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For a rotating dust with a 3-dimensional symmetry group all possible metric forms
can be classified and, within each class, explicitly written out. This is made possible
by the formalism of Plebaski based on the Darboux theorem. In the resulting
coordinates, the Killing vector fieldéf any exis) assume a special form. Each
Killing vector field may be either spanned on the fields of velocity and rotation or
linearly independent of them. By considering all such cases one arrives at the
classification. With respect to the structures of the groups, this is just the Bianchi
classification, but with all possible orientations of the orbits taken into account. In
this paper, which is part 1 of a 3-part series, all solutions are considered for which
two Killing fields are spanned on velocity and rotation. The solutions of Lanczos
and Gdalel are identified as special cases, and their new invariant definitions are
provided. In addition, a new invariant definition is given of the Ozsvath class llI
solution. © 1998 American Institute of Physids$§0022-248807)03112-5

I. INTRODUCTION AND SUMMARY

The theorem of Darboux presented in Sec. Il allows one to introduce invariantly defined
coordinates in which the velocity field of a flui{dot assumed to be perfeéctcquires a “canoni-
cal” form. In this paper it is further assumed that the fluid moves with zero acceleration and
nonzero rotation. These assumptions result in a simplification of the metric tensor and in limita-
tions imposed on the Killing vectors, if any exist. Within this special class of coordinates, any
single Killing field may also be reduced to a “canonical” form, a different one in the case when
it is spanned on the vector fields of velocity and rotationw®, and a different one when it is
linearly independent ofi® andw®. This gives rise to a classification of possible symmetries in
rotating matter.

When there exist three linearly independent Killing fields, the classification described above
gives rise to a complete classification of all possible metric forms. With respect to the algebras of
the symmetry groups, this is just the Bianchi classification, but with all orientations of the orbits
in the spacetime taken into account.

In every case that emerges, the commutation relations of the algebra have been solved,
resulting in explicit formulae for the Killing fields, and then the Killing equations have been
solved, resulting in the formulae for the metric tensors compatible with the symmetry groups
considered. The degree of success in solving the Einstein equations varied very strongly from case
to case. In most cases, no headway was made. In some cases the Einstein equations have been
integrated either to an autonomous set of first-order equations or to a single nonlinear differential
equation of second or third order. In a few cases solutions known earlier were identified in the
present scheme and new invariant definitions for some of them were praiee by Lanczds
and GaleP will be mentioned in this papgrin three cases new solutions were found.

Since the number of cases is rather large, the results will be presented in three papers. The
present paper deals with the simplest situation when two of the Killing fields are spanned on
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velocity and rotatior(the case of all three Killing fields being spannedwandw is trivial—see
Sec. V).

The Darboux theorem was first applied as a tool for investigating the equations of motion and
the Einstein equations by Pletskn® He showed that if a perfect fluid is rotating and isentropic
while the particle number is conserved, then a similar consideration to the one presented here
applies. The approach of Plelskin was used by this authbf to find a large collection of sta-
tionary, cylindrically symmetric solutions of Einstein’s equations.

For a perfect fluid the assumptions of geodesic motion and nonzero rotation imply that the
pressure is constafgee Ref. 8 Hence, from the point of view of thermodynamics, geodesic and
rotating perfect fluids are isentropic and fall within the class considered by Rldbadowever,
the approach based on the Darboux theorem applies to any timelike congruence that is®f class
and has zero acceleration and nonzero rotation. In particular, the velocity field of a rotating
charged dust with zero Lorentz force, that was considered in several papers, has this property. The
papers in which such solutions were discussed will be mentioned at the end of Sec. VIII; they are
all within the same class of the classification introduced here.

In Sec. Il the Darboux theorem is introduced. In Sec. lll, the classification of first-order
differential forms based on the Darboux theorem is applied to geodesic vector fields with rotation.
When the vector field is the velocity field of a fluid, a class of preferred coordinates results, which
shall be termed “Plebaski coordinates.” In Sec. IV, by way of an example, the consideration of
Sec. Il is applied to the rotating dust solution of Steph&mi Sec. V it is shown that each Killing
vector field that might possibly exist in a rotating dust spacetime is determined by two functions
of two variables. If the Killing field is not spanned on velocity and rotation, then the Pd&ban
coordinates may be adapted to it so that it acquires the uniquekts®d] . The Galel solution
is used to illustrate the various forms of the Killing fields that may arise.

In Sec. VI, the consideration of Secs. Ill and V is applied to the situation when there exist
three Killing vector fields. When all three of them are spanned®bandw®, the result is trivial:
the group becomes two-dimensional, and this case is not considered here. When two of them are
spanned oru® and w* while the third one is not, two cases arise that correspond to different
Bianchi typed(ll and I) of the groups. These are investigated in Secs. VIl and VIII. The solutions
of Lanczo$ and of Galef emerge as special cases in both types. The Bianchi type Il metrics are
defined by a single third-order differential equation, the Bianchi type | metrics are determined by
a set of autonomous first-order differential equations.

Finally, in Sec. IX, other invariant definitions are given: for the class Il solution by Oz5Vath
and for the solution of Gael? The former results from the following assumptions.

(1) The source in the Einstein equations is a geodesic, rotating perfect fluid.
(2) The rotation vector field is covariantly constant.

The Galel solution, which is a subcase of this, emerges when it is assumed in addition that the
shear of the fluid flow is zero.

So far, Bianchi-type solutions of Einstein’s equations with a rotating source have been
searched for and found by trial and erfoften with nonperfect fluid sources, e.g., with heat-flow
The results of the present series of papers show that, in the case of a dust source at least, the
number of allowed possibilities is limited. It is hoped that the results will direct further research
toward better-defined targets.

Il. THE CLASSIFICATION OF DIFFERENTIAL FORMS OF FIRST ORDER AND THE
DARBOUX THEOREM

The Darboux theorem presented below exploits the simple fact that if a differentialfefm
first order is defined on am-dimensional manifoldM,, then its domain is not necessarily
n-dimensional. Two cases are well-known.
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(1) If g is a perfect differential so tha=df, wheref is a scalar function oM, thenf can be
chosen as one of the coordinates, and the form becomes one-dimensional.

(2) If g has an integrating factor so thatgdf, wheref andg are independent scalar functions
onM,, thenf andg can be chosen as two of the coordinates, and then the domairs dfie
two-dimensional {,g)-surface.

The Darboux theorem summarizes all the cases that can occur. It is based on the following
classification(see also Ref.)3

Definition: Let g be a differential form of first order.

