.8! on with c50. As seen
from ~2.8!, with c50 necessarilyD>0, and so no analog of case 1.1.2 arises here. The esse
steps of the reasoning are described in Appendix B.

Case 1 is exhausted at this point.

VII. CASE 2: D50 „i.e., A HAS ONE DOUBLE EIGENVALUE …

The reasoning from~2.8! on has to be repeated with this new assumption. Then the do
eigenvalue isa and:

b5 f 62A2ce, a5 f 6A2ce5~b1 f !/2. ~7.1!

The double sign denotes two different cases, but they will be considered at one go. In findi
solutions of~2.5!, the cases detAÞ0 and detA50 have to be considered separately. We fi
consider:
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Case 2.1:det AÞ0. This means:

b1 f Þ0Þa. ~7.2!

In the next step, the casec50 has to be set aside for separate consideration, so we first ass
Case 2.1.1: cÞ0. The solutions forl2,3,f andc are here:

l25$@11~b2 f !x/2#L2~y!1cxL3~y!%e~b1 f !x/2,

l35$2~b2 f !2xL2~y!/~4c!1@11~ f 2b!x/2#L3~y!%e~b1 f !x/2, ~7.3!

f5$@11~b2 f !x/2#F~y!1cxP~y!%e~b1 f !x/214~cd2a f !y/~b1 f !22C2 ,

c5$2~b2 f !2xF~y!/~4c!1@11~ f 2b!x/2#P~y!%e~b1 f !x/2

2@a~b2 f !2/c14bd#y/~b1 f !22C3 . ~7.4!

With suchl2,3, f andc, Eq. ~2.4c! involves polynomials of second degree ine(b1 f )x/2 and also
of second degree inx. The equations implied by the coefficients ofx2e(b1 f )x and ofxe(b1 f )x are
fulfilled identically, while the remaining ones are:

2~4c!21~b2 f !2FF,y1 f F,yP2bFP,y2cPP,y50, ~7.5!

@~b2 f !F/21cP#@d2h1~a1 j !~b2 f !/~2c!#50, ~7.6!

@~b2 f !F/21cP#$@a~b23 f !14cd#/~b1 f !2 j %50, ~7.7!

g5$24h~cd2a f !1 j @a~b2 f !2/c14bd#%/~b1 f !2. ~7.8!

The vanishing of the first factor in~7.6! and ~7.7! leads to the relation:

k~3!
a 1

b2 f

2c
k~2!

a 2
a~ f 2b!22cd

c~b1 f !
k~1!

a 5S b2 f

2c
L21L3De~b1 f !x/2d3

a ,

which means that the combination on the left is collinear withwa, and so this case belongs to th
domain of Paper II. Hence,~7.6! and ~7.7! imply:

h5d1~a1 j !~b2 f !/~2c!, j 5@a~b23 f !14cd#/~b1 f !. ~7.9!

The solution of~7.5! may be represented parametrically by:

F52~AR1cR ln R!/~b1 f !, P52~b2 f !F/~2c!1R, ~7.10!

where A is an arbitrary constant andR(y) is an arbitrary function. It can be assumed thatR
Þ0 because otherwise we are back in the domain of Paper II.

Equation~2.3l!, with the functions given by~7.3!–~7.4! is a polynomial of the same form a
~2.4c! and only the coefficients ofe(b1 f )x provide a new equation:

2~4c!21~b2 f !2~F,yL21FL2,y!1 f F,yL32bFL3,y2c~L3,yP1L3P,y!

2bL2P,y1FL2,yP50. ~7.11!

Using ~7.10!, the solution is found again in a parametric form:

L252S~A1clnR1c!/~b1 f !1gR, L352~b2 f !L2 /~2c!1S, ~7.12!

whereg is another arbitrary constant andS is another arbitrary function. The resulting Killin
fields are now calculated from~2.1! using~7.10! and~7.12!. Since this procedure has already be
performed a few times in this paper, we shall not quote the intermediate results. It turns o
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k(2)
a andk(3)

a contain terms which are constant multiples ofk(1)
a , these are removed when a ne

basis, k8(2)
a and k8(3)

a is appropriately defined. Then we changek(3)
a again, to k(3)9a

5k8(3)
a 1@(b2 f )/(2c)#k8(2)

a and carry out the transformation~1.13! with:

H52 ln R/~b1 f !, T52~b1 f !21E ~S/R!dy. ~7.13!

The Killing fields that result are~with primes dropped!:

k~1!
a 5d1

a ,

k~2!
a 5e~b1 f !x/2$@cx12A/~b1 f !#d0

a2@c1A1~b1 f !cx/2#d2
a1gd3

a%,

k~3!
a 5e~b1 f !x/2@d0

a2 1
2~b1 f !d2

a#. ~7.14!

It can be assumed now thatA50 because this is equivalent to changing the basis
k8(2)

a 5k(2)
a 22Ak(3)

a /(b1 f ). The commutation relations are:

@k~1! ,k~2!#5 1
2~b1 f !k~2!1ck~3! , @k~2! ,k~3!#50, @k~3! ,k~1!#52 1

2~b1 f !k~3! , ~7.15!

and they correspond to Bianchi type IV.
Because of@k(2) ,k(3)#50, coordinates can be adapted tok(2) and k(3) simultaneously. The

following transformation does it:

t85e2~b1 f !x/2@ t1 1
2~b1 f !tx1xy#, x85x,

y852c21e2~b1 f !x/2@ 1
2~b1 f !t1y#, z85g~b1 f !t/~2c!1gy/c1z, ~7.16!

and it results in~primes dropped!:

k~1!
a 52@ 1

2~b1 f !t1cy#d0
a1d1

a2 1
2~b1 f !yd2

a , k~2!
a 5d2

a , k~3!
a 5d0

a ,

ua5e2~b1 f !x/2@d0
a2~2c!21~b1 f !d2

a1g~2c!21~b1 f !d3
a#, wa5nd3

a . ~7.17!

