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Abstract

The Gibbs - Duhem equation dU + pdV = TdS imposes restrictions on the perfect

fluid solutions of Einstein equations that have a one-dimensional symmetry group or no

symmetry at all. In this paper, we investigate the restrictions imposed on the Stephani

Universe and on the two classes of models found by Szafron. Upon the Stephani Universe

and the β′=/ 0 class of Szafron symmetries are forced. We find the most general subcases

of the β′ = 0 model of Szafron that are consistent with the Gibbs - Duhem equation and

have no symmetry.

PACS Numbers: 04.20.–q; 98.80.k
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1. The problem.

In relativity, a perfect fluid is defined as a continuous medium whose state is deter-

mined by the energy-density (ε), the pressure (p) and the four-velocity (uα) fields, and

whose energy-momentum tensor has the form:

Tαβ = (ε + p)uαuβ − pgαβ (1.1)

(we will use the signature (+, -, -, -), Greek indices running through the values 0, 1, 2,

3 and Latin indices running through the values 1, 2, 3). Indeed, this form of the energy-

momentum tensor guarantees that energy transport occurs only by means of mass-flow

what is a characteristic property of perfect fluids. However, a single-component perfect

fluid must also obey the appropriate laws of thermodynamics. One of them is the Gibbs -

Duhem equation which forms a part of the second law of thermodynamics. It says that the

internal energy U , the pressure p, volume V , temperature T and entropy S of a thermally

isolated portion of perfect fluid are connected by:

dU + pdV = TdS . (1.2)

In relativity, and in particular in cosmology, we require that eq. (1.2) applies when

the internal energy, volume and entropy are referred to one particle of the fluid. It is

postulated that the particle number is a conserved quantity so that the particle number

density n obeys:

(nuα);α = 0, (1.3)

and then U = ε/n, V = 1/n and S = s/n, where s is the entropy- density. The relativistic

version of the equation (1.2) for a perfect fluid with the energy-momentum tensor (1.1) is

thus:

d(ε/n) + pd(1/n) = TdS. (1.4)

It is usually taken for granted that this equation applies. However, most of the perfect

fluid solutions of the Einstein equations considered in the literature are thermodynamically

trivial in one way or another. For dust, p = 0, ε/n = const and S = const, so (1.4) is no

limitation. For perfect fluids with a barotropic equation of state ε = ε(p), eq.(1.4) with

dS = 0 is a part of the definition of the solution. For cosmological models with a Robertson

- Walker, Kantowski - Sachs or Bianchi-type geometries, all the functions ε, p and n depend
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only on the comoving time t of the fluid, so any equation of state can be imposed on them,

and then (1.4) simply defines entropy. For solutions that have a symmetry group with two-

dimensional orbits (for example, the spherically symmetric ones), the functions ε, p and n

depend on two variables only. In this case, the left-hand side of (1.4) is a differential form

in two variables and is guaranteed to have an integrating factor, hence T and S obeying

(1.4) are guaranteed to exist.

Problems appear when the perfect fluid solution in question has a one-dimensional

symmetry group or no symmetry at all. For such solutions, ε, p and n depend on three

or four variables, and the existence of an integrating factor for the left-hand side of (1.4)

is an additional limitation on the state functions. This problem received only a fleeting

attention in the literature (see below). In this paper, we shall consider the consequences of

(1.4) for a few perfect fluid cosmological models with no symmetry. If [d(ε/n) + pd(1/n)]

has no integrating factor, then the solution can be interpreted as a mixture of perfect fluids

(possibly interacting through reversible chemical reactions), but not as a single-component

perfect fluid. If (1.3) and (1.4) can be imposed simultaneously, then, for brevity, we shall

say that the model allows for a thermodynamical scheme.

Bona and Coll [1] were apparently the first to observe that (1.4) may lead to additional

limitations for some solutions: they showed that the Stephani Universe [2 - 5] allows for a

thermodynamical scheme only if the metric is restricted so that it acquires a 3-dimensional

symmetry group acting on two- dimensional orbits. Relativistic thermodynamics of perfect

fluids was discussed at length by Coll and Ferrando [6] without invoking explicit examples.

Finally, Quevedo and Sussman [7] gave an example of the Szafron β′ = 0 model [8] that has

no symmetry and allows for a thermodynamical scheme, and showed that the parabolic

Szafron β′=/ 0 model does not allow for it unless it has a symmetry. Quevedo and Sussman

[9] also analyzed the conditions for the existence of a thermodynamical scheme in the

Stephani Universe, and derived the corresponding non barotropic equation of state. In

this case the equation of state does not allow any plausible physical interpretation. This

seems to be the whole body of literature on the subject published so far.

In this paper, we investigate the Szafron models systematically. We identify the most

general Szafron models of the β′ = 0 family that allow for a thermodynamical scheme (sec.

4) even though they have no symmetry, and show that the general Szafron models of the

β′=/ 0 family do not allow a thermodynamical scheme unless they have symmetries (sec.