If Qy :=dq0---0Odq (multiplied| times # 0, butqQ,, =0, thenq is said to be of classl|2

If Qq41:=0q0Q,#0, butdQ,,,,=dqlQ, =0, thenq is said to be of class (2-1). O

Then the following holds.

The theorem of Darboux: The formq is of class 2 if and only if there exists a set ofl 2
independent functionsé(,....& ,74,...,m) such that

q=mdé+ ndép+ -+ pdé. 2.1

The formq is of class (2+1) if and only if there exists a set of [Z 1) independent functions
(7,é1,---,&,m1,...,m) such that

q=d7+ 7 dé;+ pdés+ -+ pdé . (2.2

A proof of this theorem can be found in Ref. 12.

Evidently, the class off cannot be larger than the dimension of the manifold on whidg
defined. Hence, the Darboux theorem implies that in a four-dimensional spadétiarey differ-
ential form of first order can be represented as

g=od7r+ nd¢, (2.3

whereo, 7, n and ¢ are scalar functions oY .
Any vector fieldu® on V, defines the following differential form:

gy :=u,dx®. (2.9
According to(2.3), in the most general case there exist scalar functigns » and ¢ such that

U,=0T + 7€ . (2.5

Note that the functions 2.5 are not uniquely defined. Since we shall not (&) in the most
general case, we shall determine the nonuniqueness only in the subcase that is of direct interest to
us (see Sec. Il

For the most general case (£.5), the four functions are independent in the sense that the
Jacobian,

do,1,7m,
(7—()50,)(1':(]2%;)3) #0. (2.6)
Hence, they can be chosen as coordinates in the spacetime. In Refs. 4 and 7 it was shown that if
u“ is the velocity field of an isentropic perfect fluid in which the particle number is conserved,
theno=1/H, whereH is the enthalpy per one particle of the fluid, and further limitationsign
follow from the particle number conservation. No other application€2d) in the general case
are known to this author.
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Ill. GEODESICALLY MOVING FLUIDS

To any timelike vector fieldi, normalized to unity(so thatu,u“= 1) the formula from Refs.
13 and 14 may be applied:

Ua;ﬁ=UauB+ O-LIB+ waﬂ-l- % Ghal;, (31)
which gives rise to the well-known definitions of acceleratioh expansiond, shearo .z and
rotationw,s . In the signaturé+———) used here, the projection tendoy, is

haﬁzgaﬁ_uaulg. (32)

The following properties ofi®, 0.5 andw, g Will be useful in further considerations:
U =0, 0,puP=w,zuf=0. (3.3

We shall assume from now on thay, is the velocity field of a fluid and that,=0, i.e., that the
particles of the fluid move on geodesics. Then, fr¢ghd) we have

Wap=3 (Uap=Uga) = 3 (0 470~ 0 aT g+ 7,60~ ,0€ ), (3.4
and from(3.3) we have

(UBU,B) T,a_ (UBTHB)U,aJ‘_ (Uﬁﬂ,g)g,a_ (uﬁg,ﬁ) n,a: O (35)

There are two possibilities now.
I. At least one of the four scalar products(B5) is nonzero. In this cas@.5) implies that at
most three of the function@r,r,7,£) are independent, and so the fo(gh4) will not be of class 4.
II. All the four scalar products are zero. However, this means that the gradietism, 7)
are at every point confined to the 3-space element orthogong/ tae., that there is a functional
relation among these four functions. Again, the fat2) cannot be of class 4.

Hence, for a geodesically moving fluid the forf®.4) is of class at most 3, i.e., at most 3
independent functions, #, £ exist such that

Ua=T ot 7€ 4 (3.6
From here on, the reasoning used in Refs. 3 and 4 applies almost unchange@.@iite have
in (3.4),
waﬁ:% (ﬂ,ﬁf,a_ ﬁ,af,ﬁ)a (3.7
and in(3.5),
(UPn p)€ o= (UPE g) 7 ,=0. (3.8

There are again two possibilities.

. Either (uﬁn,ﬁ) and (uﬁg,ﬂ) do not vanish simultaneously, and thgn8) implies thatz and
£ are functionally related, in which ca$8.6) implies thatu, is a gradient of a function, and so
0,5=0.

ﬁll. Or ¢ and 7 are not functionally related, in which case
WE g=uPn =0, (3.9

and w,5#0. We shall be interested only in the second case. The functioés)} in (3.6) are
determined up to the following transformations:
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§: F(f-’]’), 77:G(§':7l')v = T'_S(glﬂll), (31®
where the function§ and G must obey the equation
F,f'G,n’_F,n’G,f’:ly (311)

and thenS is determined by
Svgr:GF“fr_ﬂl, S',”r:GF',”!. (313

Equation(3.1)) is the integrability condition of Eq$3.12 and it ensures that the Jacobian of the
transformation(3.10 equals 1. It follows that one of the functiofs,G} can be chosen arbi-
trarily, the other one is then determined /11 andS is fixed up to an additive constant by
(3.12. The inverse transformation 8.10 is of exactly the same form, with the corresponding
G and S obeying(3.11) and(3.12.

Let us now make the additional assumption that the number of particles of the fluid is
conserved, i.e.,

(V—gnu®) ,=0, (3.13

whereg is the determinant of the metric tensor and the particle number density. This equation
is a necessary and sufficient condition for the existence of a funétgurch that

J=gnue= eV g L 5. (3.14
Note that(3.6) and(3.9) imply that
uer =1, (3.19
and then Eq(3.14) implies that
(7, m,6,0)
€ P17 & 5L 5= o7 o3 =V —gn#0. (3.16

a(x°,x,x?,x3)
Equation(3.14) implies also that
u*¢ ,=0. (3.17
The function{ is determined by3.14) up to the transformations
(= +T(E '), (3.18

whereT is an arbitrary function. Equatiof8.16 certifies thaf{7,£,7,{} can be used as coordinates
in the spacetime. If they are chosen as{kx?,x?,x3} ={t,x,y,z} coordinates, respectively, then
Eq. (3.6 implies

Up=1, u;=y, u,=uz=0. (3.19

We will use these coordinates throughout the remaining part of the paper and call them “Pleban
ski coordinates.” Equatiori3.16 implies now that

g=-n"? (3.20
and Eq.(3.14) implies
u*= 48y, (3.2)

i.e., the Plebaski coordinates are comoving. The rotation vector defined by
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we=—(1—g)e* uzu, 5, (3.22
assumes the form
we=né3. (3.23
Equations(3.19 and(3.22) imply that
900=1, 9o1=Y, 002=003=0, (3.249
and also that the only nonvanishing components of the rotation tensor are
W= — wy=1/2. (3.25

Note that, in contrast to Refs. 3 and 4 where barotropic perfect fluids were considered, we have not
assumed anything about the form of the energy—momentum tensor so far.

