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This is the second part of a series of 3 papers. Using the same method and the same
coordinates as in part 1, rotating dust solutions of Einstein’s equations are investi-
gated that possess 3-dimensional symmetry groups, under the assumption that only
one of the Killing fields is spanned on the fields of veloaity and rotationw®,
while the other two define vectors that are linearly independent“cind w® at
every point of the spacetime region under consideration. The Killing fields are
found and the Killing equations solved for the components of the metric tensor in
every case that arises. The Einstein equations are simplified in a few cases, three
(most probably new solutions are found, and several classes of solutions known
earlier are identified in the present scheme. They include those by BzMaitra,
Ellis, King, and Vishveshwara and Winicour. @998 American Institute of Phys-
ics. [S0022-24887)03212-X]

I. SUMMARY OF THE METHOD

This is a concise summary of results that will be used in this paper. For proofs, motivations,
and references see Papet 1.

Every timelike vector fieldu® of unit length that has zero acceleration and nonzero rotation
defines the functions(x), 7(x), and&(x) such that

Uy=T 4t 7€ 4. (1.2
These functions are defined up to the transformations
r=17'=8(&"7'), &=F(&'.\7"), 7=G({.7n"), 1.2
where the function§ andG obey
FeG,—F, Gg=1 (1.3
(this guarantees that the Jacobian of the transformatioin @ntlS is determined by
S¢=GFq—7', S, =GF,. (1.4)
If u® is the velocity field of a fluid whose number of particles is conserved:
(V=gnu") ,=0 (L5

(whereg is the determinant of the metric tensor amds the particle number densjtythen one
more function{(x) exists such that

V—gnut=e*fY¢ sy L s, (1.6

and it is determined up to the transformations
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402 Andrzej Krasinski: Rotating dust with Gs. Il

(=0+T(L\7"). 1.7

Note thatn is not defined uniquely by1.5). For example, iu®= &5 andn obeys(1.5), then
n’'=nf(x,y,z) (wheref is an arbitrary functionwill also obey(1.5). This nonuniqueness allows
for a greater freedom in the choice dthan(1.7), and the freedom will be used in some cases.

The following relations hold:

ur =1, UP¢z=ufn z=ufl =0,
(9( Tv 771§1§) \/_ ;50 (1 8)
— = .\/—-gn#0. .
a(x° xt,x?,x3) g

The last of (1.8) guarantees thafr,¢, 7, can be chosen as coordinates; they will be called
Plebamski coordinates. Then, withr, &, 7,¢}={x%x*,x? x3} ={t,x,y,z},

ua=5a01 ua=50a+y51a1
Joo=1, 9u=Y, Uo2=003=0, g=detg,8)=—-n"? (1.9
WO=NST, W= —wg,=(1/2)8",8%,

wherew“ is the rotation vector field, and 4 is the rotation tensor corresponding to the velocity
field u,:

©ap=3 (Ugp—Upg o= UgUgtUgly), W =—(11—0) e Ugw,;. (1.10

If w,#0 andu®=0 (what is assumed throughouthen necessarily the pressyre- const and
kp may be interpreted as the cosmological constant=@wG/c?).

If any Killing vector field exists on a manifol¢bn which all the assumptions specified so far
are fulfilled), then, in the coordinates ¢1.9), it must be of the form

k*=(Ct+¢—yd,y) 8%+ ¢ 6%~ b6+ N5%, (1.1

whereC is an arbitrary constant andl(x,y) andA(x,y) are arbitrary functions of two coordi-
nates. Whenevep ,# 0, a transformation of the clag$.2)—(1.4) can be found that leads to

ke= 5%, (112

The metric then becomes independenkpfind the coordinates preservitigl2 are determined
up to the transformations

t’=t—JyH,ydy+A, x'=x+H(y), y'=y, zZ'=z+T(y), (1.13

whereA is an arbitrary constant and, T are arbitrary functions.

The condition¢ ,#0 that allows one to fulfill(1.12 means that the Killing vectok® is
linearly independent of the vectors® and w® at every point of the spacetime region under
consideration. In Paper 1, solutions of the Killing equations and of the Einstein equations were
considered under the assumption that there exist three Killing vector fields on the manifold, two of
which haveg= const in(1.11), while the third one hag ,#0 and can be transformed to the form
(1.12. In the present paper it is assumed that only one Killing field dasconst(it will be ks ;
see beloy, and two havep ,#0. Only one of the two can then be transformed to the fctrmh2)

(it will be k(q)); the other oneK,)) will preserve its general formil.11).
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In the whole paper, whenever reference is made to the Einstein tensor, the components quoted
are projections of the coordinate componefg; onto the orthonormal tetrag,”, i.e., Gj;
=ei“ejBGaB. In every case it will be self-evident how the tetrad is defined.

Il. THE LIE ALGEBRA OF THE SYMMETRY GROUP

According to the assumptions made in the preceding section, there exist the following three
Killing vector fields:

k{1)= 947,
k) =(Cot b=y ,) 65+ b 61— b x5+ Na(X,Y) 55, 2.9
k(as): C3d5+N\3(X,y) 63,

whereC, andCj; are arbitrary constants, amfj A ,, and\ 3 are unknown functions ofx(y), to be
determined from the commutation relations. The coordinaté€2.af are determined up t@l.13.
The fieldsk;y, K2), andk s, will form a Lie algebra if constanta,...,j exist such that

[K1) Kz ]=aka)+ bk +ckea,
(k1) k) ]=dka)+eka+ k), (2.2)
[K2).Kz)1=9ka)+hko)t+ ke,

Egs.(2.2) are equivalent to the following set:

b x—YPxy=b(Cotd—ye ) +cCs, (2.3a
dyy=atbe,, (2.3b

d =D, (2.39
Nox=DbN,+cCAg3, (2.30
e(Cpt+ ¢p—yd,) +Cs3=0, (2.3
d+e¢,=0, (2.3f)

e¢ =0, (2.39
Nax=eNy+ A, (2.3
h(Co+é—ye,)+jC3=0, (2.3))
g+he =0, (2.3)

h¢ =0, (2.3K

b yNax— @ Nzy=hAy+]A3. (2.3))

A few of these equations imply alternatives that will have to be considered separately. The
alternatives will be organized into a binary tree and numbered in a positional system that will
enable one to quickly identify complementary caée=e Fig. 1 Of the two alternatives implied
by (2.39 we choose for the beginning, the following.

Case 1:¢ ,#0.