In the new coordinates the metric is independent oft andy. After the coordinate transformatio
~7.16! and after solving the Killing equations fork(1)

a it assumes the form:

g005
1
4~b1 f !2e~b1 f !xh22, g015

1
2~b1 f !e~b1 f !x/2h12,

g025e~b1 f !x@22c/~b1 f !1 1
2~b1 f !Wh221

1
2~b1 f !gh23#,

g035
1
2~b1 f !e~b1 f !x/2h23, g115h11,

g125e~b1 f !x/2~Wh121gh13!, g135h13,

g225e~b1 f !x$28c~b1 f !22W1@2c/~b1 f !#212bWh231g2h331W2h22%,

g235e~b1 f !x/2~Wh231gh33!, g335h33, ~7.18!

where thehi j (z) are arbitrary functions, andW, not to be confused with the same symbol fro
Sec. IV, is:

W:5 1
2~b1 f !cx1c. ~7.19!

VIII. CASE 2.1.2: c 50

It follows from ~7.1! that in this case:

b5 f 5aÞ0. ~8.1!
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Similar to what happened in Sec. VI, it turns out that this case is included in the casecÞ0. When
the procedure of Sec. VII is retraced with~8.1!, the Killing fields that result at the stage corr
sponding to~7.14! are equivalent to~7.14!, with b1 f 52b, e playing the role ofc and the roles
of k(2) andk(3) interchanged.

IX. CASE 2.2: det A 50

With D5det A50, the following follows from~2.8! and ~2.6!:

b f5ce, f 52b, a15a250, ~9.1!

and the matrixA is nilpotent, A250. Again the casec50 has to be set aside for separa
consideration, so we first follow:

Case 2.2.1: cÞ0. The solutions of~2.5!–~2.6! are here:

l25L2~y!1cxL3~y!, l352~b/c!l21L3~y!, ~9.2!

f5F~y!1cxP~y!1 1
2~ab1cd!x2y,

c52~b/c!f1P~y!1c21~ab1cd!xy1c21~2ay2bC22cC3!. ~9.3!

In considering Eqs.~2.4c! and~2.3l!, the caseab1cd50 has to be considered separately, so n
we follow:

Case 2.2.1.1: ab1cdÞ0. Equation~2.4c! is now a polynomial of second degree inx, and it
implies the following equations:

j 5a, h52d, ~ab1cd!~yF,y1F1C2!2c2PP,y5~cg2a2!y. ~9.4!

The integral of the last equation is:

F5 1
2~ab1cd!21@~cP!2/y1~cg2a2!y#1A~ab1cd!/y2C2 . ~9.5!

Equation~2.3l! reduces to the single equation:

2c2~L3,yP1L3P,y!1~ab1cd!~yL2,y1L2!50. ~9.6!

In solving ~9.6! the caseP50 has to be considered separately. However, although some o
intermediate steps of the calculation depend on the assumptionPÞ0, in the final formulae for the
Killing fields P50 is achieved by a transformation of the~1.13! set. The result is identical to th
one obtained withP50 from ~9.6! on.

With PÞ0, the solution of~9.6! is:

L35~ab1cd!@yL22g~ab1cd!#/~c2P!. ~9.7!

We change the basis of the resulting Killing fields by takingk8(3)
a 5k(3)

a 1(a/c)k(1)
a 1(b/c)k(2)

a ,
then carry out the transformation~1.13! with:

H5cP/@y~ab1cd!#, T,y5cL3 /@y~ab1cd!#, ~9.8!

and again change the basis tok8(2)
a 5(ab1cd)21@k(2)

a 2 1
2(ab1cd)21(cg2a2)k(1)

a #, k(3)9a

5c(ab1cd)21k8(3)
a . The final Killing fields are:

k~1!
a 5d1

a , k~2!
a 5~2A/y!d0

a1~2A/y21x2/2!d1
a2xyd2

a1~g/y!d3
a ,

k~3!
a 5xd1

a2yd2
a . ~9.9!

The commutation relations are:

@k~1! ,k~2!#5k~3! , @k~2! ,k~3!#52k~2! , @k~3! ,k~1!#52k~1! , ~9.10!
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and they correspond to Bianchi type VIII.
The Killing equations fork(1) imply that the metric is independent ofx. Those fork(3) are

solved by:

g115H11y
2, g125H12, g135H13y,

g225H22/y2, g235H23/y, g335H33, ~9.11!

where theHi j (t,z) are arbitrary functions~the componentsg0a are as in~1.9!, we are still in the
Pleban´ski class in this case!. In solving the Killing equations fork(2) it is useful to observe thatA

and g cannot vanish simultaneously: withA5g50, the Killing equations fork(2) imply that
g125g225g2350, i.e., det(gab)50. With A21g2Þ0, the following variables can be introduce

u5gt22Az, v52At1gz. ~9.12!