If we now assume that the fluid is perfect, then we conclude from the equations of motion
T“B;Bzo that eitherwm =0 or p=const(see also Ref. )9 This means that a geodesic perfect fluid
can be rotating only if it is in fact dust; the constgntan be reinterpreted as the cosmological
constant. In this case, the energy—density obeys the conservation equ%u(“),azo and
Eq. (3.13 need not be assumed separatéBor dust, results closely analogous(819—(3.25
were obtained by Elli$® by adapting an orthonormal vector basis and a coordinate systerh to
andw®. Of the exact solutions with nonzero rotation found by Ellis most, but not all, do belong
to the collection considered in this series of papers. They will be described in paper 2.

IV. EXAMPLE: THE STEPHANI SOLUTION *°

The Stephani metric witlp=const0 [Eq. (4.22 in Ref. 10 is not in fact a perfect fluid
solution, as was found out while trying to construct the Plekanoordinates for it(The error is
deeply hidden and so far could not be corrected. | am grateful to H. Stephani for cooperation on
this point) Therefore, we shall consider only the dust solution, @) in Ref. 10. In the original
notation except for the signature, the solution is

ds?= 7,,dx2dxP— N2(dx})?, 4.1
wherea,b=0,2,3, »,,=diag(1-1,—1) and
N:=32M In T+gx2+h,
T2 = ap(X2—3)(xP—fP), (4.2)

the functionsM (x1), f3(x1), ga(x}), andh(x?) all being arbitrary. The velocity field and the
energy—density of the dust are, respectively,

Ua=T4, U1=0, 4.3
ke=M/(NT?). (4.9
The formula for the velocity field can be written as
Ue=T ,~Tx',, (4.5
which immediately suggests the choice of the Plesbanoordinates of Sec. IlI:

=T, &=xY 9=-T,. (4.6)
J. Math. Phys., Vol. 39, No. 1, January 1998
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Equation(3.14) defining{ is here
MT 2930T = — €31°0T | £ 4. (4.7)
The following identity is useful in calculations:
T =T, -T#=1 (4.8

Using this, one can verify that only two of the three equati@h¥ are independent. The solution
of (4.7) is

{=M[U+N(T D], 4.9

where\(T,,) is an arbitrary function, ant is defined by
U=J [f3 1(1-X%) =0, Y(X)+ 2 XY(X)] 1dX, (4.10

the functionY(X) being determined by
T(1-X2-Y?) V2= —£0 +§2 X+f3,Y. (4.11

In the integral(4.10, the coordinatex! and the quantityT,; are to be treated as parameters
independent oK. After the integral is calculated, one should substituteTigrfrom (4.11), while
X andY are to be replaced by

X=(x*>—12)/(x°—19), Y=(x3—13)/(x°—19). (4.12

The integral in(4.10 is expressible in terms of elementary functions, but the result is rather
complicated.

As can be seen, the soluti¢d.1)—(4.4) becomes very complicated in the Plébkincoordi-
nates and it is unlikely that it could be found in such a form from the Einstein equations. Thus,
although the coordinates are invariantly defined, they are not necessarily convenient for explicit
calculations.

A collection of other solutions represented in the Plati@coordinates can be found in the
extended version of Ref. 6.

V. THE KILLING VECTOR FIELDS COMPATIBLE WITH ROTATION

We shall assume that the symmetries of the space(ifmany exish are inherited by the
source, i.e., that if the Lie derivative of the metric tengqy along the vector fielk® is zero,
“19ap=0, then the velocity field and the particle number density are also invarigat®=0
=_%n. (For a pure perfect fluid source the inheritance is guarantéefdllows that the rotation
tensor must also be invariant;yw,z=0.

In consequence df3.2]) the equationZ,u*=k*u® ,—u*k® ,=0 implies that

k* =0. (5.1)
In consequence dB.23 and of the assumptiorr,n=k“n ,=0, the equationZ,w*=0 implies

«,=0. (5.2
The equation,w,z=0, in consequence @B8.25 implies

k! +k2,=0, (5.3
J. Math. Phys., Vol. 39, No. 1, January 1998
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and the equatioriz,u,=0, in consequence @B.19 implies
KOy=—k2—ykl,, Ko, =—yk',. (5.9

(The equations#,u,=0 and %4,u“=0 provide independent pieces of information because the
equations,g,5=0 have not been used so faEquation(5.3) is the integrability condition of
Egs.(5.4). The general solution of Eq$5.1)—(5.4) is

kO=C+¢_y¢,ya k1=¢,y! k2:_¢,x: k=X, (5.9

whereg(x,y) and\(X,y) are arbitrary functions an@ is an arbitrary constant. Symmetries need
not be present, in fact the Steph®rsolution considered in Sec. IV is an example of a rotating
dust solution with no symmetries. In this cage=\=C=0. However, if any symmetries are
present, then the Killing vector fields must have the fdfb).

Suppose tha is not a constant, i.e., that a Killing vector figd exists that has a nonzero
component in the- or y-direction (in invariant terms this means that the vector fikftis not
spanned on the vector fields of velocity?, and rotationw®). We can then, within the Plebski
class defined in Sec. lll, adapt the coordinatek“an such a way thak® = 51"' , i.e., so that the
metric becomes independentdf From(3.10—(3.12 and(3.18 the transformation functions are

t'=t—=S(x,y), X'=F(Xy), Yy =G(xy), z'=z+T(XyYy), (5.6
whereT is arbitrary, whileF, G, andS obey
F.Gy-F,Gx=1, S,=GF,-y, S,=GF,. (5.7
In order to lead tck® = 5{" the functionsF, G, andT must obey in addition

_(¢+ C)+G F|x¢,y_ G F,y¢,x: 0,
vaqﬁ,y_F,y‘ﬁ,x:la G|X¢,y_G,y¢,x:O: (5.8

T,x(ﬁ,y_T,y(ﬁ,x:_)\- (5.9

The unique solution of Eq$5.8) is G= ¢+ C, which obeyq5.7) as well[in virtue of the second

of (5.8)]. Equation(5.9) simply defines the accompanyifigwhich is seen to exist always. Since

¢ was assumed nonconstant, the transformation is nonsin@uiléact its Jacobian equals just,1

and results inp=Yy in the new coordinates. As already noticed, the metric becomes independent
of x after the transformation. This property is preserved by the transformgBo®sbut with F,

G, S, andT restricted now by

G=y, F=x+H(y), T=T(y), S=fyH,ydy+A, (5.10

whereA is an arbitrary constant artd, T are arbitrary functions. The functions given (.10
fulfill (5.7) identically. Note that the transformation td*'za‘j“' exists irrespectively of any
possible functional relation among ¢, andC in (5.5); the only case when it fails igy=const.