5). These are the main results of the paper. In addition, in sec. 2 we discuss the necessary
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conditions for the existence of the thermodynamical scheme, and in sec. 3 we rederive the

result of Bona and Coll [1] for the Stephani Universe by a different method and with some

additional details.

The models of Stephani [2] and of Szafron [8] are so far the only known exact solutions

of the Einstein equations that have no symmetry, can be considered to be cosmological

models (because they generalize the Robertson - Walker class of solutions) and allow for

nontrivial thermodynamics; see also Ref. [10]. The other class of solutions found by

Stephani [11] has no symmetry as well, and has some cosmological relevance [10], but it

has constant pressure. Therefore its source is in fact dust in a spacetime with cosmological

constant, and (1.4) is trivially satisfied for it. The well-known Szekeres solutions [12] with

no symmetry are the dust limit of the Szafron models considered here, and so pose no

thermodynamical problems either.

2. The necessary conditions for the existence of the thermodynamical scheme.

Let us write (1.4) in the form:

ω := (1/n)dε− (1/n2)(ε + p)dn = TdS. (2.1)

In the models we shall consider, the quantities ε, p and n will be given functions of the

coordinates, and so ω will be a given differential form in four variables (although the form

is spanned on just two differentials, dε and dn, the function p will in general be functionally

independent of ε and n). Eq. (2.1) can be solved for T and S if ω has an integrating factor,

i.e. if ω ∧ dω = 0. This may be written equivalently as:

dε ∧ dp ∧ dn = 0, (2.2)

which means that a functional dependence (an equation of state) connects ε, p and n.

Note that eq. (1.3) is a necessary, but not a sufficient condition for n to be inter-

preted as a particle number density. The physical particle number density must obey a

thermodynamically meaningful equation of state. In this paper, we shall not impose any

condition on n apart from (1.3). Therefore, only our negative results will be conclusive:

if (1.3) and (2.2) imply additional symmetry, then the model does not allow for a ther-

modynamical scheme in general. If (1.3) and (2.2) can be imposed without introducing a
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symmetry, then additional work on the interpretation of n is required. This we postpone

to a separate paper.

The result of this paper is that for the Stephani models and the Szafron models with

β′=/ 0 a nontrivial thermodynamical scheme imposes symmetries, while the Szafron models

with β′ = 0 are restricted by the thermodynamical scheme in a different way which not

necessarily implies a symmetry in general. (We call the thermodynamical scheme trivial if

it implies p = const, and in particular p = 0).

3. The thermodynamical scheme in the Stephani Universe.

The metric of the Stephani Universe is:

ds2 = D2dt2 − V −2(t, x, y, z)(dx2 + dy2 + dz2), (3.1)

where:

V = R−1{1 +
1
4
k(t)[(x− x0(t))2 + (y − y0(t))2 + (z − z0(t))2]},

(3.2)

D = F (t)V,t /V,

and F (t), R(t), k(t), xo(t), yo(t) and zo(t) are arbitrary functions of time. The source in

the Einstein equations is a perfect fluid with the velocity field uα = D−1δα
0 and energy-

denstity ε and pressure p given by:

κε = 3C2(t),

(3.3)

κp = −3C2 + 2CC,t V/V,t ,

where κ = 8πG/c4 and C(t) is connected with the other functions of time by:

k(t) = [C2(t)− 1/F 2(t)]R2(t). (3.4)

The function F (t) can be arbitrarily changed by transformations of the form t = f(t′), and

C(t) is determined by (3.4). Therefore, there are 5 arbitrary functions of time in (3.1).
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The Stephani Universe has in general no symmetry and is the most general conformally

flat perfect fluid solution with nonzero expansion (see theorem 32.15 in Ref. [13]). A

particle number density function obeying (1.3) has here the form:

n = N(x, y, z)V 3, (3.5)

where N is an arbitrary function.

For reference, the following properties of the Stephani Universe should be noted:

I. When ε,t = 0, the Stephani Universe reduces to the de Sitter solution [3].

II. When k, x0, y0 and z0 are all constant, the Stephani Universe reduces to the general

Robertson - Walker (R-W) metric [3].

III. When (V,t /V ) is independent of any single variable of the set {x, y, z}, it is

independent of all the variables {x, y, z}, and the Stephani Universe reduces to the R-W

metric again (this is verified by a simple calculation).

IV. Property III applies to (NV 3).

V. When x0, y0, z0 are all constant, the Stephani Universe becomes spherically sym-

metric.

We shall refer to these as Properties I, . . . ,V, respectively.