This implies, from Egs(2.39), (2.3k), (2.3f), and(2.3))

e=h=d=g=0. (2.4
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[COMMUTATION RELATIONSl

A3=0

BI, no ES
eqs. (6.32) - (6.43)
Ellis [3] case Ciii

h#F 0 a#0 bEf a+tj#0
No ES BIIlL, No ES BVI, BVI, Bil
eq. (2.18) in general No ES No ES No ES
Eq. (4.9) Eq (57) Eq (5.17) Eq. (6.14)
Ellis [3]
case Ib b=f a+j=0
BIV or BY BIV or BV =
NoES NoES B
11121 1122 i Eq G19) No ES in general
Eq (621)
King [4]
A7 0 a=0 Vishveshwara -
No ES in general Bl Winicour [5])
New ES when A =0 EO Elsién general Maitra [8]
- o New 5
Eqs. (3.16) - (3.27) hen b= 0= A Ozsvith [9)
Egs. (4.14) - (4.23)
11122,/ Elc{ls ]3] case Ail
A=0
New ES
Eq. (332)

FIG. 1. The classes of metrics considered in the paper. Arrows point from more general classes to subclasses. The numbers
at arrows are the case-numbers used in the text. The first entry in each rectangle is the property defining the case; all the
symbols are introduced in EqR.1)—(2.3). The subsequent entries give the following information: 1. The Bianchi type of

the corresponding algeb(a.2); 2. Information about the exact solutio(isS) known before or found in this paper; 3. The

equation-numbers corresponding to the final result in the given case; 4. References to papers in which solutions of the
given class were discussed.

Equations(2.33—(2.3d survive unchanged, while the remaining ones simplify to

fC3=0, (2.59
N3x=f\3, (2.5h
jC3=0, (2.5i)
b yNax— @ N3y=]\3, (2.5)
other equations being fulfilled identically. Now we choose the following.
Case 1.1: G#0,
which implies, from(2.5),
f=j=0, (2.6
A3=N\3(y), (2.7h
¢ xN3y=0. (2.7))

With (2.4) and(2.6), the second and third commutator(i2) are zero. Since in Casedl,# 0 by
assumption, Eq92.7h and(2.7]) imply
\3=const. (2.9
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The solution of(2.3d depends on whethdr=0 or b# 0, so we follow now with case 1.1.1
Case 1.1.1: B 0.
Then, from(2.30,

No=pB(y)eP*—chg/b, (2.9
and from(2.33—(2.30),
¢=a(y)e”™—(alb)y—C,—(c/b)Cs, (2.10

wherea(y) andB(y) are arbitrary functions. The assumptign,# 0 impliesa# 0. The basis of
the Killing vector fields can be changedkg), k(’2)= K2yt (c/b)k(s)+ (a/b)k(qy, andk sy . In the
new basis,

(2) =e[(a— yay)dy+a 67 —bady+ B3] (2.11
(i.e., by taking k('z) instead ofk;), c=0 was achieved The transformation(1.13 with H

=(1Mb)In o, T=(1/) (B! a)dy will now have the same effect as #=0, a=1. Finally, then,
the following basis of the Killing vector fields resulted:

ki) =687, kb =e™(85—bs5), k& =Csd5+N385, (2.12

but from now on the transformatiori$.13 are allowed only withtH and T being constants. The
commutation relations are

(K1) Kz 1=[K2) K3 1=0, [K1),Kiy]=DbK), (2.13
and they correspond to Bianchi type lll. In virtue of the commut@ﬂqﬁ) k(g)] bemg zero,
coordinates can be adapted kg and k3, simultaneously so thdt(l) 3y=9% - The
transformation is

' xy"H)=(t,xy), z'=—N\gt+Cyz; (2.149

it is nonsingular because Case 1.1 was define@p¥ 0, but it leads out of the Plebski class of
coordinates used so far. In the new coordindfEsnes droppe) the metric is independent af
andt, and

k(o) =€"X(55—b 5 —N35%),
U*=65—N305, W*=nC;65,
Joo=1+N3°033, Jor=Y+\3013,

002=MA3923:  Jo3=A3033.

Now the Killing equations involving,) have to be solved for the components of the metric
tensor. For this purpose, two cases have to be considered sepaxgtely:andA;=0.

Case 1.1.1.1A;#0.

It is convenient to change the coordinates yet again to

(', x")=(t,x), Y=Agy+bz, Z=Agzy—bz (2.16
The vector fieldu®, w®, andk(, become(primes droppen
u=55—bA3(85—63), w*=bCzn(65—63),
0 3( 2 3) 3 ( 2 3) (217)
kiy=967, ki5=465, kflz>:ebx(5g_2b)\35g),
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406 Andrzej Krasinski: Rotating dust with Gs. Il

and the metric tensor, after the transformati@l6 and after solving the Killing equations
becomegqprimes dropped again

Joo= 1+ (A3b)%(Up+ 33— 2029,
1 1 )
901:2_)\3 (Y+2)— > b N3Y(920—933) T A3hys,

902=PbN\3(922—923),  Qoa=bA3(925—J33),

2

(2.18

1
+ -5 YZ+
2)\3

Y 1 2 b
g11= 2_)\3 5 bY| (922t 933t 2023 — )\_3 hioY+hqq,

1 1 1
912=~ 5 bY(g2t 029 + 2_)\3 hi+ b his,

1 1 !
913=~ 3 bY(g23tgss) + 275 hao— 2b ha,

wherehq41(Z), hix(Z), h13(Z), 9,2Z), 9-3(Z), andgsz(Z) are functions to be determined from
the Einstein equations.
No progress was made with the Einstein equations in full generality in this case. Progress may
be possible with additional simplifying assumptidiesg., orthogonality relations among the Kill-
ing fields.
No solutions belonging to this case have been identified in the existing literature.

lll. CASE 1.1.1.2: A ;=0

We go back tq2.15. With A 3=0, the coordinates d2.15 are still in the Plebaski clasgthe
factor C5 in w® is allowable because is not defined uniquely byl.5); see the comment after
(1.7)]. The formulae(2.19 still apply, with A\3=0, and the Killing equations involving,, are
solved by

911=y*+ (bY)?g22(2) — 2byhy(2) + h1y(2), 3.1
012= —byGothip,  913= —byGs(2) +hix(2),
the hij(2), 9242), 923(2), andgsy(z) being arbitrary functions. The following inequalities hold:

033<0, 02,<0, Js3~U57/0zp: =h33<0, (3.2

for the following reasons, respectively) the rotation field must be spacelike everywhéiig;and
(iii ) the determinant of the metrig<<O or else the metric has an unphysical signature. In virtue of
(3.2) one can define the function&;,K5,,Ks3 andH,,H43,H,3 by
K11*=h12?/g2p+ (N13—h12923/920) */as—hyy,
Ko?=—0z, Ks@=—hg,
22 922 33 33 3.3
H1o=h12/920,  H23=023/922,