The Killing equations fork(2)
a have to be solved separately forAÞ0 and forA50. WhenA

Þ0, we defined andl by:

d254A21g2, l2522A/d4, ~9.13!

and then the solution is:

U:5h12 sinh~2lv !1k12 cosh~2lv !, V:5h23 sinh~lv !1k23 cosh~lv !,

H115~22A!21/2U1~g/A!~22A!21/2V1h11,

H125h12 cosh~2lv !1k12 sinh~2lv !1gH23/~2A!,

H135~22A!21/2V1gh33/~2A!, H225~22A!1/2U12Ah112g2h33/~2A!,

H235h23 cosh~lv !1k23 sinh~lv !, H335h33, ~9.14!

where thehi j (u) are arbitrary functions. Equations~9.14! are adapted to the casel2.0 (A,0),
but the solution forl2,0 can be easily constructed from this one.

When A50, necessarilygÞ0 and the Killing equations fork(2)
a are solved in the origina

variables (t,z) as follows:

H115h33z
4/~2g!21h23z

3/g21~h22/g21h13/g!z212h12z/g1h11,

H125h33z
3/~2g!13h23z

2/~2g!1~h22/g1h13!z1h12,

H135h33z
2/~2g!1h23z/g1h13, H225h33z

212h23z1h22,

H235h33z1h23, H335h33, ~9.15!

where thehi j (t) are arbitrary functions.
Equations~9.14! and ~9.15! are very similar in form to~5.27! and ~5.28!, respectively. This

suggests that case 2.2.1.1 considered here may be included in case 1.1.2.2 of Sec. V as
~combined with a coordinate transformation!. However, this author was not able to prove
disprove this hypothesis.

We go back now to~9.3! and consider:

X. CASE 2.2.1.2: ab 1cd 50

Equations~9.2! still apply and Eqs.~9.3! simplify in the obvious way. The difference with
Sec. IX is that Eqs.~2.4c! and~2.3l! impose weaker conditions here. The caseP50 leads to the
domain of Paper 2, so it may be assumed thatPÞ0. Then, the consequences of~2.4c! are:

h5b j /c, ~10.1!
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cPP,y1~ j 2a!P1~g2a j /c!y50. ~10.2!

Equation~10.2! definesP as a function ofy. The consequence of Eq.~2.3! is:

c~L3P!,y1~ j 2a!L350, ~10.3!

which definesL3 onceP is given. The functionsF andL2 are still arbitrary at this point.
In the resulting Killing fields we takek8(3)

a 5k(3)
a 1(a/c)k(1)

a 1(b/c)k(2)
a instead ofk(3)

a , and
carry out the transformation~1.13! with:

H5~F1C2!/~cP!, T,y5~L2 /c2HL3!/P. ~10.4!

The result of the change of basis and of~10.4! is equivalent to:

F52C2 , L25a5b5d50, c51, ~10.5!

and the Killing fields become:

k~1!
a 5d1

a , k~2!
a 5x~P2yP,y!d0

a1xP,yd1
a2Pd2

a1xL3d3
a ,

k~3!
a 5~P2yP,y!d0

a1P,yd1
a1L3d3

a . ~10.6!

Note that with~10.5! fulfilled, the subcaseg50 impliesP,y5const, and thenk(3)
a 2P,yk(1)

a is
spanned onua andwa, i.e., this case is in the domain of Paper II. Hence, in what follows it w
be assumed thatgÞ0. For the same reason it will also be assumed that (P2yP,y)Þ0.

The commutation relations~with ~10.5! already taken into account! are:

@k~1! ,k~2!#5k~3! , @k~2! ,k~3!#5 jk ~3!1gk~1! , @k~3! ,k~1!#50. ~10.7!

The collection of Bianchi types contained in~10.7! is as follows. When:

~a! g, j 2/4, the Bianchi type is VIh with the free parameteraB5 j /( j 224g)1/2; and VI0 when
j 50.

~b! g. j 2/4, the Bianchi type is VIIh with the free parameteraB5 j /(4g2 j 2)1/2; and VII0 when
j 50.

~c! g5 j 2/4, the Bianchi type is IV ifj Þ0 and II if j 50. This last case belongs to the doma
of Paper II, as explained above, and will not be presented here.

The Killing equations have to be solved separately for these three cases.
The coordinates are adapted tok(1) andk(3) by the following transformation:

t85t/~P2yP,y!, x85x2tP,y /~P2yP,y!, y85y,

z852L3t/~P2yP,y!1z. ~10.8!

In the new coordinates, with primes dropped:

k~1!
a 5d1

a , k~2!
a 5~x2 j t !d0

a2gtd1
a2Pd2

a , k~3!
a 5d0

a ,

ua5~P2yP,y!21~d0
a2P,yd1

a2L3d3
a!, wa5d3

a ,

g005P22y2P,y
21P,y

2g1112L3P,yg131L3
2g33,

g015y~P2yP,y!1P,yg111L3g13,

g025P,yg121L3g23, g035P,yg131L3g33. ~10.9!

The Killing equations fork(1) andk(3) imply now that the metric is independent oft andx, while
those fork(2) are:
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2Pg11,y12y~P2yP,y!12P,yg1112L3g1350,

2Pg12,y1L3g2350, 2Pg13,y1P,yg131L3g3350,

2Pg22,y22P,yg2250, 2Pg23,y2P,yg2350, 2Pg33,y50. ~10.10!