We shall now follow the consequences of (2.2) for the Stephani Universe and show

that it necessarily implies symmetries. The equation (2.1) takes here the form:

ω ≡ (2CC,t V/V,t )[1/(NV 3)],i dxi = TdS, (3.6)

where x1 = x, x2 = y, x3 = z. Since ω0 = 0, it follows that S,t = 0, i.e. that the entropy

per particle is conserved along the fluid flow lines, as it must for a perfect fluid. Because of

Properties I and IV we only need to investigate the case when all ωi =/ 0. Then the equation

ω ∧ dω = 0 implies (ωi/ωj),t = 0, for all i and j, i.e.:

(NV 3),x /(NV 3),y = G3(x, y, z), (3.7)

(NV 3),x /(NV 3),z = G2(x, y, z), (3.8)

where G3 and G2 are arbitrary functions. Eq. (3.7) can be written in the equivalent form:

N,x /N + 3V,x /V = G3(N,y /N + 3V,y /V ). (3.9)

When differentiated by t this becomes:

(lnV ),tx = G3(ln V ),ty . (3.10)
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Because of Property III we only need to investigate the case (ln V ),tx =/ 0 =/ (ln V ),ty , and

then (3.10) implies:

[(ln V ),tx /(ln V ),ty ],t = 0. (3.11)

This is a necessary condition for the existence of a solution of (3.7), and it is an additional

condition imposed on V. After being multiplied by R3V 3[(ln V ),ty ]2, the left-hand side of

(3.11) becomes a polynomial in (x, y, z), and the coefficients of different powers of x, y and

z have to vanish separately. This leads to differential equations imposed on the functions

k, x0, y0 and z0. From Property V it follows that we only need to consider the case when

at least one of the functions x0, y0, z0 is not constant. Since the three functions can be

permuted by relabelling x, y and z, let us assume that x0,t =/ 0. The equations resulting

from (3.11) imply then:

y0 = C1x0, z0 = C2x0,

where C1 and C2 are arbitrary constants. Now it can be shown by a simple calculation

that an orthogonal transformation among {x, y, z} leads to y0 = z0 = 0, so that:

V = R−1{1 +
1
4
k(t)[(x− x0(t))2 + y2 + z2]}, (3.12)

With such V , eq. (3.11) reduces to:

1
2
kk,tt x0,t − k,2t x0,t − 1

2
kk,t x0,tt − 1

4
k3x3

0,t = 0. (3.13)

One of the solutions of this is x0 = const, but then the Stephani Universe becomes spher-

ically symmetric. Another solution is k = 0 in which case the Universe reduces to the

flat R-W model. Hence, we only need to investigate the case k =/ 0=/ x0,t , and then the

solution of (3.13) is:

1/k = −1
4
x2

0 + Ax0 + B, (3.14)

where A and B are arbitrary constants. In this case, V may be written in the form:

V =
k

4R
(x2 + y2 + z2 − 2x0x + 4Ax0 + 4B). (3.15)

Only the rotational symmetry in the (y, z)-plane is evident here, but in fact this subcase of

the Stephani Universe has a 3-dimensional symmetry group acting on 2-dimensional orbits
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(this result was found by Bona and Coll [1]). The generators of the group, found from the

Killing equations, are:

k1 = (−1
2
xy + Ay)

∂

∂x
+ [

1
4
(x2 − y2 + z2)−Ax−B]

∂

∂y
− 1

2
yz

∂

∂z
,

k2 = (−1
2
xz + Az)

∂

∂x
− 1

2
yz

∂

∂y
+ [

1
4
(x2 + y2 − z2)−Ax−B]

∂

∂z
,

k3 = z
∂

∂y
− y

∂

∂z
, (3.16)

and the commutators among them are:

[k1, k2] = (A2 + B)k3,

(3.17)

[k2, k3] = k1, [k3, k1] = k2.

From here, it is seen that with B > −A2 the solution is spherically symmetric, with

B < −A2 it is hyperbolically symmetric, and with B = −A2 it is plane symmetric.

We shall show how the spherically symmetric case may be reduced to the standard

form. Note that A = 0 may be assumed with no loss of generality (this is achieved by the

coordinate transformation x = x′+2A toghether with the redefinitions x0 = x′0 +2A,B =

B′ − A2). Then the solution is spherically symmetric when B > 0, and the following

sequence of coordinate transformations reduces it to the standard spherically symmetric

form:

x = [x′ + (4B)−1/2(x′2 + y′2 + z′2)]/W, y = y′/W, z = z′/W, (3.18)

where

W := 1 + 2(4B)−1/2x′ + (4B)−1(x′2 + y′2 + z′2)

(the above is a conformal symmetry of the Euclidean 3-space),

x′ = x′′ −B1/2. (3.19)

It may be useful to note that with V given by (3.15), eqs. (3.7) and (3.8) can be solved.

The most general form of the function N that obeys them is:

N = CG(w)/(x− 2A)3, (3.20)
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where C is an arbitrary constant, G is an arbitrary function, and:

w := x + (y2 + z2 + 4A2 + 4B)/(x− 2A). (3.21)

Note that N given by (3.20) in general has a time-independent singularity or a zero at

x = 2A unless G = const/w3, which is another warning that not every n obeying (1.3) has

a physical interpretation. Note also that w and n = NV 3 given by (3.21), (3.20) and (3.15)

are both invariant under all the three generators (3.16), i.e. kα
i w,α = kα

i n,α = 0, i = 1, 2, 3.