H13=h13/h33—N12023/(922N33),
J. Math. Phys., Vol. 39, No. 1, January 1998
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the appropriate sign ok,;> being guaranteed by the signature———) assumed throughout.
[Definitions analogous t(8.3) will be introduced in several other cases in this paper. In each case,
the appropriate inequalities are fulfilled for the same rea$afith these definitions, the metric
form (2.15—(3.1) may be written as

ds’=(dt+ydx)?— (K110%)? = {Kod (= by+H1p) dx+dy+Had 2]}~ [ K Hygdx+ dZ)](zé 4

Equation(3.4) defines the orthonormal tetrad used in this section, and the tetrad is comoving, i.e.,
the velocity field coincides with the tetrad vector #Q;=e°,. Without loss of generality it may
be assumed that

Kas=1, (3.5

because this result is achieved by the coordinate transformatieiK 33dz and redefinitions of
H,3 andH,3. The transformation leads to a rescalingadfin (2.15), but, taking into account the
nonuniqueness of the definition nfthrough(1.5), the new coordinates are effectively still in the
Plebarski class.

The Einstein equatiosy;=0 is now integrated with the result

Hos= A 11K, (3.6

(A and B with indices will denote arbitrary constant€Equation(3.6) substituted intoGyz=0
impliesbA,3/(2K11K55) =0, and since this is within the case 1.1.1 definedby0, the result is

Agz=0=Hy;. (3.7
Now Gg,=0 implies
Hq3=A1K 11K o5, (3.8
andGq,=0 implies
Hiz,=B1aK11 /Ko . 3.9

Using (3.7)—(3.9) in G,3=0 one obtain®B,,/(K1;K»,?)=0, and so

B,»=0, Hy,=const. (3.10
The coordinate transformatidr=t’ —H, x/b, y=y’'+H,,/b has the same effect as if

H12: O, (31])
which will be assumed from now ofiThe transformation preservés,, kg, ,u®,w* and trans-
forms k{3, into k'(},= 67+ (H12/b)k(3,, i.e., in the Killing fieldsH,,=0 can be achieved by a
change of basis in the Lie algebfdn a further analysis two subcases have to be considered
separately.
Case 1.1.1.2.1: p#0.

It is convenient to go over to the standard Bianchi-type coordinates in vghigh— 1 while
Oos= 013= 923=0. The following transformations do it: in the first step we transform

t=T—F(2)Y, x=X+[In(bF)]/b, y=bYF, 312

whereF(z) is determined by
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F IF=—bAK/[Kiy(1+AIKS)] (3.13

(the right-hand side is finite and nonzero because of assumptions made).e@Hisrleads to
0o0a=0. Then we transforme=H(Z), where

dH

E:(1+A132K222)1/2 (3.149
and thereby achievgs;= — 1. Denoting
dH
|—11:K11§, Lox=bFKy,, (3.19

we obtain the following metric form:

ds?=[dT+F(Z)(bYdX—dY)]?—[L13(Z)dX]?—[Loy(Z)(—bYdX+dY)]?—dZ?,

(3.1
the coordinates no longer being in the Pletlarclass.
The Einstein equatio,,=0 implies
F,ZZALZZ/L]_]_V (31D

where A is an arbitrary constant. EquatigB.17) can be integrated if the new variab#é is
introduced by

Z',7=LplL11; (3.18
then
F(z')=AZ' +B, B=const. (3.19

With z’ in place ofZ, the equatiorG,3=0 is solved by

. (3.20

1
Ll].: CL22 EX[{ - E f (AF/LZZZ)dZ’

The only tetrad components of the Einstein tensor that are still nonzero are the diagonal ones. It
may be verified thalG;;— G,,=0 in virtue of (3.179—(3.20, while G;;— G33=0 follows by
differentiation ofG3;3= A in virtue of (3.20. Hence, the latter is the last equation to solve, and it

is

(Losk ooy )?— 3 AFLgol oy + (D2 + A2/4) L p2 — 7 (DF)?=A(L1il )2 (3.2)

Equation(3.21) is an integro-differential equation. Substituting foy; from (3.20 and differen-
tiating byz’, it can be changed into an ordinary second-order differential equation that determines
L,»(z'), and therL; can be(in principle) calculated from3.20. No further progress in solving
the Einstein equations was achieved in the general case.

The coordinates of3.16) are still comoving, while the rotation vector field is

Wr=Ly; A(—AS8{—DAYSS+DFSS). (3.22
The caseA=0 that is seen to be simpler is equivalé¢mta (3.17) and (3.13] to A;5=0 orb
=0, and these were set aside for separate consideration. The matter density is
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ke=—3A+[bF/(LyLyp) 1%+ (A/L19)2 (3.23
When A =0, an elementary solution exists. Equati@y?1) has then the integral
L,2=3%[F2—(A2+4b?)(z'+D)?], (3.29
whereD is an arbitrary constant, ard,; is found from(3.20 to be
L12= CW W2, (3.29

where
1 2 2\1/2 2
al’2:_8b2 [(A +4b ) iA] y (32@

andW,,W, are the two factors of3.24):
Wy ,=3 [FF(A?+4b*) Y%z’ +D)]. (3.27

A (modestly thoroughsearch through the literature by this author has not turned up any
rotating dust Bianchi-type Il solution with the same configuration of the Killing, velocity, and
rotation vector fields as heré[he method used in the search will be disclosed in Papédiéhce,
(3.16—(3.27 is tentatively proposed as a new solution.

Case 1.1.1.2.2: A=0.

The invariant meaning oA;5=0 is that the Killing fieldkﬁl) is everywhere orthogonal to the
rotation field. We go back t¢3.11). The equationG;5=0 [in the coordinates of3.4) with later
simplificationg implies

K2o=AxK 1. (3.28
The equatiorG,,+ Gzz=2A is integrated with the result
(K11K11,)%=AK 1 = bK 7+ C, (3.29
whereC is an arbitrary constant. Using this result@,= A we obtain
C=1/(4A?). (3.30
The case&K;;,=0 leads to the Gdel solution? When K11,#0, the coordinate transformation,
Ki(2)=2, (3.3)
leads to the following solution:

ds?=(dt+ydx)2— (Zdx)2—[AZ(—bydx+dy)]?*—[AZ?— b2+ 1/(2AZ)?] " 1dZ°.
(3.32

The matter—density is
ke=—3A+1/(A%Z%). (3.33
With such a simple solution a3.32 it is rather improbable that it could be still unknown.