The last three have the same solutions in all three cases:

g225h22/P2, g235h23/P, g335h33, ~10.11!

where thehi j (z) in the formulae~10.11!–~10.21! are arbitrary functions. The remaining equatio
in ~10.10! have to be solved separately for each case. In each case it is useful to introduce t
variableY(y) by:

Y,y51/P. ~10.12!

Then Eq.~10.3! ~with ~10.5! taken into account! has the solution:

L35~g/P!e2 jY. ~10.13!

In order to findP one has to differentiate~10.2! ~again with~10.5! taken into account! by Y and
usey,Y5P. The equation becomes:

P,YY1 jP,Y1gP50, ~10.14!

andy is then found fromy5*PdY. The solutions of~10.10! and of~10.14! are now as follows:
Case I: g, j 2/4.

P5Mem1Y1Nem2Y, y5~M /m1!em1Y1~N/m2!em2Y1y0 , ~10.15!

whereM , N andy0 are arbitrary constants and

m1,252 j /21«1,2~ j 2/42g!1/2, «151, «2521. ~10.16!

It can be assumed thatMNÞ0 because in both the casesM50 andN50 we are back in the
domain of Paper II~thenP,y 5 const!. The solutions of the remaining Killing equations are he

g115y21h11P
222gh13e

m2YP/@M ~m12m2!#1g2h33e
2m2Y/@M ~m12m2!#2,

g125h122gh23e
m2Y/@M ~m12m2!P#, g135h13P2gh33e

m2Y/@M ~m12m2!#. ~10.17!

Case II: g. j 2/4. Here we define:

D5~g2 j 2/4!1/2, U:5M cos~DY!1N sin~DY!,

V:5M sin~DY!2N cos~DY!, ~10.18!

whereM andN are arbitrary constants, and then the solutions are:

P5e2 jY/2U, y5~4D21 j 2!21e2 jY/2~4DV22 jU !1y0 ,

g115y21h11P
212gh13e

2 jYUV/@D~M21N2!#1g2h33e
2 jY/@D2~M21N2!#,

g125h121gh23V/@D~M21N2!U#, g135h13P1gh33PV/@D~M21N2!U#. ~10.19!

Case III: g5 j 2/4Þ0. With M ,N andy0 being arbitrary constants, the solutions forP andy
are here:

P5~MY1N!e2 jY/2, y522P/ j 24Me2 jY/2j 21y0 . ~10.20!
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We can assumeMÞ0 because withM50 againP,y5const. Then, the solutions of the Killing
equations are as follows:

g115y21h11P
222gh13e

2 jY/2P/M1g2h33e
2 jY/M2,

g125h122gh23/@M ~My1N!#, g135h13P2gh33e
2 jY/2/M . ~10.21!

With this, case 2.2.1 is exhausted. We go back to~9.1! and consider:

XI. CASE 2.2.2: c 50

With D5det A5c50 the only element of the matrixA that may be nonzero ise. The
solutions of~2.5!–~2.6! are here:

l25L2~y!, l35exL21L3~y!, ~11.1!

f5axy1F~y!, c5 1
2aex2y1~dy1eC21eF!x1P~y!. ~11.2!

Equation~2.4c! now implies that eitherj 5a or a50 or e50. However,j 5a leads to a result
equivalent to~9.9! anda50 leads to a result equivalent to~10.6!. Hence:

e50, ~11.3!

which makes the whole matrixA50. The remaining implications of~2.4c! and ~2.3l! are:

ah1d j50, y~dF,y2aP,y2g!5h~F1C2!1 j ~P1C3!,

y~dL2,y2aL3,y!5hL21 jL 3 . ~11.4!

In solving these conditions, again several cases have to be considered separately.
Case 2.2.2.1: aÞ0. Then:

h52d j /a, ~11.5!

but in solving the second of~11.4! the casej 52a has to be set aside for separate considerat
We first follow:

Case 2.2.2.1.1: jÞ2a. Then:

P52gy/~ j 1a!1By2 j /a2C31~d/a!~F1C2!,

L352Ay2 j /a1~d/a!L2 , ~11.6!

where A and B are arbitrary constants. In the resulting Killing fields we change the bas
k8(2)

a 5a21k(2)
a , k8(3)

a 5k(3)
a 2(d/a)k(2)

a 1@g/( j 1a)#k(1)
a , and then carry out the transformatio

~1.13! with:

H5~C21F !/~ay!, T,y5L2 /~ay!. ~11.7!

The final Killing fields are:

k~1!
a 5d1

a , k~2!
a 5xd1

a2yd2
a ,

k~3!
a 5y2 j /a@B~ j /a11!d0

a2B j~ay!21d1
a2Ad3

a#. ~11.8!

The commutation relations are:

@k~1! ,k~2!#5k~1! , @k~2! ,k~3!#5~ j /a!k~3! , @k~3! ,k~1!#50, ~11.9!

and they correspond to Bianchi type VIh with the free parameteraB5( j 2a)/( j 1a).
The coordinates will be adapted tok(1) andk(3) after the transformation:
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t85atyj /a/@B~ j 1a!#, x85 j t /@~ j 1a!y#1x, y85y, z85Aat1B~ j 1a!z. ~11.10!