A solution of the Einstein equations may have more than one Killing vector field of the form
(5.5. In that case, the transformati@b.8)—(5.9) changes only one of them to the preferred form,
the others will preserve their more complicated appearance. An example of this situation is the
Godel solutior transformed to the Plebaki coordinates; see Refs. 4 and 5:

ds?=(dt+ydx)?— 1 y?dx®— (key?) dy?’—2ke 1dZ, (5.11)

J. Math. Phys., Vol. 39, No. 1, January 1998

Downloaded 09 May 2008 to 193.0.83.155. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



388 Andrzej Krasinski: Rotating dust with G;. |

wherex=8nG/c* and e is the energy—density related to the cosmological constant by
A= % ke. (5.12

(Note that if the cosmological constant is reinterpreted as pressure, then the resulting perfect fluid
has the equation of state=p. Hence, the Gael solution may have been the first example
considered in the literature of a “stiff perfect fluid,” now familiar from the studies of solution-
generating techniques; see, e.g., Verdagtehe symmetry group of this solution is 5-
dimensional, the independent 1-parametric subgroups were given in Ref. 4. Those connected with
nonconstant in (5.5) are the following three:

x=x"+sq, (5.13
x=e %2x’, y=e%2y’, (5.19
t=t'+(2v2/K)arctafiv2s;(Ky')  }(1—s3x") 1],
x=[K2x'y'?(1—s3x") — 255]/[ 255+ K?y'2(1—s5%")?], (5.1
y=(1—s3x")%y" +2s5/(K?"),

wheres;, s,, ands; are the group parameters akd= («¢€)*2. The Killing vectors are, respec-
tively, k(;)= 47 [corresponding toaC=\=0, ¢=y, the one constructed i6.8—(5.9], k{3
=—x57+yd5 (corresponding tap=—xy) and k(g =4(K?y) 155+ [x*— 2/(Ky)?] 57— 2xy sy
[corresponding tap=x2y+ 2/(K?y)].

VI. THE ALGEBRA OF THREE KILLING FIELDS

Suppose that three Killing vector fields exist and all three are spannad andw®, so that
¢=const in(5.5) for each of them, i.e.,

0 =Ciog+Ni(xy)85, 1=1,23. 6.2)

From the Killing equations one can then easily conclude that constanta,, andaj exist such
that a k1) + a2k o)+ azk3)=0, i.e., the symmetry group is in fact two-dimensional. Hence, no
three-dimensional symmetry group with the generatér$ exists; for a three-dimensional group
at least one of the generators must be linearly independent eihdw® at every point of the
spacetime region under consideratiprhe algebrd6.1) corresponds to a three-dimensional group
that has two-dimensional orbits, and it turns out that in the case considered the group has to be
two-dimensional as well. As will follow from the whole of the present work, three-dimensional
symmetry groups with two-dimensional orbits just do not exist for rotating Hust.

In Secs. VIl and VIII we shall consider the situation when exactly one generiefgqr,, is
everywhere linearly independent of andw®, while the other twoké"z) andkf“3), are of the form
(6.1). In agreement with the result of Sec. V, the Pletlartoordinates can be adaptedk@) o)
that

k&, =55, (6.2
while

ki2)=C205+N\a(X,y) 33, K3 =C3d5+\3(X,y) 3, (6.3
J. Math. Phys., Vol. 39, No. 1, January 1998
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and the coordinate transformations preservi6®) and (6.3) are (5.10. Note thatC, and C,
cannot vanish simultaneously because otherwise the Killing equations immediately imply that
either kfg):constk(“z) (in which case the symmetry group is two-dimensigral the metric is
singular. However, with no loss of generality we can assume that

027&0203, (64)

because the Killing vector fields are determined up to linear combinations among them. Hence, if
initially C,# 0+ C3, then we takek 3y =K(3,— (C3/Cy)K(,) instead ok(,, as the basis generator.
If initially C,=0+#C3, then we exchange the labels “2” and “3.”

We shall keep the choicg.4) throughout Secs. VII and VIII.

VIl. THE GENERATORS, THE KILLING EQUATIONS AND THE EINSTEIN EQUATIONS
FOR A BIANCHI TYPE Il ALGEBRA

All the cases that arise follow as limits at different stages of calculation from the generic case
N,# 0, and we shall consider it first. The commutators of the Killing vectors are

(K1) K2 ]*=Nax/N3)K(3),  [Ke2),K3]“=0,

(7.2

[Ke1) Kz ] = N\3x/N3)K3 -

The Killing vector fields will thus form a Lie algebra when
Nox=DbN3, A3x=C\gz, (7.2

whereb andc are arbitrary constants. The cas# 0 has to be considered separately. Then

A3=B(y)e”, A=(blc)B(y)e“+a(y), (7.3

where a(y) and B(y) are arbitrary functions. However, in this case we can tb@: kf“z)
—(b/c)kfg) as the new basis generator insteadqgg, and the result is equivalent to assuming
b=0. Hence, withc# 0, we can takdr=0 with no loss of generality.

The further procedure consists of the following steps.

(1) Adapt the coordinates to the Killing fields to make them as simple as possible.
(2) Solve the Killing equations for the components of the metric tensor.

(3) Simplify the metric as far as possible by coordinate transformations.

(4) Solve the Einstein equations.

The coordinate transformations in steps 1 and 3 in general lead out of the $Xebkass
defined in Sec. lIl.

This procedure will be presented in some detail below. In the present case the result from the
Einstein equations is that either=0 or there is no rotation. Since we are interested in rotating
solutions only, the case# 0=b need not be followed further. We thus assume

c=0. (7.9
Then
A3=B(Y), A=bB(y)x+aly). (7.9
The algebra of the Killing vector fields is of Bianchi type Il whbes0 and of Bianchi type |
whenb=0.

In order to simplify the Killing vectors we now transform the coordinates as follows:
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(t',x",y"H)=(xy), z'=—(alCyt+2z/p. (7.6

The transformation is not of the for(s.10), so the new coordinates do not belong to the Plskian
class, and the forms of velocity, rotation, and the metric will no longer agree(®itl9—(3.25.
The Killing vector fields in the new coordinates become

kiy=907, k=38 +bxdz, k(3=903, (7.7
while the velocity and rotation fields become
U= 88— (alCy) 85, w*=(n/p)ss. (7.9
The transformed metric is independentoéndz, while the Killing equations fok?z) imply
Joo=1+(a/Cp)?hsyy), Go1=Y+(a/C;)0ss,
902=0, go3= (a/Cy)haa(y),
911=haa(y) (bt)>=2h4(y)bt+hy(y),

912= —haa(y)bt+hax(y), g13= —haa(y)bt+hysy), (7.9

920=h22(Y),  G23=hoa(y), Jaz=hsi(y),

whereh;;(y), i,j=1,2,3, are arbitrary functions ¢f, to be found from the Einstein equations.