Nevertheless, the remark made after E3J27) applies also here.
The subcasé =0 of (3.32 is a coordinate transform of the subcase 0 of (3.16—(3.27).
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410 Andrzej Krasinski: Rotating dust with Gs. Il
IV. CASE 1.1.2: b=0
We go back t02.8). From Eqs.(2.3—(2.8) we have

¢=axy+cCsx+a(y), Ary=CAzXx+pB(Yy), 4.2

D

where « and 8 are unknown functions and the other symbols are constants. Applying to th
resulting Killing vector fields the change of basbia):k(z)—(CZ/Cg)k@) and the coordinate
transformatior(1.13 with H=a/(ay+cCs), T ,=(B8—cA3H)/(ay+cCs) (the denominators are
nonzero because of the assumptipp+ 0 defining case J1 we obtain the result

k{3)=CCsxdp +axdy —(ay+cCs) 85+ CA3xd3, 4.2
the other Killing fields being as if2.1). The commutation relations are

[k Ky l=akay+ckay,  [Ka) K l=0=[Kk) K] 4.3

The Bianchi type of this algebra is Ill wheaw=0 and |l whena=0+#c (a=c=0 is excluded by
the assumptiorp ,# 0 made in case)l

In order to adapt the coordinateskg, andk s, the following coordinate transformation is
now carried out:

(t',x",y")=(t,xy), z'=—\3t+Cjsz, 4.9
after which(primes dropped
U*=35—N3d3, K{=cxds+axsy—(ay+c)d;, (4.5
but for solving the Killing equations, the casa¢ 0 anda=0 have to be considered separately.
We first consider the following.

Case 1.1.2.1: &0.
Then the Killing equations imply

Joo=1+N3%033, G01=Y+N3013, Uoz=MN302s, Go3=N30a3,

2c c\? [chg)\? 2C\3 2
e A P - | 953 (ay+c)hyzt(ay+c)hyy,
(4.6
C)\3 C)\3
912~ ~ Flay+ o) hagthia,  O13= = —~ Gagt (ay+C)hys,

Uoo=hpl(ay+c)?,  gx=hysl/(ay+c),

wheregs3(z) and allh;;(z) are arbitrary functions. In order to introduce an orthonormal tetrad, the
following new functions are defined:

Kaf=—033, Hzp=hy—hyf/0as, Kyf=—Hyy,
H1o=(h1—h13h23/933)/Hoo, @.7)

K112=1/a?+ hy52/ gaa+ Hy?Hopo— hyy,

Hi3=h3/033, Hz3=hy3/gs3.
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After the coordinate transformation,
t=T+cx/a, y=(e¥—c)la, (x',z2')=(x,2), (4.9
the metric form becomes
ds’=(dT+a 1e?¥dx)2— (K1,€2"dXx)?— [K (€3 "H 10X+ dY) ]2 —[K3g( A 3d T+ H 1567 Ydx
+HodY+d2)]?, (4.9
and the Killing fields become
kiy=07, kip=axéi—3d;, Kk{z=5. (4.10

No progress was made with the Einstein equations(409). However, a large subset of
solutions by Elli§ is contained here when=O\ 3=H ;5= H,s=H 1, (the first condition means that
the velocity field is a Killing field; the next two conditions mean that the Killing fidk@ﬁ and
k() are orthogonal to rotation; the invariant interpretation of the last condition is unknéws
the case Ib of Ellis, but not in full generality. Ellis’ functidn when expressed as a function of
Ellis’ y(x?), obeys

2c%(t?) ,,+K=0, (4.12)

wherec andK are constantfit is Ellis’ Eq. (4.20), appropriately transformédThet? implied by
(4.17) is a polynomial of second degree. Only when the discrimiranf the polynomial is zero
will Ellis’ case Ib be a subcase ¢4.9). The reason for this is that with+ 0 the Ellis case Ib has
a four-dimensional symmetry group acting multiply transitively on 3-dimensional orbits, and the
group has no 3-dimensional subgroups. Only witls 0 a 3-dimensional subgroup exists.

Case 1.1.2.2: &0

As stated before, the Bianchi type is now Il. We go back4d). With a=0+#c, it can be
assumed that=1 with no loss of generality. The velocity field and the Killing fields are

u*=35—N3d3, K{)=67, K3H=x8—393, Kki3=0, (4.12
and the Killing equations imply
Ooo=1+X3%0as, Uor=Y+N3013, Go2=N302s, Gos=N3Js3,
911=(1+X\3°g39)y*+ 2N gy hyst hyy,

(4.13
g12=A3YOpsthiz, G137 A3YQssthis,

whereg,5(2), 923(2), 933(2) and theh;;(z) are arbitrary functions. The new functioks andHj;
are defined by4.7) with a—~ andh,3=g,3. The metric is then

ds?=(dt+ydx)%2— (K11d%)2— (Hy,dx+ K,,dy) 2= {Kzd Agdt+ (A gy + Hg)dx+ Hogdy+ d(z4]}12‘.9

Again, no progress with the Einstein equations was made at this level of generality. However,
further progress was possible when

A3=0, (4.15
which means, from(4.12), that the velocity field itself becomes a Killing field. Then, by a
transformation ok and a few redefinitions,
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K33: 1 (416)

can be achieved, and this will be assumed from now on. Some of the subcases implied by the
Einstein equations turn out to be empty, so they will be mentioned only briefly. The first alterna-
tive is H,3 being zero or nonzero. However, in both cases the Einstein equations together with
coordinate transformations lead to the conclusion

Hi3=0 (4.17

(which meansgaﬁk&)w'g:O). Then the equatiorGy;=0 is integrated with the resulH,;
=A,3K 11K, (the Aj; being arbitrary constantsFurther integration of the Einstein equations must
proceed separately fa&k,3#0 and forA,;=0. However, the casA,3;# 0 leads to a plain contra-
diction, and so the only case to consider is

H23=0=Ay; (4.18
(which meansgaﬁkf“z)WBZO). The equatiorG,,=0 is then integrated with the result
Hio,=H 1Ko, /Koot ApoK 11 /K% (4.19
From G;;— G,, we have
(K11K22,— KooK11,) ,— AK 11 /K > =0. (4.20
With the new variableu(z) defined by
u,= K11/Kz5°, (4.21)
Eq. (4.20 can be integrated with the result
(K11/K50)%=—(Au)2—2Bu+C:=W(u), (4.22

whereB andC are arbitrary constants. With the help(df22), K4, is eliminated from the Einstein
equations, and theB;;= A remains as the only independent equation in the set. It may be written
as

2WKyp, /K gp=As2U+ B (B2+ CA2+ 1+ 4AWK,, ) Y2 (4.23

When A =0, this has simple elementary solutions, but several cases require separate treatment
[A1,#0 with (B2+ CA,;,%) being positive, zero or negativa,,= 0+ B], so(4.23 will be left as

the most compact notation. This is again tentatively proposed as a new sdlimgometric is
defined by(4.14—(4.19, (4.22), and(4.23].