After the transformation:

k~1!
a 5d1

a , k~2!
a 52 j td0

a1axd1
a2ayd2

a , k~3!
a 5d0

a ,

ua5~ j 1a!21@aB21yj /ad0
a1~ j /y!d1

a#1Aad3
a , wa5B~ j 1a!nd3

a ,

g005~By2 j /a!2@12~ j /a!21~ j /a!2g11/y212A j ~ j /a11!g13/y1A2~ j 1a!2g33#,

g015By2 j /a@~ j /a11!y2~ j /a!g11/y2A~ j 1a!g13#,

g0252By2 j /a@~ j /a!g12/y1A~ j 1a!g23#, g0352By2 j /a@~ j /a!g13/y1A~ j 1a!g33#,
~11.11!

and the Killing equations imply:

g115h11y
2, g125h12, g135h13y,

g225h22/y2, g235h23/y, g335h33, ~11.12!

where thehi j (z) are arbitrary functions.
Case 2.2.2.1.2: j52a. The formulae forh andL3 simply follow from ~11.5! and~11.6! while

the second of~11.4! now has a different integral:

P5~2g/a!y ln y1By2C31~d/a!~F1C2!. ~11.13!

In the resulting Killing fields we change the basis tok8(2)
a 5a21k(2)

a ,
k8(3)

a 5k(3)
a 2(d/a)k(2)

a 1(g/a2B)k(1)
a , and then carry out the transformation~1.13! with the same

H andT as in ~11.7!. The final Killing fieldsk(1)
a andk(2)

a are the same as in~11.8!, and:

k~3!
a 5yd0

a2 ln yd1
a2Ayd3

a . ~11.14!

The commutation relations are:

@k~1! ,k~2!#5k~1! , @k~2! ,k~3!#5k~1!2k~3! , @k~3! ,k~1!#50, ~11.15!

and they correspond to Bianchi type IV.
In order to adapt the coordinates tok(1)

a andk(2)
a we now carry out the transformation:

t85t/y, x85~ t/y!ln y1x, y85y, z85At1z, ~11.16!

and it leads to:

k~1!
a 5d1

a , k~2!
a 5td0

a1~x2t !d1
a2yd2

a , k~3!
a 5d0

a ,

ua5y21~d0
a1 ln yd1

a!1Ad3
a , wa5nd3

a ,

g005y222y2 ln y1~ ln y!2g1112Ay ln yg131~Ay!2g33,

g015y22 ln yg112Ayg13, g0252 lnyg122Ayg23,

g0352 lnyg132Ayg33, ~11.17!

and the Killing equations lead to formulae for the other metric components that are identi
~11.12!.

Case 2.2.2.2: a50. Then the first of~11.4! implies that eitherd50 or j 50. However, ifd50,
then either the algebra of the Killing vectors necessarily becomes two-dimensional~this case is not
considered here! or
09 May 2008 to 193.0.83.155. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



s.

mes
-

d.

pub-

g or
i

it

2172 J. Math. Phys., Vol. 39, No. 4, April 1998 Andrzej Krasiński
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j 50 ~11.18!

follows anyway. Hence only~11.18! will be considered further. Then, with 0ÞdÞh, a result
equivalent to~11.8! follows, and when 0Þd5h, a result equivalent to case 2.2.2.1.2 follow
Therefore, new results are contained only in the case:

d50. ~11.19!

Then, from~11.4!:

h~F1C2!1gy50. ~11.20!

If hÞ0, then~11.20! implies that the combination of the Killing fieldsk(2)
a 1(g/h)k(1)

a is collinear
with wa, and this case is in the domain of Paper II. Hence, from~11.20!:

h5g50, ~11.21!

which leaves us with an Abelian algebra~Bianchi type I! and the functionsF, P, L2 andL3 being
all arbitrary. To avoid landing in the domain of Paper II, we have to assume:

F,yÞ0ÞPy , C21F2yF,yÞ0ÞC31P2yP,y . ~11.22!

We will denote:

WF :5C21F2yF,y , WP :5C31P2yP,y , ~11.23!

and then the Killing fields are:

k~1!
a 5d1

a , k~2!
a 5WFd0

a1F,yd1
a1L2d3

a , k~3!
a 5WPd0

a1P,yd1
a1L3d3

a . ~11.24!

It may also be assumed that:

L:5L32L2WP /WFÞ0 ~11.25!

because ifL50, then the Killing equations imply that either the symmetry group beco
two-dimensional or the metric is singular. WithLÞ0, the following transformation is permis
sible:

t85~L3t2WPz!/~L WF!, x85~L2P,y2L3F,y!t/~L WF!1x2~P,y2F,yWP /WF!z/L,

y85y, z852L2t/~L WF!1z/L, ~11.26!

after which the Killing fields become:

k~1!
a 5d1

a , k~2!
a 5d0

a , k~3!
a 5d3

a . ~11.27!

The resulting metric depends only ony, but the Einstein equations are hopelessly complicate
This is the end of the collection of solutions of the Killing equations.