The orbits of the symmetry group are now the hypersurfgeesonst. In order to follow the
standard technique of the Bianchi-type spaces we should now carry out a coordinate transforma-
tion that preserveé/.7) and makes thg-coordinate curves orthogonal to the group orbits, so that
do,=01,=03=0 after the transformation. This step is not in fact necessary for solving the
Einstein equationén general it only reshuffles the unknown functions without eliminating any of
them), but in the case under consideration it leads to a simplification. The transformation is

t=t"+fo(y'), x=x"+fi(y"), y=fi(y"),

(7.10
z=7'+bfy(y")t' +1f3(y"),
wheref (y') must obey
foyr=—Taf 1y +(alCo)hysfyy,
(= 53+ hy—h3ghg) 1+ (hip—hyghos/hagt afhy/Cy) oy, =0, (7.1

f3’yr = (a/CZ)fO‘yr + (bfo_ h13/h33)f1‘yr - (h23/h33)f2’yr .

The equations are well-defined because of the following.

I. h33#0; otherwise the rotation vector would be null, which is a physical impossibility.

Il. —f3+hy;—h24/hs3#0; otherwise the determinant of the metric tensor becomes positive;
i.e., the metric acquires an unphysical signature.

Equations(7.11) are to be understood as follows. The functifyfy’) can be chosen arbi-
trarily, therefore we choose it so thgé,= — 1 after the transformation. Witf,(y’) thus chosen,
f1(y’") is found from the second @¥.11), thenfy(y’) is found from the first 0f7.11), and finally
f3(y’) is found from the third of7.117).

After the transformation the metric becomgsimes dropped
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Joo=1+(a/Cy +bf;)?hgg,
901=Y(Y) +(a/Cy+bfy)(—hgbt+hyz—bfshsy),
902=012=023=0,
Jo3= (a/Cy+bfy)hgs,
g11=haa?(t+fg)?—2hygb(t+fo) +hyy,

g13= —hggb(t+fg)+hys, (7.12

022=—1, daz=has(y),
whereh;;(y), i,j=1,2,3,fo(y).f1(y), Y(y)=f2(y) anda(y) are functions to be found from the

Einstein equations, anll and C, are arbitrary constant§;,# 0.
For convenience in calculations we introduce the new functi@fg), A(y), kqis(y), and

F(y) by
933=—G?(y), alChtbfi=A(y), hiz=—G?(kzt+bfo), (7.13
hy1=Y2— F2—k2,G2+b?G2f3— 2bfok,5G2.
The velocity field in the coordinates 67.12—(7.13 is
u= 65— Ad3. (7.19
Now the metric form is:
ds?=(dt+Ydx2— (Fdx)?—dy?— G[Adt— (bt—k;3)dx+dz]?. (7.15

The components of the Einstein tensor will be referred to the orthonormal tetrad of &rms
=e dx*, i=0,1,2,3, uniquely implied by7.15. Note thate’=u,dx®. Hence, the Einstein equa-
tions are
G = 1
00 K€ (7.16
Gll=G22=G33=A, Gij=01 when |5éj,

wheree is the energy—density antll is the cosmological constant.
The equationG,,=0 implies thatbA ,=0. The caseb=0 will be considered separately
below, so we take here

A=const. (7.1
ThenGgy,=0 implies
k3= const. (7.18
We can then carry out the coordinate transformation:
z=7' - At—kix, (t,x,y)=(t',x",y"), (7.19

which has the same result as if
J. Math. Phys., Vol. 39, No. 1, January 1998
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A= k13:0, (72@

and we shall assume this from now on. The metric is still independertasfd of z, while A
=ki13=0 impliesg15=0, i.e., the Killing vectorsk;,= 7 andk(;,= 5 are orthogonal to each
other. The equatiosy;=0 then has the integral

Y ,G/F=B=const, (7.21

and we can assunt+0 because rotation would be zero wB=0=Y .

At this point, only the diagonal components of the Einstein tensor are still nonzero, of which
G just defines the energy—density, and the other three are functionally depénelerit G,;
=A=G,, are fulfilled, then so i5533=A). They determind-(y) andG(y).

It is convenient to introduc¥(y) as the new variable. The equatiGn;+ G,,=2A can then
be written, with the help 0f7.21), as

(F?G v/G) y=2AG?/B2— 3, (7.22

and so

2 1 A 2
F2=|C-ZY+2 G2dY|G/G.y, (7.23

2 B?
whereC is a new arbitrary constarive can assum& y#0 becausé y=0 impliesb=0 from
G11— G5»,=0, andb=0 will be considered separatelyUsing (7.23 in G,,=A we obtain the
following integro-differential equation that determin@s

C1Y2A
o Ytepe

1 1 2
-2 b’GG y+ > (B/IG)? GZdY) (Gy/G—G yy/Gy)=0. (7.29

In the special casd =0 this becomes an ordinary second-order differential equation. It is
easy to get rid of the integral by transformifiy24) appropriately and differentiating the result by
Y [in this way a third-order differential equation f@&() is obtained or by introducing the new
variableu(Y) by dY/du= 1/G? [this results in a second-order equation @&fu)]. However, no
progress toward solving7.24) results in either case.

With the help of the equations,;=A =G,, the formula for energy—density may be simpli-
fied to

ke=(B/G)?’—(bG)?—2A. (7.25
Note that the solutions considered here have a meaningful timid.
WhenG = const, Eqs(7.23 and(7.24) no longer apply and one has to go back to the Einstein
equations. They imply
G?=B?/(4A) (7.26
(i.e., necessarilyA >0) and

F2=1Y?2+DY+E, (7.27)

whereD andE are constants. I¥ is chosen as the new coordinate in place ofthen from(7.21)
and (7.26 the metric componergyy is

gyy=—(GI/BF)?=—1/(4AF?), (7.28
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and the resulting metric is the ‘@el solution(see Ref. 4 Note thatG=const is equivalent to
e=const; see Eq7.25.

WhenG v#0=Db, Eq.(7.24 impliesG=ePY*E, and this leads to the Lanczos solutieee
Ref. 4.