The result (3.20) - (3.21) is equivalent to the one by Bona and Coll [1] except that Bona

and Coll obtained it by postulating invariance of n with respect to (3.16), while we showed

that (3.20) - (3.21) is a general solution of the conditions for a thermodynamical scheme,

and invariance necessarily follows. In Ref. [9], the thermodynamical scheme conditions

for a special case of the solution (3.15) were investigated. Using a work by Bona and Coll

[14], Quevedo and Sussman claim that their special solution admits only a one-parameter

group of isometries. This result is false as, according to the general result presented here

in (3.16), that special solution must admit a 3-dimensional group of isometries.

4. The thermodynamical scheme in the Szafron models with β′ = 0.

The metric of the Szafron models with β′ = 0 is:

ds2 = dt2 − e2αdz2 − e2β(dx2 + dy2), (4.1)

where:

eβ = Φ(t)/[1 +
1
4
k(x2 + y2)], (4.2)

eα = λ(t, z) + Seβ , (4.3)

S = [
1
2
U(z)(x2 + y2) + V1(z)x + V2(z)y + 2W (z)], (4.4)

k is an arbitrary constant, U(z), V1(z), V2(z) and W (z) are arbitrary functions, the function

Φ(t) is determined by the equation:

2Φ,tt /Φ + Φ,2t /Φ2 + k/Φ2 + κp(t) = 0, (4.5)

where p(t) (the pressure in the perfect fluid source) is an arbitrary function, and the

function λ(t, z) is determined by the equation:

Φλ,tt +Φ,t λ,t +(Φ,tt +κpΦ)λ = U(z) + kW (z). (4.6)
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Eq. (4.6) can be written in the equivalent form:

Φλ,tt +Φ,t λ,t−(Φ,tt +Φ,2t /Φ + k/Φ)λ = U(z) + kW (z). (4.7)

The source in the Einstein equations is a geodesically and irrotationally moving perfect

fluid with the pressure p(t), the velocity field uα = δα
0 , and the energy-density given by:

κε = 2E(t, z)e−α + 3(Φ,2t +k)/Φ2, (4.8)

where:

E(t, z) := λΦ,tt /Φ− λ,tt≡ Φ,t λ,t /Φ− (Φ,2t +k)λ/Φ2 − (U + kW )/Φ. (4.9)

The β′ = 0 means that β does not depend on z; this case has to be considered

separately because the limit β,z → 0 of the corresponding solutions with β,z =/ 0 is singular,

see sec. 5. An overview of properties of these solutions, along with a complete list of

literature about them, is given in Ref. [10]. The β′ = 0 solutions simultaneously generalize

the Robertson - Walker (R-W) metrics (which result when λ = 0 and U = −kW ,k is

the spatial curvature index in the limit) and metrics with the Kantowski - Sachs (K-S)

symmetry [10, 15 - 16] (which result when U = V1 = V2 = W = λ,z = 0). For reference,

the following properties of these metrics should be noted:

I. When p = const, the solution reduces to dust with cosmological constant, whose

thermodynamics is trivial. Note that the subcase Φ,t = 0 necessarily leads to p = const.

II. When E = 0, the solution becomes spatially homogeneous (with either R-W or

K-S or Bianchi-type symmetry) [17].

III. When (λ/Φ),t = 0, shear is zero and the solution reduces to an R-W metric.

We shall refer to these as Properties I, II and III, respectively.

With no loss of generality, we can assume W (z) = 0. This specialization amounts to

just redefining U and λ (see Ref. 10), and we shall do so in the following. (After such a

specialization the R-W limit changes to {U = −ku(z), λ = Φu}).
Note that the coordinate z is not defined uniquely. All the formulae given are covariant

with the transformations z = f(z′), where f is an arbitrary function. We shall make use

of this in Appendix B.

The particle number density function obeying (1.3) has here the form:

n = N(x, y, z)e−α−2β , (4.10)
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where N(x, y, z) is an arbitrary function. Eq. (2.2) implies p,t [(1/n),i ε,j −(1/n),j ε,i ] =

0, i, j = 1, 2, 3. Because of Property I we only need to consider the case p,t =/ 0, and so a

nontrivial thermodynamical scheme will exist when:

(1/n),i ε,j −(1/n),j ε,i = 0. (4.11)

Substituting for ε, n and eα from (4.10), (4.8) - (4.9) and (4.3) we obtain:

E,[i (1/N),j] e2β(λ + Seβ)− (λ + Seβ),[i (1/N),j] Ee2β

+E,[i (λ + Seβ),j] (1/N)e2β + 2E,[i (eβ),j] (1/N)eβ(λ + Seβ)

−2(λ + Seβ),[i (eβ),j] E(1/N)eβ = 0, (4.12)

square brackets around indices denoting antisymmetrization.