When A;,=0, these equations define a coordinate transform of Ellis’ cas@ Piien H;,
=B,K,, from (4.19 andB,,= 0 results by a coordinate transformation. The invariant meaning of
the conditionA;,=0 is not known to this author. With such an interpretation at hand, a new
invariant definition of the Ellis case Aii would result.

V. CASE 1.2: C3;=0

We go back to Eqs(2.3—(2.5), and immediately have to consider separately the chses
#0 andb=0. We take first the following.

Case 1.2.1: 0.

Equations(2.3a—2.3¢ then imply

é=a(y)eP*—ay/b—C,, (5.1
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wherew is an arbitrary functiong# 0 because of the assumptign, # 0. Equation(2.5h implies

Nz=pu(y)e™, (5.2)

where u is an arbitrary functionju#0 because otherwise the symmetry group becomes two-
dimensional. Equatiof2.5]) then implies

uw=Ba'® j=-—aflb, (5.3

whereB is an arbitrary constant. For further integration, the cadséé and f=b have to be
considered separately.

Case 1.2.1.1: & f.

The Killing fields that result here, after a simplification of the basis It(y)zk(z)
—(a/b)ky—[c/(f—Db) ]k, are:

k% = 8% , ke :af/befx5a ,
(1) 1 (3) 3 (5.4)

ke = €[ (a—ya,y) 6%+ a,y 0% — bad®y+ B5%]

(the basis change resultedar= c=0). This algebra is of Bianchi type ¥ Wwith the free param-
eterb+f/b—f. The Killing fields are further simplified by the coordinate transformatibi3

with H=b"1In «, T=[(ba) 1Bdy, and by the subsequent transformation that leads out of the
Plebarski class:

t'=e P, x'=x, y'=bt+ty, z'=e ™z (5.5
The result is(primes dropped

ki) = —bté%+ 8% —f26%, kib=0%, K& =08,

(5.6
u=e PX%+bs%,, wr=ne 5%,
The metric that results from the Killing equations is:
Joo=€""(1+b%hy,), go1=€™(y—bhyy), dor=—be’*hy,,
Jos=—be® Phys,  g11=hi1, g1,=his  grs=e"hys, (5.7

_ _f _ q2f
O22=h32,  g23=€"hy3  g33=e€""hgs,

where h;;(y),i,j=1,2,3 arearbitrary functions. No progress with the Einstein equations was
made here.

Case 1.2.1.2: b f

The basis of the Killing fields is here:

k%, =68%, k% =Ba(y)e’*5%,
(1) 1 (3) (y) 3 5.9

(as beforea=0 was achieved by a basis chajpgehe Bianchi type is IV wher#0 and V when
c=0. To this basis we apply the transformatich1d with H=b"!In a, T=[b~(Be °H
—cBH)dy, and then the subsequent transformation:

t'=e P, x'=x, y'=btty, z'=e PX(—ctx+2z). (5.9
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The result(i.e., the relevant vector fields and the metric that fulfills the Killing equajits
ki) =—bté%+ 8% —(ct+b2) 8%, Kk(p=0%, K{z=0%,
u®=e PX§%+bs%,—cxe PX5%, wr=ne PX§%,,
Goo=€""(1+b%hyp—2bcxhps+c?x*hgs),  gor=e(y—bhy,+cxhyg),
Jo2=€"(—bhy+CXhpg),  gos=e"(—bhyz+cxhyy),

(911,912:922) = (h11,h12,h25),

(013.923) =€"(h13,hz3), g33=€hgs, (5.10

where, as before, thi; are arbitrary functions of. Also here, no progress was made with the
Einstein equations.

Case 1.2.2: b-0.

Egs.(2.39—(2.39 and(2.3h imply here

p=axy+a(y), Az=nu(y)e™, (5.10

wherea(y) andu(y) are arbitrary functionsa# 0 because of the assumption defining case 1. In
further integration, the casds#0 andf=0 have to be considered separately. Howe¥erQ
quickly leads to a contradiction with# 0, so the only case to consider is

f=0. (5.12
Then, from(2.30d),

Aa=cu(y)x+B(y), (5.13
where B is an arbitrary function, and fror(2.3l),
w=Ay 13 (5.14

where A#0 is an arbitrary constant. The transformatiGh13 with H=a/(ay), T=/[[(B
—cAHy 3 /(ay)]dy leads now tow= 8=0. With no loss of generality we can assue 1.
The coordinates will become adaptedkig) andk s, after the subsequent transformation:

7' =yl’3z, (5.15

This leaves the metrig® andw® in the Plebaski form (with rescalech), while the Killing fields
and the commutation relations become

(1)=9061, K3 =Cyd;+axdy—ayd;+(cx—jz)é3, K(z=463, (5.16
[k kK l=akag+cka),  [Ka)K3)]=0, [Ke) Kael=ikea -
In solving the Killing equations the casas-j#0 anda+ j=0 have to be considered separately.
Case 1.2.2.1: & j#0.
The algebrg5.16) is then of Bianchi type \{] [the free parameter in the standard form of the

commutation relations is (2j/a)/(1+j/a)]. The Killing equations lead to the following metric
form:
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9o0=1, 9o1=Y, Yo2=9os=0,

011=C?y~4/%g3—2Cy* 3h 5+ y?hy,,

(5.1
g1o=—Cy '1Phyethyy,  gi3=—Cy ¥Phgty! 2hyg,
Uoo=h2olY?, G25=yY 'hp3, 3=y ¥%hgs,
where theh;; are functions of the variable defined below, and is the constant
C=cl(a+j), u=ely©2/a (5.18

The limit C,=0 of (5.17) is an allowed subcase and does not require separate treatment. With
C,=0 all h;; become functions of alone, and this is the first instance where a proper spatially
homogeneougnecessarily tilteflBianchi-type model appears in this scheme.

No progress in solving the Einstein equations was achieved here.

Case 1.2.2.2: &j=0.