XII. PERSPECTIVES

The research for this series of papers was motivated by the desire to find a rotating~exact!
perturbation of the Friedmann–Lemaiˆtre cosmological models. Several papers have been
lished whose authors found exact solutions of Einstein’s equations with a rotating source~see a
brief overview in Sec. XIII!, but all except one of them are either stationary from the beginnin
become static in the limit of zero rotation. The one exception is the solution 2 by Stephan4 that
has still nonzero expansion in the limitv→0, but it is a rotating perturbation of a degenerate lim
of the hyperbolically symmetric Kantowski–Sachs solution5 ~see Ref. 6 for more on this point!
and cannot reproduce any Robertson–Walker geometry.
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There is no proof available that a rotating perturbation of the F–L models can be spa
homogeneous. However, if it has any spatially homogeneous subcases and has a dust sou
the subcases must be contained among the metrics listed in this series of papers—just beca
is a complete list of all hypersurface-homogeneous rotating dust metrics~and, over all three
papers, all Bianchi types appeared on the list, some of them more than once!. Hence, from now on,
instead of testing various metric ansatzes for rotating dust by trial and error, one can cho
ansatz from a limited collection. It is well-known7 that the Robertson–Walker geometries have
following relation to the spatially homogeneous Bianchi-type geometries:

The spatially flat (k50) R–W geometry is a common subset of Bianchi types I and VII0.
The R–W geometry with negative spatial curvature (k521) is a common subset of Bianch

types V and VIIh .
The R–W geometry with positive spatial curvature (k511) is a subset of Bianchi type IX

geometries.
With this information, the following can be concluded:

~1! The metrics from Paper I do not contain any generalization of the F–L models; the Bi
type I class contained there has timelike symmetry orbits and the velocity field is tang
the orbits.

~2! The same is true for the Bianchi type I metrics from Paper II~cases 2.1.2.2 and 2.2! and from
the present paper~Eqs.~11.22!–~11.27!!. This is in agreement with Theorem 3.1 of King an
Ellis8 which says that no tilted Bianchi type I models exist~tilted means that the velocity field
is not orthogonal to the symmetry orbits. Bianchi models with rotation obviously mus
tilted!.

~3! The Bianchi type V metrics from Paper II~cases 1.2.1 and 1.2.2.2! with suitably chosen
parameters do have spacelike symmetry orbits and so may harbour some generalizatio
k521 F–L model.

~4! The Bianchi type VIIh metrics of the present paper@Eqs. ~4.23! and ~10.19!# may have
spacelike symmetry orbits at least on some open subsets of the manifold, i.e., the
contain generalizations of thek521 F–L model.

~5! The same is true for the Bianchi type IX and type VII0 metrics of the present paper~Eqs.
~5.23! with ~5.27! or ~5.28!!; generalizations of thek511 and k50 F-L models may be
contained there.

Hence, the cases listed in points 3, 4 and 5 are most promising from the point of vie
cosmology.

XIII. A BRIEF OVERVIEW OF LITERATURE

Partly in order to justify the claim made in the first paragraph of Sec. XII, a brief overvie
literature on solutions of Einstein’s equations with rotating sources will be presented here. F
period up to 1973, the overview is based on a thorough survey of subject indexes toPhysics
Abstractsstarting with the year 1915~made in connection with Refs. 57–59!. For the period
1973–1996 the survey was less thorough—I was looking for only four keywords: ‘‘Bianc
‘‘homogeneous,’’ ‘‘rotation’’ and ‘‘spatially homogeneous.’’ In both searches the following s
tions ofPhysics Abstractswere surveyed: Cosmology, General Relativity, Gravitation, and Sp
Time Configurations~of course, references in the papers included in the survey were
checked!. Ref. 9 is a more extended survey that covers the period up to 1973, and papers in
perturbative methods were used were also listed in it, these are omitted here. Vacuum soluti
omitted, too.

As a rule, each paper is mentioned in one sentence, so this overview does not pre
represent the contents of the papers; it is only meant to sort the papers by subjects and ser
introductory guide through the literature.

Lanczos10 found the historically earliest exact solution with rotating matter~although he may
have been unaware of its rotation!; it is a dust solution in which the velocity field and the rotatio
field are collinear with Killing fields. Van Stockum11 rediscovered theL50 subcase of the
Lanczos solution; Ref. 11 contains in addition important contributions to the techniques of so
09 May 2008 to 193.0.83.155. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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the Einstein equations for stationary axisymmetric metrics~i.e., with a two-dimensional symmetr
group! with a rigidly rotating source. Ref. 12 is another rediscovery of the Lanczos solution
Refs. 13 and 14 contain discussions of its properties.

Gödel’s solution15 has a five-dimensional symmetry group whose orbit is the whole spa
time, and consequently the physical scalars in it are all constant. Its source is dust o
expansion and shear, and constant matter density and rotation scalars. Rediscoveries of th¨del
solution were published in Refs. 16 and 17~see Ref. 18!. Reference 17 contains in addition
stationary axisymmetric perfect fluid solution.

References 19–32 deal with properties of a metric form that is a modest generalization
Gödel solution and is known in the literature as the ‘‘Go¨del-type metric.’’ This notion was
introduced in Ref. 19, and in Ref. 20~which in fact preceded Ref. 19! it was shown that the only
Gödel-type metric with a perfect fluid source is the Go¨del solution itself. However, various
Gödel-type solutions with nonperfect fluid sources have been derived and investigated in R
and 21–32.

In Refs. 33–40 solutions of Einstein–Maxwell equations with a charged fluid source
discussed, some of them under the additional assumption that the Lorentz force is zero. Th
are fully within the scope of the formalism used in the present series of papers because the c
dust in them moves with zero acceleration. The relation of the results of these papers to
obtained here was described in Paper I. Some of them are generalizations of the Lanczo10 and
Gödel15 solutions. Those from Refs. 33–39 are stationary cylindrically symmetric, i.e., are cl
related to those from Paper I, the one from Ref. 40 has a two-dimensional symmetry grou
solutions in Ref. 39 are coordinate transforms of those from Ref. 38.