Now let x1 = z, x2 = x, x3 = y, and let us take i = 2, j = 3 in (4.12). Since E and λ

are independent of x and y, the equation simplifies to:

−Eeβ{eβ [(1/N),y (Seβ),x−(1/N),x (Seβ),y ]

+(2/N)[(eβ),y (Seβ),x−(eβ),x (Seβ),y ]} = 0. (4.13)

Because of Property II we do not need to consider the case E = 0. Noting that:

eB := eβ/Φ (4.14)

is independent of time we see that Φ factors out in (4.13), and what remains is a quasi-

linear partial differential equation determining (1/N). There are no derivatives by z in

(4.13), so the dependence of N on z is not determined by (4.13). The general solution of

(4.13) is thus:

N = e2BF (SeB , z), (4.15)

where F is an arbitrary function of its two arguments.

Now let us take i = 1, j = 2 in (4.12) and let us substitute (4.15) into it. The result

is:

(SeB),x {−E,z [(λ + Seβ)F,I /F − Φ] + E(λ,z F,I /F − ΦF,II /F )} = 0. (4.16)

where F,I and F,II are partial derivatives of F with respect to its first and second argument,

respectively. Taking i = 1, j = 3 in (4.12) we would obtain an equation of the same form
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as (4.16), with (SeB),y in place of (SeB),x. One way of fulfilling these two equations is

(SeB),x = (SeB),y = 0. However, this implies U = V1 = V2 = 0, and the resulting solution

has a 3-dimensional symmetry acting on 2-dimensional orbits; the thermodynamics of this

case poses no problems. Hence, we may assume that either (SeB),x or (SeB),y is nonzero,

and then we can define the following new variables in (4.16):

X = SeB , Z = z. (4.17)

We have then from (4.16):

[(λ/Φ + X)E,Z −Eλ,Z /Φ]F,X /F + EF,Z /F = E,Z . (4.18)

This is again a quasi-linear partial differential equation determining F (X, Z). However,

the coefficients in (4.18) do depend on time, while F should be, by the definition of N ,

independent of t. We shall first solve (4.18) as if F were allowed to depend on t, and then

we will impose the condition F,t = 0. The general solution of (4.18) is:

F = EG(U), (4.19)

where G is an arbitrary function and:

U := (λ/Φ + X)/E + f(t), (4.20)

f(t) being another arbitrary function. The condition F,t = 0 reads now:

E,t G + G,U [(λ/Φ),t−(λ/Φ + X)E,t /E + f,t E] = 0. (4.21)

Three cases arise here:

I. E,t = 0 = G,U .

This will turn out to be included in the case III below and does not require a separate

treatment.

II. E,t = 0, (λ/Φ),t = −f,t E.

This one will be considered separately further on.

III. E,t =/ 0 =/ G,U .
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This is the generic case that we will consider first. Then (4.21) can be rewritten in the

form:

G/G,U −U = −(λ/Φ),t /E,t−f − f,t E/E,t . (4.22)

Since the right-hand side of this is independent of X, this implies G,UU = 0, i.e.:

F = A(λ/Φ + X) + ψ(t)E, (4.23)

where A is an arbitrary constant and ψ(t) is an arbitrary function. Now it is seen that the

case E,t = 0 = G,U is contained here as the subcase A = 0 = E,t = ψ,t. We can assume

ψ =/ 0 because with ψ = 0 the condition F,t = 0 implies either A = F = 0, i.e. n = 0 − a

thermodynamical nonsense, or (λ/Φ),t = 0, i.e. an R-W metric (see Property III). The

condition F,t = 0 implies now:

Aλ/Φ + ψE = H(z), (4.24)

where H(z) is an arbitrary function. Substituting the definition of E into this we obtain:

λ,t = K(t)λ + L(t, z), (4.25)

where:

K(t) := Φ,t /Φ + k/(ΦΦ,t )−A/(ψΦ,t ), (4.26)

L(t, z) := U(z)/Φ,t +H(z)Φ/(ψΦ,t ). (4.27)

(Because of Property I we may assume Φ,t =/ 0). The solution of eq. (4.25) is:

λ = J(z)e
∫

Kdt + e
∫

Kdt
∫

Le−
∫

Kdtdt, (4.28)

where J(z) is another arbitrary function of z. The λ given by (4.28) must now be compatible

with the definition of λ, eq. (4.7) (recall: we assumed W = 0). When (4.28) is substituted

into (4.7), an equation of the following form results:

J(z)F1(t) + U(z)F2(t) + H(z)F3(t) = 0, (4.29)

where F1, F2 and F3 are functions of t composed of Φ, ψ and their derivatives (see Appendix

A). Three possibilities now arise:
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(α) All the three functions J, U and H are linearly independent. Then (4.29) implies

F1 = F2 = F3 = 0. With F1 = 0 assumed, F2 = 0 implies:

−ΦΦ,tt +Φ,2t +k −AΦ/ψ = 0. (4.30)

With F1 = F2 = 0 taken into account, F3 = 0 implies:

2Φ/ψ − Φ2ψ,t /(ψ2Φ,t ) = 0. (4.31)

This integrates to ψ = bΦ2, b = const, and with this (4.30) has the first integral:

Φ,2t = −k +
2
3
A/(bΦ) + CΦ2, (4.32)

where C is an arbitrary constant. With (4.31) fulfilled, F1 = 0 follows. However, (4.31)

together with (4.6) implies κp = −3C = const, so this case is thermodynamically trivial.