These derivations of the Lanczos andd8bsolutions lead to their invariant definitions that
are based on weaker assumptions than the definitions known so far. The definitions are:

(1) The source in the Einstein equations is a rotating dust.

(2) The spacetime has a 3-dimensional symmetry group.

(3) Two of the symmetry generators are spanned on the vector fields of velidcdpd rotation
w?, while the third one is linearly independent ©f andw® at every point.

(4) The generators form a Bianchi type Il algebra.

(5) In the solutions of the Einstein equations, the Bianchi type I limit is taken of the Bianchi type
Il symmetry.

(6) The Galel solution results when the matter—density is constant; the Lanczos solution results
when the density is not constant.

The generalization with respect to the earlier definition is contained in point 3: in previous
derivations the two generators were assumed to be collinearufitmdw®, respectively, from
the beginning.

VIIl. THE GENERATORS, THE KILLING EQUATIONS AND THE EINSTEIN EQUATIONS
FOR A BIANCHI TYPE | ALGEBRA

We shall consider the cabe=c=0 in (7.1)—(7.2). The reasoning up to E¢7.16 applies also
here, but(7.17) no longer follows. Instead, the equati@ ;=0 can be integrated with the result

kizy=BF/G*~YA,, (8.1
whereB is an arbitrary constant; the equati@g;=0 can be integrated to

Y, =(C—BA)F/G, (8.2
whereC is an arbitrary constant; and the equati®g,=0 can be integrated to

A,=(BY—D)/(FG?), (8.3

whereD is one more arbitrary constant.
At this point, only the diagonal components of the Einstein tensor survive, Ggd
= ke— A just defines the energy—density. The equatiGRgs= A = G,,= G35 can be written as

Bt B i6,6- 2B A 8.4
TaFG Wyt gEg Yyt CwIST R AT ®4
P CLia VA L N 8

4FG Y 4FG Y FG 4FG 'Y U ®9
%8 g Ry F Pt o A=A 8.6
A4FG 1Y 4FG YW ARG Y T ®9

[In order to arrive at this form, one has to calculBtérom (8.1) and replace one fact® in B2
by the resulting expression; then replace dngin Y?y from (8.2 and replace oné , in A?y from

J. Math. Phys., Vol. 39, No. 1, January 1998

Downloaded 09 May 2008 to 193.0.83.155. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



394 Andrzej Krasinski: Rotating dust with G;. |

(8.3).] The set(8.4—(8.6) can be integrated to a first-order set. Subtract®g) from (8.4) and
multiplying the result by=G we obtain an equation that is easily integrated to

FG,~GF,—Bkj3— 3 BAY+ 3 CY— 3 DA=E=const. (8.7

Now adding (8.3 and (8.4), and multiplying the result byvG we obtain another integrable
equation whose integral can be written in the form

1 1 1
FG,=5 Bkigt 5 BAY- 3 CY+2AJ' FGdy+Hy, (8.9

where Hg is an arbitrary constant. The integral can be calculated if the new variglyle is
introduced by

dy/du=1/(FG). (8.9

From (8.7) and (8.8) it follows that
1 1
GF,y=—§Bk13—§DA—E+2AJ’ FGdy+H,. (8.10

In the set(8.4)—(8.6) there remains one equation that has still not been used. However, at this
point it merely introduces a relation between the arbitrary constants, i.e., implicitly défijes
terms of the other constants. This is seen as follows: substitute for Y ,, F ,, G, andA

from (8.1)—(8.3), (8.8), and (8.10 in (8.5), thereby obtaining an algebraic equati@re., one
without derivatives Differentiate it byy and eliminate the derivatives in the same way again.
What results is an identity®80. Hence, the left-hand side (8.5) is identically constant in virtue

of the other equations.

In terms of the variable from (8.9), Egs.(8.1)—(8.3), (8.8), and(8.10 form an autonomous
set of first-order equations that can be investigated further by qualitative megdemise.g., Ref.
17). This is left as a subject for a separate study.

In analogy with the Bianchi type | spatially homogenednenrotating dust solutiongsee
Ref. 18 one might expect further progress by adapting the coordinates suiabthe case
considered in Ref. 18, the metric can be diagona)izétbwever, this author was not able to
achieve any such progress.

The functionsA(y) andkq3(y) have invariant meaning: they are proportional to the scalar
products of the Killing vectorgsee Eqs(7.7) and(7.195 with b=0]:

A= =05k K% G2, Kig= —0,5K0 k) G? (8.11)

(note thathz—gaﬁkfg)kfg), i.e., it is a scalar, too Hence,A=0 andk;3=0 are invariant
properties. Note thah=0 implies, through8.3), that eitherY =const(in which case there is no
rotation or B=D=0. In the latter casek,;3=const and the coordinate transformatios z’
—k;3x leads tok;3=0 in the new coordinates. WitA=k;5=0, the Lanczos and Glel models
result from the Einstein equations as the only solutions. Hence, one more invariant definition of
these models follows, similar to the six-point definition at the end of Sec. VII. Points 1, 2, 3, and
6 remain unchanged, while points 4 and 5 are replaced by the following.

(4) The generators form a Bianchi type | algebra.

(5) From the two generators spanned wh andw®, two linear combinations can be con-
structed that are orthogonal to each other.

Point 5’ is equivalent to the existence of coordinates in whichO.
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Note that the Bianchi type | models considered in this section are more general than the
Bianchi type | limit of the models from Sec. VII; those from Sec. VII haeg k;3=0 in virtue of
Einstein’s equations.

The assumptiok,3=0 (i.e., gaﬁkf“l)k(ﬁs)z 0) alone does not lead to any immediate progress in
solving the Einstein equations.

The Lanczos solution was originally derived in Refiah English translation, Ref. 19, is now
availablg, and rediscovered in Ref. 20. Its limit of zero cosmological constant was rediscovered in
Ref. 21 as the cylindrically symmetric subcase of a family of stationary axially symmetric solu-
tions. Geometrical and physical properties of the Lanczos solution were discussed in Ref. 1, and,
in a more modern language, also in Ref. (&2 latter only for the casa =0).

Coordinate transforms of the @el solution were published as new solutions in Refs. 23 and
24 (concerning Ref. 23 see also Ref.)25

A metric form that is a modest generalization of thed8bsolution(it has two unknown

functions of one variable in place of @el's e and ele) came to be known as “Giel-type
metric” and became the subject of a rather large number of papers; the activity seems to have
started with Ref. 26, one of the most recent appearances of it is Ref. 27. However, it was proven
already in Ref. 28 that the only perfect fluid solution with this metric is theébsolution itself;
indeed, all other “Gdel-type solutions” have various nonperfect fluid sources, and therefore they
do not show up in the scheme considered here.