A generalization of theL50 subcase of the Lanczos solution to a mixture of scalar field
dust was found by Santos and Mondaini.41

Other generalizations of the Go¨del solution were found in Refs. 42–50. Raval and Vaidy42

found two solutions with anisotropic pressure, one of them nonstationary. Bray43 found a collec-
tion of solutions with the rotating fluid immersed in a magnetic field. Novello and Rebouc¸as,44

Kitamura45–47and Ray48 found generalizations with heat flow~the second of Kitamura’s solution
presented in Ref. 45 is a coordinate transform of the Go¨del solution!. Rebouc¸as49 found a gener-
alization with free electromagnetic field; see Ref. 51 and Paper I for an explanation of the re
between the solutions in Refs. 49 and 37. Finally, Panov50 found a generalization with two scala
fields, anisotropic fluid, null radiation and heat conduction.

Other solutions with rotating charged matter source were obtained in Refs. 52–55
Einstein–Maxwell equations for stationary axisymmetric charged dust were analyze
Bonnor.56

In addition, several solutions with a perfect fluid source~i.e., with nonconstant pressure! and
with the same Bianchi type I symmetry as was considered in Paper I have been published
include a family of solutions by this author57–60 in which the velocity and the rotation fields ar
collinear with the Killing fields. For the solutions considered in Refs. 57 and 59 the proportion
factor betweenwa and the Killing field is explicitly given. For the family of metrics from Ref. 6
the factor is an arbitrary function and the family is defined by a differential equation. The solu
by Davidson61,62 are explicit examples from the family of Ref. 60, possibly they are also coo
nate transforms of members of the family from Ref. 57 defined by certain fixed values of p
eters, but Refs. 61 and 62 do not contain sufficient information for precise identification.

Nilsson and Uggla63 did a qualitative analysis~using the theory of dynamical systems! of
perfect fluid solutions with the same symmetry that obey the linear barotropic equation of

The list above includes papers that are related to Paper I of this series. Results related t
of Paper II are contained in Refs. 64–77.

Among the solutions found by Ellis64 there are some that directly belong to the collection
Paper II, they are identified and described in Paper II. Also within the scope of Paper II a
results of King65 who investigated properties of the subcaseb5h1350 of case 2.1.2.2~of Paper
II ! and provided a few examples of explicit solutions. Other explicit solutions in King’s class
found by Maitra,66 Zimmerman67 ~this reference was not given in Paper II! and Vishveshwara and
Winicour.68

In Refs. 69–73 rotating dust solutions with four-dimensional symmetry groups were foun
least some of them have three-dimensional subgroups and are within the domain of Pa
09 May 2008 to 193.0.83.155. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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However, as mentioned in Paper II, these papers do not contain sufficient information
complete identification of all such subcases. The first three of the six solutions given in Ref.
among the case 2.1.2.2 metrics of Paper II.

Davidson74 found an example of a solution with King’s subclass of symmetry~stationary,
cylindrically symmetric, differentially rotating! and with a perfect fluid source obeying the line
barotropic equation of state. Two other stationary cylindrically symmetric perfect fluid solu
were found by Garcia and Kramer,75 the first is differentially rotating and has the symmetry
King’s subclass, the other is rigidly rotating and so has the Bianchi type I symmetry of the
considered in Paper I. Nilsson and Uggla76 analyzed by the method of dynamical systems
Einstein equations for a metric with a Bianchi type II symmetry and a perfect fluid source
obeys the linear barotropic equation of state. Its set of Killing fields is in the subcasel350 of
case 1.1.2.2 of Paper II. Stewart and Ellis77 considered perfect fluid generalizations of the El
~dust! solutions from Ref. 64, they also considered sources with anisotropic pressure, viscos
electric charge.

The only paper directly relevant to the present Paper III is Ref. 3, see Sec. V. The rem
part of the present section is a list of papers in which various problems connected with ro
matter were discussed, but which are more remotely related to the present series of pape

Stephani4 found a solution that is unique in one more respect in addition to that mention
Sec. XII: it is so far the only rotating matter~dust! solution with no symmetry.~Note: solution 3
in Ref. 4 is not a perfect fluid solution, contrary to the paper’s statement.!

Stationary axisymmetric~i.e., with two-dimensional symmetry groups! perfect fluid solutions
were found in Refs. 78–83. Wahlquist78 found a rigidly rotating solution with the equation of sta
e523p1const that, with specific values of two parameters, can describe the interior of a
with compact outer surface. Herlt79 found a source of the NUT vacuum solution and Krame80

found another solution, both are rigidly rotating~Kramer’s solution was rediscovered by Patra a
Roy,81 see Ref. 82!. Another class of rigidly rotating stationary axisymmetric solutions was fo
by Herlt.83

Several stationary axisymmetric metrics were devised as nonperfect fluid sources of th
solution. Results in this class that were published up to 1976 are reviewed in Ref. 84. Later,
more papers on this subject were published, but in those that are known to the present au
source is either a surface distribution of matter or an energy-momentum tensor that do
correspond to any identifiable kind of matter, hence they are not mentioned here.

A spatially homogeneous solution of Bianchi type VI0 with a rotating perfect fluid source wa
found by Rosquist;85 it has the equation of statee53p and nonzero expansion. Spatially hom
geneous solutions with heat-conducting sources were found in Refs. 86–89. Two
hypersurface-homogeneous perfect fluid solutions were found by Wainwright,90 one has a three
dimensional symmetry group of unidentified Bianchi type, the other has a four-dimensiona
tiply transitive symmetry group.