(β) Two of the functions {J, U,H} are linearly independent, while the third one is

their linear combination. In each of these cases, two linear combinations of the functions

{F1, F2, F3} must vanish, which leads to a set of two differential equations to be obeyed

by ψ(t) and Φ(t). Some of the resulting solutions are nontrivial, but not all of them. For

example, in the two cases:

(β i)H = 0, {J, U} − linearly independent;

(β ii)U = 0, {J,H} − linearly independent, k =/ 0;

the trivial solution from point (α) reappears. However, with U = k = 0 and {J,H} being

linearly independent, the functions Φ and ψ have to obey only one equation:

Φ,tt = −A/ψ + 3Φ,2t /Φ− ψ,t Φ,t /ψ, (4.33)

which means that Φ(t) can be arbitrary, p(t) (in general nontrivial) is determined by

(4.5) with k = 0, and ψ(t) is determined by (4.33). In Appendix B we show under

what conditions the Szafron model with β′ = 0 has symmetries. It follows that with

U = k = 0, (λ/Φ),t =/ 0 and generic V1 and V2 the model has no symmetry. Hence, the

case we just identified is an example of a Szafron β′ = 0 model with no symmetry that

allows for a thermodynamical scheme.
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(γ) Each pair in the set {J, U,H} is linearly dependent. This means that there is only

one function of z in this set, let us call it f(z), and:

J = jf, U = uf, H = hf, (4.34)

where j, u and h are arbitrary constants. In this case, Φ and ψ are connected by just one

equation,

jF1 + uF2 + hF3 = 0, (4.35)

i.e. Φ(t) is again arbitrary, p(t) is given by (4.5) and ψ(t) is given by (4.35). It follows

from Appendix B that the Szafron model has in general no symmetry also in this case, so

we have here another example of a model with a thermodynamical scheme and with no

symmetries.

The case discussed by Quevedo and Sussman [7] is contained in the class (γ) as the

subcase j = h = F2 = 0. This is shown in Appendix C.

Note that in the cases (β) and (γ) above, the function λ is more special than eq. (4.7)

would allow. The general solution of (4.7) has the structure:

λ = F1(t)G1(z) + F2(t)G2(z) + F3(t, z), (4.36)

where F3(t, z) is a specific solution of the full inhomogeneous (4.7), F1(t) and F2(t) are

the basis solutions of the homogeneous part of (4.7) and G1(z) and G2(z) are arbitrary

functions. This means that a general Szafron model with β′ = 0 contains two arbitrary

functions of z hidden in λ in addition to the set {U, V1, V2}. By contrast, in the case (β)

above there is only one additional function of z in λ, and in the case (γ) with u=/ 0 there

are none; U determines both of them.

It remains now to investigate the case II of the three cases listed after eq. (4.21). We

have then E,t = 0 and:

λ = −E(z)f(t)Φ(t) + H(z)Φ(t), (4.37)

where E(z) and H(z) are arbitrary functions. This λ must obey (4.7) with W = 0 and (4.9)

with E = E(z). In this case, F given by (4.19) and (4.20) is automatically independent of

t. This subcase has nonzero shear as long as f,t =/ 0 (if f,t = 0, then the thermodynamically

trivial solution with Φ,t = 0 results, see Property I). Eqs. (4.37), (4.7) and (4.9) lead to

the following two equations determining Φ and f :

f,t = kf/(ΦΦ,t )− 1/Φ,t−C/(ΦΦ,t ), (4.38)
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Φ(Φ + C)Φ,tt−k(Φ + C)− (3Φ + C)Φ,2t = (−k + ΦΦ,tt−Φ,2t )kf, (4.39)

where C is an arbitrary constant. The functions E, H and U are connected by:

kH + U = CE. (4.40)

When k = 0, the equation (4.39) decouples from (4.38). Even in that special case, p is

not constant and the solution has in general no symmetry. Hence, this is another example

of a Szafron β′ = 0 model without a symmetry and with a nontrivial thermodynamical

scheme.

5. The thermodynamical scheme in the Szafron models with β′=/ 0.

The metric of these models is of the same form as in the previous case:

ds2 = dt2 − e2αdz2 − e2β(dx2 + dy2), (5.1)

but here (in a notation adapted from Szafron [8]):

eβ = Φ(t, z)/S(x, y, z), (5.2)

eα = h(z)S · (eβ),z , (5.3)

S := A(z)(x2 + y2) + 2B1(z)x + 2B2(z)y + C(z), (5.4)

where h,A, B1, B2 and C are arbitrary functions of z, the function Φ(t, z) is determined

by the equation:

2Φ,tt /Φ + Φ,2t /Φ2 + k(z)/Φ2 + κp(t) = 0, (5.5)

the function p(t) (the pressure in the perfect fluid source) is arbitrary, and the function

k(z) must obey:

AC −B2
1 −B2

2 =
1
4
[h−2(z) + k(z)]. (5.6)

Note that the limit β,z → 0 of this solution is singular. Therefore the case β,z = 0 discussed

in sec. 4 has to be derived separately from the Einstein equations.