The Bianchi type is IV whert#0 and V whenc=0. The Killing equations lead here to the
metric

9o0=1, do1=Y, Yo2=9os=0,

Cc 2 c 2 2
g1=| ¥ Y| hagt2_—y? Inyhygty?hyy,
(5.19

C C 2 2
912=7 yhosthyy, 913=7 Y In yhgz+y“hys,

922=h2o/y?,  9os=has,  gas=Yy’has,
where theh;; are arbitrary functions of the sane= ely®2/2 a5 in(5.18).
No progress with the Einstein equations was made here, either.
VI. CASE 2: ¢ ,=0

We go back to Eq92.3). Now ¢ ,#0 can be assumed because wjth= ¢ ,= 0 the Killing
field kf*z) becomes spanned arf andw?, and this situation was already considered in Papler 1.
If h#0, then(2.3) implies ¢=—(g/h)y+A, A=const, and sdx?z)=(C2+A) 8o —(9/h) 67
+N295 . Nowk' (5 =K+ (g/h)k{y, is spanned om* andw®, and so we are again in the domain
of Paper 1. Hencéd)=0, and, from(2.3)), g=0. In the same way it follows frorf2.3b and(2.3f)

that

a=b=d=e=g=h=0. (6.1

From here on, the casas+#0 and\;=0 have to be considered separately.
Case 2.1:\3#0.
Using (2.3h with (6.1) in (2.3) we obtainf¢é ,=j. In the same way as above, we conclude

from here that
f=j=0. (6.2
Now from (2.3h and (2.30d),

A3=N3(y), Na=CA3X+B(y), (6.9
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where\;(y) and B are arbitrary. The only equation that remains from the(268) is now cCy
=0, andg¢(y) is an arbitrary function. We first follow

Case 2.1.1: G#0.

Then

c=0, (6.4

and the algebra becomes commutaiiBeanchi type ). The transformatioz’ = C3z/\5(y) gives
the same result as K;=C3, and then

Cz=N3=1 (6.5
may be assumed without loss of generality. The Killing fields are now
k=01, kip=F&5+ ¢ o1+B(Y)65, kiy=385+53, 6.6
where
F.=Ct+¢—-yo,. 6.7

The Killing equations foik{;, andk, imply that the metric tensor is independentoéind
that it depends o and z only throughu:=(t—2z)/2. It may be assumed that,,#0#F—
because withp =0 the Killing field k' 5=k~ ¢ (K, is spanned om* andw* (this is the
domain of Paper )1 while F—8=0 leads, through the Killing equations, to a singular metric
[det@,z)=0]. Knowing this, we can adapt coordinates to all three Killing vectors by the following
transformation:

t=Ft'+2z', x=¢ t'+x', y=y', z=pt"+7". (6.9

In the new coordinates, all the metric components depend only okVith primes dropped, the
Killing, velocity, and rotation fields and the metric tensor are as follows:

k(1)=61, k=05, k{3=085, u*=(F—B) 18— ¢y561—B53),
w*={C3n/[N3(F = B)]}( 55— ¢ y61—F 53),
Goo=F2= B2+ 2y ¢ y(F = B) + B?Gast+ 26 yBY1a+ #3011, (6.9
9o1=Y(F—B)+ ¢ 911+ BY13,

Jo2= ¢,y912+ FO23, Go3=F — B+ BYzst ¢ yG13,

and all theg;(y), i,j=1,2,3 are arbitrary functions.

No progress with the Einstein equations was achieved in this case.

Case 2.1.2: G=0.

This means that the Killing fielll(3) is collinear with the rotation vectar®. Now we have to
consider separately the cases0 andc=0.

Case 2.1.2.1: &0.

The Bianchi type of the algebr@.2) is Il in this case. The transformatiofi.13 with H
=—pB/(c\3) leads to

B=0. (6.10

J. Math. Phys., Vol. 39, No. 1, January 1998

Downloaded 09 May 2008 to 193.0.83.155. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



Andrzej Krasinski: Rotating dust with Gs. Il 417

It may be taken for granted th&t# 0 [F is still given by(6.7)] because withF = 8=0 the Killing
equations implyg13=g,3=033=0 and sogpz=0 from (6.9), i.e., detf,z)=0. The transformation
z' =27/ leads to the same result as

(in fact, the transformation reshuffles the componepts j=1,2,3 among themselves, but for-

mally the new metric still has the Plelsk form). Hence(6.10 and(6.11) will be assumed. The
subsequent transformation,

t=Ft', x=¢ ' +x', y=y', z=j3cot'?+7, (6.12
leads to(with primes dropped

ki =087, Ki=083+cxd3, k=53,

(6.13
ur=F X(85— ¢ 07 —cte ,55), W*=(n/\3)é5.
In the coordinates of6.13 the Killing equations imply
Joo=(Co+ ¢)°—(y ) >+ ¢,2yh111
goi=YF—ctd jhist b yhi1,  9oo=¢ N1z, o= b yhis, (6.14

011= (Ct)?gsz—2cthyzthyy,  015= —CtOpzthip,  013= —Ctgasthys,

wheregy,, 923, 933 and theh;; are arbitrary functions of.

No progress with the Einstein equations was made.

Case 2.1.2.2: 0.

We go back to Eqs6.1)—(6.3) with c=C3;=0. The algebra becomes commutat{Banchi
type ), but in contrast to Case 2.1.1 the Killing fidt@) is here collinear with rotation. We have

)\2:ﬁ(y)= )\3:)\3(y)1 ¢:¢(y)1 k(al): fa (6 15)
ke =F o5+ ¢, 05+ B85, K =Nad5,

whereF is given by(6.7). Also hereF #0, or else we are back in the domain of Paper 1. Equation
(6.11) applies here for the same reason as before, and the coordinates become adapted to the
Killing fields after the transformation:

t=Ft', x=¢ ,t'+x', y=y', z=pt"+7". (6.16
In the new coordinaterimes dropped

k(=61 k=0, k=703,

(6.17
ur=F Y85~ 07— B85, W*=(n/\3)s5,
and the Killing equations imply
Joo=(Cat+ ) > —(y )2+ 91’>,2y9117L 2B 913+ B*Yas, 6.19

Jo1=YF+ ¢ ,011+Bd13, o= ¢y912F BY23, YGoz= ¢,y9131 BYaa,
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where allg;; ,i,j=1,2,3 are arbitrary functions of.