As mentioned in Sec. |, several authors considered rotating charged dust solutions under the
additional assumption that the electromagnetic fielg, exerts no force on the charged dust
particles, i.e., thaf ,,u”= 0. These solutions were all derived with another, rather natural assump-
tion: that all charges are attached to dust particles so that no currents are present apart from the one
created by the dust flow. Those solutions are found in Refs. 29—36. The one in Ref. 29 has only
two-dimensional symmetry, so it could not come up in this investigation. The remaining ones are
stationary and cylindrically symmetric and would have shown up here, had we allowed charges
and electromagnetic fields in the source. They have the following properties.

The one from Ref. 30 becomes a vacuum solution in the Ilyif=0.

The one from Ref. 31 does not allow this limit at all.

The limit F,,=0 of the solution from Ref. 32 is the Minkowski metric.

The Som—Raychaudhuri solutiShreproduces the\ =0 subcase of the Lanczos solution
whenF ,,=0.

The first of the six solutions by Banerjee and Bariérjeduces to the Giel solution when
F,.,=0. The other five behave as follows: 2 and 6 become vacuum solutionskyhen0, no. 5
becomes the Minkowski spacetime, no. 3 does not allow this limit at all, and no. 4 has has a
two-dimensional symmetry group.

Both solutions by Mitskiei¢ and Tsalakotr are generalizations of the ‘@el solution; the
first one of them is in addition a generalization of the full#0) Lanczos solutiorfln fact, the
second solution has a nonzero pressure gradient that remains nonzero even after thg,limit
=0 is taken. Another limiting transition, given in the paper, reduces the solution delGg In
the limit A =0, the first solution reduces to the one by Som and Raychautthuri.

The two solutions from Ref. 36 are coordinate transforms of those from Ref. 35.

Three other generalizations of the @ solution exist in the literature that have zero accel-
eration. Two were provided by Raval and Vaidfahe first of them is stationary, the second
expanding, both have anisotropic pressure. The third is the solution by Reffoimcwhich the
source is a free electromagnetic fi¢tke also Ref. 39 The metric of the Rebgas solution is the
same as that in the first Banerjee—Banerji solution. This coincidence was explained by Ray-
chaudhuri and Guha Thaku&The two electromagnetic field®ne generated by a current, the
other source-fréeare related by a point-dependent duality rotation.
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IX. ANOTHER INVARIANT DEFINITION OF THE GO DEL AND OZSVATH CLASS I
SOLUTIONS

Assumptions about invariant properties of the velocity field of matter usually lead to progress
in solving the Einstein equations; the most impressive example were the shear-free normal models
of Barnes*! where a large class of solutions resulted from the assumptions of zero shear and zero
rotation in a perfect fluid source. Inspired by this, one can try to make assumptions about other
vector fields characterizing fluid sources, e.g., the rotation. Indeed, it turns out that the assumption

Wa;B: O, (91)
i.e., the rotation field being covariantly constant, together with the assumption of geodesic motion
of a perfect fluid source, leads uniquely to two solutions of Einstein’s equations. However, both of
them were obtained before by other methods. One is the Ozsvath class Ill thetriginally
identified as one of the solutions that are homogeneous in four dimensions; the other isléhe Go
solutiorf which is the shear-free limit of the Ozsvath solution.
From (9.1) and from the Ricci identity &, z,;=R’,z,W, one obtains for the Ricci tensor,
R”,w,=0, (9.2
and then from the Einstein equations for a perfect fluid,

GuptAQup=k[(e+P)UUg—PQ,pl, k=8mG/c?, 9.3

and fromu“w,=0 one obtains

A= 3 k(e—p). (9.9
In the caseA =0, this is the well-known “stiff perfect fluid.” Equatior(9.4) is a necessary
condition for(9.1) when the source is a perfect fluid.

As stated at the end of Sec. lll, if the perfect fluid moves geodesically with rotation, then
necessarilyp=const. Equatior(9.4) implies then thate=const, i.e., a geodesically moving and
rotating perfect fluid whose rotation vector is covariantly constant must have constant matter
density. SinceA =0 may be assumed with no loss of generalihis leads only to redefining),
we shall assume this from now on. Thes p ande+p=2p is a conserved quantity. Hence, we
may assume

n=e+p=2p=const 9.5
in all formulae. In particular(3.20 implies then that
g=delg,z)=—(2p) "% (9.6
Using (9.6) and(3.23 in (9.1) we obtain, in the Plebaiki coordinates,
3 N(Qa3s~ Ypsat Japa) =0. (9.7
After a simple algebraic manipulation this set of equations yields the following result:

033= —A?=const, 94p,z=0, 9131=023;=0,

023x—913y=0. (9.8
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The second equation i(9.8) means thatv* is a Killing vector, as should be expected frgénl),
(9.6), and(3.23. Equations(9.8) imply thatg,3 andg,; depend only orx andy, and that there
exists a function7(x,y) such that

9235=7y, 91377 x- 9.9

Since we assumed that rotation is nonzero, we knowdhat —gaﬁw‘*wﬁ/nza& 0, and so we are
allowed to carry out the coordinate transformation:

Z:Z,_.ng3, (91@
that, in virtue of(9.9), will lead to
913=923=0 (9.11)

in the new coordinates. We have thus arrived at the metric form:
ds?=(dt+ydx)?—h(t,x,y)[dx+k(t,x,y)dy]?—I(t,x,y)dy’— A2dZ, (9.12

whereh, k, and| are functions to be found from the Einstein equations And an arbitrary
constant.

From now on, the allowed coordinate transformations(&r&—(5.7), but with T=const.

The components of the Einstein tensor will now be referred to the orthonormal tetrad implied
by (9.12. The equatior,,=0 is integrated with the result

K =K(x,y)I¥h32—1/h. (9.13
The equatiorG,,= kp, with | eliminated by(9.6), is integrated with the result
h=[H2(x,y) + K%/ (4xp)]Y2+H sin2(xp)¥2+ 7(x,y)], (9.19

where H(x,y), k(x,y), and 7(x,y) are arbitrary functions. NovG;+ G,,=2kp imposes an
additional condition or(9.13 and(9.14 that leads t&H=0 or

H=(A%- k/p)YK/(2k). (9.15

The caseH =0 leads to the Gael solution(see below; so we shall consider the more general case
(9.15. Then, from(9.14),

h=[K/(2«)[{A+ (A2— k/p)*? sin2(kp) Y%+ 7]}. (9.1
With suchh, Eg.(9.13 can be integrated with the result
k=[2A(kp)¥?h] Y(A?— kIp)*? cog 2(kp) Y2+ 7]+ L(X,y), (9.17)

whereL is a new arbitrary function. The functidnis then calculated fron9.6), and an explicit
solution of Einstein’s equations is determined (8y16 and(9.17).