The source in the Einstein equations is again a geodesically and irrotationally moving

perfect fluid with the velocity field uα = δα
0 , the pressure p(t) and the energy-density:

κε = (h/Φ2)E(t, z)e−α + 3(Φ,2t +k)/Φ2 ≡
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≡ E(t, z)/[Φ3(Φ,z /Φ− S,z /S)] + 3(Φ,2t +k)/Φ2, (5.7)

where this time:

E(t, z) = Φ(Φ,2t +k),z −2Φ,z (Φ,2t +k). (5.8)

(This E is not to be confused with the one from sec. 4; it plays the same role in ε, but has

a very different form here).

The R-W limit results when:

Φ = zR(t), k = k0z
2, (5.9)

where k0 is a constant (the spatial curvature index of the R-W metric) [10, 19].

The particle number density function defined by (1.3) is here:

n = N(x, y, z)e−α−2β ≡ NS2/[hΦ3(Φ,z /Φ− S,z /S)]. (5.10)

For reference, the following properties should be noted:

I. When E = 0, the model reduces either to an R-W metric or to a vacuum solution

with a cosmological constant.

II. When all the functions A,B1, B2 and C are constant multiples of the same function

f(z), the model acquires a 3-dimensional symmetry group acting on 2-dimensional surfaces.

III. When (ln Φ),tz = 0, shear becomes zero and the model becomes an R-W metric

[10].

Since p = p(t), just as in sec. 4, the condition of integrability of the Gibbs - Duhem

equation has here the form:

(1/n),i ε,j −(1/n),j ε,i = 0, (5.11)

with i, j = 1, 2, 3, x1 = z, x2 = x, x3 = y. When i = 2, j = 3, this becomes:

E[−S,z (N,x S,y −N,y S,x )+S(N,x S,yz −N,y S,xz )+2N(S,x S,yz −S,y S,xz )] = 0. (5.12)

Because of Property I we are only interested in the case E =/ 0. The solution of (5.12) is

thus:

N = (h/S2)F (S,z /S; z), (5.13)

where F is an arbitrary function of the two arguments indicated.
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Taking (5.11) with i = 1, j = 2 and using (5.10) and (5.13) in the result we obtain:

Φ−6(lnS),xz (Φ,z /Φ− S,z /S)−3{−EF,II +E,z [(Φ,z /Φ− S,z /S)F,I +F ]

+3E
[
(Φ,z /Φ− S,z /S)2F,I +(Φ,z /Φ− S,z /S)F

]

+E
[−2Φ−1Φ,z (Φ,z /Φ− S,z /S)− Φ−1(Φ,zz −Φ,z S,z /S)

]
F,I } = 0, (5.14)

where F,I and F,II are the partial derivatives of F with respect to its arguments.

If (ln S),xz = 0, then all the functions A,B1, B2 and C are constant multiples of the

same function of z, i.e. Property II applies. Hence, we are only interested in the case

(lnS),xz =/ 0.

With i = 1, j = 3, eq. (5.11) would lead to (5.14) with (ln S),xz replaced by (lnS),yz.

We do not need to consider the case (ln S),yz = 0 for the same reason as above. Hence,

the resulting equation has the same solutions as (5.14), and so (5.14) is the last equation

that F has to obey.

When (ln S),xz =/ 0=/ (ln S),yz , we can introduce the new variables:

X = S,z /S, Z = z (5.15)

because ∂(X,Z)
∂(x,z) =/ 0 =/ ∂(X,Z)

∂(y,z) . In the new variables, eq.(5.14) becomes:

−F,Z /F +
[
(Φ,Z /Φ−X)E,Z /E − 3(Φ,Z /Φ)X + 3X2 − (Φ,Z /Φ),Z

]
F,X /F

+E,Z /E + 3(Φ,Z /Φ−X) = 0. (5.16)

We differentiate this by t and use the fact that F,t = 0. In this way we obtain a necessary

condition for the existence of solutions of (5.16):

[(Φ,Z /Φ),t E,Z /E + (Φ,Z /Φ−X)(E,Z /E),t−3(Φ,Z /Φ),t X − (Φ,Z /Φ),Zt ] F,X /F

+(E,Z /E),t +3(Φ,Z /Φ),t = 0. (5.17)

The case when the coefficient of (F,X /F ) in (5.17) is zero must be considered separately.

It is shown in Appendix D that it leads to the R-W metrics. It is also shown there that

(E,Z /E),t +3(Φ,Z /Φ),t = 0 = F,X leads to a contradiction. Knowing this, we multiply

(5.17) by (F/F,X ) and differentiate the result by X. We obtain:

− [(E,Z /E),t +3(Φ,Z /Φ),t ] FF,XX /F,2X = 0. (5.18)
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The only case that must be investigated is F,XX = 0, i.e.:

F = g1(Z)X + g2(Z). (5.19)

With this, eq. (5.16) becomes an explicit expression in X with coefficients depending on

t and Z. It implies:

g2 = −1
3
g1,Z ,

(5.20)

−g2,Z + [E,Z Φ,Z /(EΦ)− (Φ,Z /Φ),Z ] g1 + (E,Z /E + 3Φ,Z /Φ)g2 = 0.