In general, no progress was made with the Einstein equations. However, a few authors have
considered this case before, and a few simple exact solutions in this class are known. Therefore,
we shall introduce the standard Bianchi-type coordinates in wipieh g1,=0,3=0, g>»=—1 in
order to facilitate the comparison. The transformation to coordinates in vghyeh0, i =0,1,3, is

t=t"+Fo(y’"), x=x"+Fy(y"), y=Fy)y)=y', z=z"+F3(y"), (6.19

where the function§ ,(y’) obey

3
> 4iFay =0, i=0,13. (6.20
a=0

The set(6.20 may be solved fofF,,., F;y, andF3y, and then finding thd=, only requires
calculation of a few integral&vhich are seen to exist, although the integrands are at this point not
known as explicit functions of'). Having achieved);,= 0 in this way, we carry out the change

of variabley’ = [(—g,,)*?dy [knowing thatg,,<0 because of the signature ageh,=g,,(y)
because of the symmetriethat leads tay,.,» = —1. The componentg;; in whichi#2#], the
velocity and the rotation do not change aftérl9. In the new coordinates, dropping primes,

ds’=[(Ca+ $)dt+Ydx]?~ [kyy( ¢ ydt+dx)]?— dy>— {kad (B+ N1z y)dt+hydx+dz]}?,
(6.2

whereY is they-coordinate of(6.18), and

k112=y2—g11+9132/g33, k332:_933, h13=012/033. (6.22

The subcasgd=h;3=0 of (6.21) was first considered by Kinfand it is known in the
literature as “stationary cylindrically symmetric.” King demonstrated that, even in this subcase,
the problem is underdetermined: one function in the metric may be chosen arbftiraxi/21) it
is k33]. The limitation 3=h,3=0 resulted from the reflection symmetries assumed in Ref. 4, that
in the coordinates aof6.21) correspond t@— —z and ¢,x)—(—t,—X). King’s metric ansatz can
be also derived from the following assumptions, as follows from the present consideration.

1. The manifold has a 3-dimensional symmetry group whose algebra is of the Bianchi type I.

2. One Killing field (kf’g)) is collinear with rotation, the two others are linearly independent of
u® andw®.

3. The velocity vector field is spanned &, andk{,, (henceg=0).

4. The Killing fieldsk(;, andk,, are both orthogonal t&3) (henceh;3=0).
A few examples of explicit solutions of the Einstein equations are given in Ref. 4, among them the
solutions of Maitra(Ref. 8; see beloyvand of LanczogRef. 10; this one goes by the name of
“Ehlers—van Stockum” in Ref. % Vishveshwara and Winicotderived the same metric form as
King and provided another explicit example of a solution. The solution derived by Hoenselaers
and Vishveshwafathat was supposed to be an example of the collection of Ref. 5, turned out to
be a coordinate transform of the @& metric; see Ref. 7.

One more example was provided by Maitri addition to the list above, it has the following
invariant property.

5. The timelike Killing fieldk ) has unit length so thatQ,+ ¢)?—k;,°¢ v*=1.

The conditions 1-5 are still insufficient to redu@®2l) to the Maitra solution; the following
coordinate-dependent relations must hold in addition:
(Cot+ )Y —Ki2py=m, YZ—kyZ=m?—r? (6.23
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wherer (y) is a new coordinate defined by

dy 1 2\1/2 1 1 1 2\1/2 1
|n(m)——4—u2 (1+u9) —1+§—Zln §(1+u) +§
u:=2r/a, a=const, (6.29

andm(r) is the function
m=—a{(1+u®>)¥>—1-In[3 (1+u?) 2+ 1]} (6.25

This author was not able to interpr@.23 in invariant terms.

The first three of the six solutions by Ozsfvaalso belong here, and they are subcases of the
class considered by King. All of Ozstfes solutions have 4-dimensional symmetry groups whose
orbits are the whole 4-dimensional manifolds. In order to place specific' @¢swlutions in the
classification considered here, one has to identify 3-dimensional subgroups ott0zgyaups.
Examples can be spotted by inspection in Ref. 9 in which different non-isomorphic 3-dimensional
subgroups are contained in the same 4-dimensional group. Hence, the samth'©zslations
should come up as limits in different classes of the present investigation. For unique and complete
identification, the formulae for group generators are necessary, and these are not given for most of
Ozsvdh's solutions.

Case 2.2\3=0.

We go back to Eq(6.1). Now necessarilyC;#0, so it may be assumed with no loss of
generality that

C3: 1, (62@
and then Eqgs(6.1) together with(2.33, (2.38, and(2.3i) imply
c=f=j=0, (6.27
and(2.3d implies
A= pB(Yy). (6.28
In this case, necessarify# 0 because wittlB=0 the Killing equations imply that the determinant
of the metric is zero. With6.1) and (6.26)—(6.28 the whole se{2.3) is solved and the Killing
fields are
kiy=01, ki=Fds+ ¢ 61+B63, Ki=465, (6.29
whereF is still given by (6.7). It may be assumed with no loss of generality that
C,=0, (6.30
because this is equivalent to changing the basik(’fg)z k(“z)—czkfg). The Killing fields all
commute to zero, so the Bianchi type is | once more, but this time with a still different position of
the orbits with respect to the hydrodynamical vector fields; now the velocity field is the Killing

field kf“ ), i.e., itis tangent to the orbits.
In order to adapt the coordinates to the Killing fields we carry out the transformation

t'=t—(F/IB)z, X'=x—(¢,IB)z, y'=y, z2'=1zp. (6.3))
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The Killing fieldsk{y, andk{3, do not change, whil&,, the rotation and the metric acquire the
form

kiy=05, w*=(n/B)(F&5+ 07— 53), 6.3

9o0=1, do1i=Y, 902=0, Joz=¢,

other componentg;; are arbitrary functions of. Similarly as it was done ii6.19—(6.21), we
can transform the metric to the Bianchi-type coordinates in whigh g,,=g,3=0. Then

ds?=(dt+ydx+ ¢dz)%— (ky1dx)%— (Kopdy)?—[Kaa(h1zdx+d2) ]2, (6.33

wherek1, Ko, k3g, andhy are functions ofy. The transformation does not chan@e32. The
Einstein equatiorsy;=0 then implies

h13¢,y: 1—KKky1Koo/Ks3, (6.39
whereK is a constant. With thisz,3=0 implies
¢ yK11/(KoKsz) —Khi3=L = const, (6.39
andG,3=0 implies
—kas®hy3y/(Ky1Kop) + K =M =const. (6.36

Equations(6.34—(6.36 can be used to elliminate all derivatives #fandh,; from the Einstein
tensor. This is done as follows.