The remaining papers~Refs. 91–116! contain results obtained without finding explicit sol
tions of Einstein’s equations. This part of the survey is likely to be incomplete.

Narlikar91 proposed a metric form for a rotating dust model in which dust particles mov
3-cylinders~axial symmetry is not assumed! whose orthogonal sections are two-dimensional s
faces of constant curvature. Winicour98 reduced the Einstein equations with a stationary axisy
metric dust source to a sequence of integrations. This author101 presented results of partial inte
gration of the Einstein equations for a cylindrically symmetric nonstationary perfect fluid.

Bampi and Cianci102 investigated spacetimes with an Abelian two-dimensional group of s
metries that has null orbits; the example of exact solution provided is a vacuum. Wils and va
Bergh104 showed that a stationary axisymmetric differentially rotating charged dust has eit
nonvanishing Lorentz force of a nonconstant ratio of charge density to mass density.

In Refs. 105–110 general properties of rotating spatially homogeneous Bianchi type IX
els were investigated without attempting to solve the Einstein equations. Of these, Ref. 109
a kinetic theory description of sources in such models and Ref. 110 gives a qualitative anal
rotating mixmaster models.

References 111–113 contain general considerations about rotating matter models, and
and 114 contain more general results, applicable also to nonrotating models, but having
quences for rotating models as well. Collins111 considered properties of shearfree rotating perf
09 May 2008 to 193.0.83.155. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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fluids. Again Collins112 reviewed arguments for the hypothesis that shear being zero implies
either rotation or expansion is zero~apart from several specific examples, this is still unprove!.
Mason and Pooe113 investigated properties of the Lie derivative of the rotation vector along
velocity vector in rigidly rotating matter. King and Ellis8 investigated properties of tilted spatiall
homogeneous models and Nilsson and Uggla114 investigated hypersurface homogeneous and
persurface self-similar perfect fluid models by the method of dynamical systems.

Hawking115 and Collins and Hawking116 investigated limits set on the rotation parameter
Bianchi-type models by the observations of the CMB radiation.

Finally, there is a paper in the domain of the history of science. Ellis117 described the influence
of Gödel’s ideas presented in Refs. 15 and 105 on the development of several concep
research programs in relativity, such as, among other things, the Bianchi-type models, sing
theorems and causal structure of space–time.
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APPENDIX A: THE RESULT OF TRANSFORMATION „4.21… ON THE METRIC

The coordinate transformation~4.21! changes the metric tensor from the Pleban´ski form ~1.9!
to one in which the following relations hold~primes dropped, all the components displayed
expressed in the new coordinates!:

g005e~b1 f !x@sin2~Dx/2!2~V/W!2cos2~Dx/2!#1~V/W!2g22

12~V/W!ge~b1 f !x/2@cos~Dx/2!1~V/W!sin~Dx/2!#g23

1g2e~b1 f !x@cos~Dx/2!1~V/W!sin~Dx/2!#2g33,

g015~V/W!g121ge~b1 f !x/2@cos~Dx/2!1~V/W!sin~Dx/2!#g13,

g025e~b1 f !xcos~Dx/2!@sin~Dx/2!2~V/W!cos~Dx/2!#1~V/W!g22

1ge~b1 f !x/2@cos~Dx/2!1~V/W!sin~Dx/2!#g23,

g035~V/W!g231ge~b1 f !x/2@cos~Dx/2!1~V/W!sin~Dx/2!#g33.

APPENDIX B: THE EQUIVALENCE OF CASE 1.2 AND CASE 1.1.1

These are the main points of the reasoning from~2.8! on in the casec50. Whenc50, Eqs.
~2.7!–~2.8! imply:

a15b, a25 f , ~B1!

andbÞ f sinceDÞ0. The calculation requires checking several cases separately.
Case 1.2.1:det AÞ0. The formulae corresponding to~2.9! and ~2.13! are then:

l25L2~y!ebx, l35@e/~b2 f !#L2~y!ebx1L3~y!ef x, f5F~y!ebx2ay/b2C2 ,

c5@e/~b2 f !#F~y!ebx1P~y!ef x2@2ae/~b f !1d/ f #y2C3 . ~B2!

In verifying ~2.4c! and~2.3l! the casesF50 andP50 have to be considered separately. T
results are as follows:

WhenF50ÞP andL250 the group becomes two-dimensional.
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WhenF50ÞP andL2Þ0, the Killing field @k(2)
a 1(a/b)k(1)

a # is collinear withwa, and this
case is in the domain of Paper II.

When P50, another linear combination of the Killing vectors with constant coefficient
collinear withwa.

WhenFÞ0ÞP, formulae equivalent to~2.24!–~2.29! result.
Case 1.2.2:det A50. Two different~but equivalent! subcases have to be considered he

b50 and f 50 (bÞ f because of the assumptionDÞ0).
When f 50, the functionsl2 ,l3 andf are given by the limitf 50 of ~B.2!, while c is:

c5~e/b!F~y!ebx1P~y!2aey/b21~d2ae/b!xy2C3 . ~B3!

Equations~2.4c! and~2.3l! show then that there always exists a linear combination of the Kil
fields with constant coefficients which is spanned onua andwa.

Whenb50, the conclusion is the same, only the functions in~B.2! are different at the starting
point. l2 andl3 are the limitsb50 of those from~B.2!, and:

f5F~y!1axy2C2 ,

c52~e/ f !~f1C2!1P~y!ef x2~d/ f 1ae/ f 2!y2C3 . ~B4!
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