The transformationgs.6)—(5.7) with T=const can now be used to simplify the metric tensor
so thatL=0. The transformation that yields this is given in Appendix A. The still allowed
coordinate transformations that preserve the propery0 are given by(5.6—(5.7) with T
=const and with the additional condition

KF F y+[«/(A?pK)]G 4G ,=0. (9.18

With L=0, from the equation&y;= Gy,=0 one obtains further
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7x=2y(kp)"?=A(pl ) K ©.19
7y=—(kIp)YK 4 /(AK?).
The integrability condition 0f9.19 is
(p/ ) YA(AK) gyt (kp) L U(AK)] 4~ 2(xp)H?=0. (9.20

By the same method as was used in Ref. 4 it can now be shown théd.EQ.is at the same time
the integrability condition for such a coordinate transformat®m6)—(5.7)—(9.18 after which(see
Appendix A again

K=(klA)y?, (9.21)
and then(9.19 implies
T=C=const. (9.22

The value ofc can be set arbitrarily by transformationstodf the formt=t'+const. To match
Ref. 11 one should choose

c=—ml2. (9.23
Finally, the functionsh, k, andl in (9.12 are thus

h= 3 y?{1+[1—«/(pA*)]*? cog 2(xp)* 2]},

k=3 [(xp)"?n] ™ [1— x/(pA?)]Y? si 2(xp) "],

(9.29
| =(4p2A®h)~ L.
This is equivalent under a simple coordinate transformation to the Ozsvath class Il solution from
Ref. 11.
The velocity fieldu®= §; for this solution has nonzero shear. The shear will vanish if and
only if:

A?=k/p, (9.25

and then the Gael solution in the form5.11) results.
The invariant definitions of the Ozsvath class Il and of thal@solutions given at the end
of Sec. | follow from the derivation in this section.

X. CONCLUDING REMARKS

These are the main results of the paper.

1. With nonzero rotation, any Killing field, existing for a metric whose matter source inherits
the symmetry, must have the fort6.5) when represented in the Plels&hcoordinates. When
¢.,#0, the Plebaski coordinates can be adapted to the Killing field so #fat 6.

2. When two of the generators of the group are spanned on the velocity and rotation vector
fields, while the third one is not, the collection of solutions with a dust source is exhausted by the
following two sets.

(a) The set of Sec. VII, defined by a single differential equatidr24), where the metric is
(7.19 with A=k.3=0, F defined by(7.23 andy(Y) defined by(7.21).
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(b) The set of Sec. VIII, where the metric {2.15 with b=0, and the metric functions are
defined by an autonomous set of first-order equati8rs—(8.3), (8.8), and(8.10 [the integral in
(8.8 and(8.10 can be calculated if the variable is changed a8if)].

3. The solutions of Lancz63® and Galef are limiting cases of both sets; their invariant
definitions are given at the end of Sec. VII and of Sec. VIII.

4. With no symmetries pre-assumed, if the source is a rotating geodesic perfect fluid whose
rotation vector field is covariantly constant, then the solution of the Einstein equations is the
homogeneousin four dimensions Ozsvath class |l solutiolt If shear is zero in addition, then
the Galel solution(Ref. 2; see also Ref.)4esults.

Note the modification that the result$ap and Zb) introduce in theorem 3.1 of King and
Ellis.*? Those authors considered spatially homogeneous models in which the velocity field of
matter was tilted(i.e., was not orthogonplwith respect to the hypersurfaces of homogeneity.
Theorem 3.1 says, among other things, that there are no tilted models of type | and that tilted
models of type Il have zero vorticity. Evidently, this does not apply to the case where the
hypersurfaces of homogeneity are timelike. The solutions of Sec. VII are of Bianchi type I, they
are “tilted” (because the velocity field is tangent to the hypersurfaces of homogengty
rotation is not zero. The solutions of Sec. VIII are tilted in the same sense, yet they are of Bianchi
type I.

Other solutions that have been published earlier will be mentioned where appropriate in
papers 2 and 3. A general overview of literature on related subjects will be included in paper 3.
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APPENDIX A: THE TRANSFORMATION TO L=0 IN (9.17)

A transformation of the clas®.6)—(5.7) with T=const changes the functiohsandk to such
ones that can be cast in the fof®16) and(9.17), respectively, with the new function§’, 7',
andL’ expressed through the old ones as follows:

K'=K(F x+LG x)2+ kG2, /(A%pK), (A1)

T=7— 2(Kp)1/ZS+U, (A2)

L' =K' YKF xF i+ 2KLF /G s+ KL+KL?G /G 1 + kG /G / [(A?pK)],  (A3)
whereS in (A2) is the function from(5.6)—(5.7) andU is determined by

cot U=2A(kp)Y42G ,/(F ,+LG )] Y —K(F 5 +LG )% (2k)+ G?X,/(zAzp K)].
(Ad)

Note that we are applying hei®.6)—(5.7) in reverse, i.e., with the roles of* and x’“ inter-
changed. The functions of the inverse transformation, denoted ag&@nmbyG, andT, still obey
(5.7). For consistency of all the formulae it is convenient to chddsteom the segmentsw, 27).
Then, the limiting case& ,,=0 andF ,,+LG ,,=0 are included in(A4) as the limitsU=27
andU =, respectively(these limiting cases occur whén,,=0 in the original coordinatgs

From (A3), the equatiorL.” =0 turns out to be consistent witb.6)—(5.7). In order to see this,
one can solvelA3) and (5.7) for F,, and F ;, and then impose the integrability condition
F xy'—F yx=0. What comes out is a well-defin¢though highly nonlinearpartial differential
equation of second order f@ whose coefficients depend only ghandL.
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The transformation preserving the propelty 0 are(5.6)—(5.7) with (9.18), the latter easily
follows from (A3). Equation(Al) with L=0 then shows hovwK is changed by such a transfor-
mation; this is useful in showing that coordinates exist in which=0 [see the remark after
(9.20]. The proof is identical as in Appendix C to Ref. 4. Note that the conclusion in Ref. 4 is
weaker than it could be: thK(x) [v(t) in Ref. 4] is determined up to an additive constaiit
Hence, by a transformation of the forys=y’ + const and by an appropriate choicefone can
remove the linear and the constant termsirfresp.,v) so thatK«y? (resp.,v=t? in Ref. 4.
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