(1) The derivative 0f(6.34 is used to eliminatd 3¢, .
(2) Equation(6.34 is used to eliminatet(a¢ y)? hiz¢ y andhysp 2.
(3) From (6.35, ¢ ,yy is found and eliminated from the Einstein tensor completely.
(4) From (6.36), h,3y, is found and eliminated from the Einstein tensor.
(5) Equations(6.36 and(6.39 are used to eliminat;3, and ¢ .
This procedure is designed so that the result of each step applies also in the fmit. After it
is completed, the Einstein tensor is diagonal.
The equatiornG,;— G33=0 is now
3 (K/Kgd) 2+ kg 2 — KooyKazy /(KoKsz) +Kazyy/Kagt KipyKaoy /(Ki1Kap) —Kigyy/Kis]
— 5 [(Khygt L)/ky]? = (Kp—M)?/kgs'=0. (6.37)
In this, we replace one power oKh5+L) from (6.35, one power of Ké—M) from (6.36),

multiply the result byk,;k,ks3 and use6.34) to eliminateK k K,5/Kss from K2k koo/k33. The
result is then integrated, and the integral is

(k11k33,y_ k33k11y)/k22_ K¢hl3_ % LQS"’ M h13+ % Ky=A= COﬂSt (638
The equatiornG,;—G,,=0 is
— 3 (Khygt L)%+ Kpp 2Kz~ H(—KaoyKasy /Koot Kazyy—Ki1yKazy /K1) =0. (6.39
In this, we eliminate one power oKh,3+L) using(6.35, then use(6.34 to eliminatehy;¢
from the result. The equation thus obtained is integrated to
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1 1 1
k33y/(k11k22)_ E L¢_ E Ky+ E Kzf (k11k22/k33)dy: B=const. (64@

Now we introduce the new variablgy) and the new functions(y) andG(y) by
uy=Kkokss/ky;, F=KhiztlL, G=K¢—M. (6.4
In these variables, Eq$6.35 and (6.36 may be rewritten as
G =KF, F  =K(ky?/kss")G. (6.42
These can be separated when each is differentiatad by

B 21 A
G uu—[(Kk1)/kss"]G=0, (6.43

F uut (4Kazy /kaz— 2Kgq, /K1) F y—[(Kkyp)?/kas']F=0.

Equations(6.43 determineF andG as functions of thé;; (k,, is hidden in the definition ofi).
Then, (6.34 implicitly definesk,, as a function ofk;; andks;. Next, (6.40 definesks; as a
function ofk,,, and finally(6.38 definesk,,(y). Hence, the set is in principle solvable. The one
remaining Einstein equation 8,,= A. However, at this point it may be verified th@t,,=0 in
virtue of the other equations, $8,,=A merely defines\ in terms of the other constants. Af
=0, thenG,,=0 imposes an algebraic relation of the constants.

Suppose thath= const. Then the coordinate transformatient’ — ¢z leads to¢=0 (which
meansgaﬁké)k(ﬁa)zm. Then (6.34) implies K#0, and so(6.35 implies h;3=const. Conse-
quently, the transformation=z' —h;3x leads toh,3=0 (i.e., gaﬁkﬁl)k(ﬁz)=0). With ¢=h3=0
the metric(6.32—(6.33 becomes identical to the metric ansatz of LancZosnd the Lanczos
solution uniquely follows. In fact, witlkp = const, the Killing fieldk(“z) becomes the second Killing
field spanned on® andw®, and so we land in the domain of Paper 1. Hence, the definition of the
Lanczos solution given above coincides with one of those from Paper 1.

The class defined b§6.32—(6.43 contains the case Ciii of EIli%.

At this point, the whole collection of metrics considered in this paper is exhausted.

VIl. CONCLUDING REMARKS

In this paper, several classes of metrics were only derived. Investigation of their properties
was postponed to separate projects; at this point it is not clear which of them would deserve
further pursuit in the first turn, while investigating them all would expand the paper beyond
acceptable limits.

All the cases considered here have the property that one of the Killing fielg$ (s spanned
on the fields of velocityu® and rotationw® of the source, while the other two are at every point
linearly independent afi® andw®. In every case, the explicit formulae for the Killing fields were
found, and the Killing equations were solved for the Killing fields were found, and the Killing
equations were solved for the components of the metric tensor. Progress with solving the Einstein
equations differed from case to case. The complete listing of nonempty cases is given in Fig. 1,
and the results obtained are as follows.

(1) In case 1.1.1.1Bianchi type Il) the final result is given by Eq2.18. No exact solutions are
known and none were derived here.

(2) In case 1.1.1.2.1Bianchi type Il the final results are given b§8.16—(3.27. A (most
probably new solution was found for the subcase=0, given by Eqs(3.16), (3.18, (3.19,
and (3.24—(3.27).
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(3) In case 1.1.1.2.8Bianchi type Il) a(most probably new solution was derived here, given by
Eq. (3.32.

(4) In case 1.1.2.1Bianchi type ll) the final result is given by Ed4.9). No explicit solutions are
known in general, but subcases of the case Ib of Hildong herdsee the paragraph after Eq.
(4.10].

(5) In case 1.1.2.2ZBianchi type 1) the final result is given by Eq$4.14—(4.23. No explicit
solutions are known in general, but with=0=A, a new exact solution was derived here;
see the comment after EGL.23. The case Aii of Ellié is a subcase here.

(6) In case 1.2.1.1Bianchi type V},) the final result ig5.6)—(5.7).

(7) In case 1.2.1.2ZBianchi types IV and VY the final result i5.10.

(8) In case 1.2.2.1Bianchi type V},), the final result ig5.17).

(9) In case 1.2.2.2Bianchi types IV and V, the final result ig5.19.

(10) In case 2.1.XBianchi type ), the final result i6.9).

(11) In case 2.1.2.1Bianchi type ), the final result i6.14). No explicit solutions are known in

points 6-11.

(12 In case 2.1.2.ZBianchi type ), the final result i96.21). No explicit solutions are known in
general, but a certain subcagmown as “stationary cylindrically symmetrig"was consid-
ered by Kind and Vishveshwara and WinicotiExamples of explicit solutions were given
in Refs. 4 and 5, and also by Maifrand Ozsvth;® see the text after Eq6.25.

(13) In case 2.2(Bianchi type ), the final result is given by Eq$6.32—-(6.43. No explicit
solutions are known.

The Bianchi types do not uniquely identify the various cases because in each case the orbit of
the symmetry group has a different position with respect to the velocity and rotation fields. This is
why the same Bianchi types occur in inequivalent cases.

The collection of results corresponding to all three Killing vectors being at every point lin-
early independent of velocity and rotation will be presented in Pajjeo8 in preparation Paper
3 will also contain an overview of literature on solutions of Einstein’s equations with rotating fluid
source.
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