The solution of this set is:

g1(Z) = −3A(t)Φ(Φ,2t +k)−B(t)Φ3, (5.21)

where A(t) and B(t) are arbitrary functions. This is an additional equation imposed on

Φ that must be consistent with (5.5). The two equations turn out to be consistent only if

either the source is dust or the model reduces to an R-W metric - this is shown in Appendix

E. Hence, for this class of Szafron models a nontrivial thermodynamical scheme can exist

only if there are symmetries in the spacetime.

6. Conclusions.

In this paper, we have proven the following:

1. For the Stephani Universe and the Szafron models with β′=/ 0 a nontrivial ther-

modynamical scheme (that is, one in which p =/ 0) can exist only in those subcases in

which the spacetime acquires an at least 3-dimensional symmetry group acting on at least

2-dimensional orbits.

2. The Szafron model with β′ = 0 does have subcases that have no symmetry and

allow for a nontrivial thermodynamical scheme. In the subcase of class (γ) in sec. 4,

the scale factor Φ(t) remains arbitrary, but the form of the function λ is limited (the

functions G1 and G2 from (4.36) and U(z) are all constant multiples of the same function).

In the nontrivial subcases of class (β), the evolution of the scale factor is fixed, while the

generality of λ is limited to a lesser degree (there are two linearly independent functions

in the set {G1,G2, U}).

19



Like we stated in the introduction, only the first result is conclusive. For the Szafron

model with β′ = 0 it remains to be verified whether among the functions n given by (4.10),

(4.15), (4.23), (4.24) and (4.26) - (4.29) there are any which obey an interpretable equation

of state.

Also, as stated in the introduction, the negative result of point 1 above only means

that these models cannot be interpreted as single-component perfect fluids. It remains to

be seen whether they can be interpreted as noninteracting mixtures of perfect fluids or

mixtures in which reversible chemical reactions occur.

Our results show that there is no simple connection between the existence of a ther-

modynamical scheme and symmetries.

The hope that motivated this paper was that the Gibbs - Duhem equation (1.2) would

force a definite form upon the arbitrary functions of time in the models, and thus would

play a similar role as the equation of state does. This happens indeed in the class (β)

models of sec. 4, but it is not a general rule. In the class (γ) models of section 4, the one

arbitrary function of time, p(t), survives intact after the integrability of (1.2) is ensured.

In those cases where the Gibbs - Duhem equation imposes symmetries, arbitrary functions

survive, too, but this was to be expected, since a high enough symmetry guarantees the

existence of a nontrivial thermodynamical scheme irrespectively of the evolution law (see

sec. 1). Hence, in the Stephani Universe, the Gibbs - Duhem equation reduces the number

of arbitrary functions of t from five to at most two, just the number compatible with a

3-dimensional symmetry acting on 2-dimensional orbits.

In those classes in which arbitrary functions of time are present in spite of the lack

of symmetry, an equation of state still has to be imposed on the resulting solution. We

recall (see Ref. 17) that for the Szafron model the barotropic equation of state p = p(ε)

trivializes it to a spatially homogeneous one (and in particular to an R −W one in some

cases).
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Appendix A

The three functions appearing in eqs. (4.29) - (4.35) are defined as follows:

F1(t) = [k/Φ− kΦ,tt /Φ,2t +AΦψ,t /(ψ2Φ,t ) + AΦΦ,tt /(ψΦ,2t )

+(k/Φ−A/ψ)2Φ/Φ,2t −3A/ψ]e
∫

Kdt (A.1)

F2(t) = F1(t)
∫

(1/Φ,t )e−
∫

Kdtdt + 1 + k/Φ,2t −AΦ/(ψΦ,2t )− ΦΦ,tt /Φ,2t , (A.2)

F3(t) = F1(t)
∫

[Φ/(ψΦ,t )]e−
∫

Kdtdt + (Φ/ψ)[1 + k/Φ,2t

−AΦ/(ψΦ,2t )− ΦΦ,tt /Φ,2t ] + 2Φ/ψ − Φ2ψ,t /(ψ2Φ,t ), (A.3)

where K(t) is given by (4.26).

Appendix B

Conditions for the existence of symmetries in the Szafron models with β′ = 0.

It was already shown by Bonnor, Sulaiman and Tomimura [18] that the Szekeres

solutions in general have no symmetry. Since all the Szekeres solutions are contained

in the Szafron models as the subcase p = 0, this result immediately carries over to the

latter. However, for the considerations of this paper it is important to know, exactly which

subcases have symmetries. Bonnor et al. [18] did not make this completely clear, and their

derivation relies on the property p = 0. Therefore we present another derivation here.

For a perfect fluid solution, the pressure must be invariant under all the existing

symmetries, i.e.:

kµp,µ = 0, (B.1)

where kµ is the general Killing vector field. Since in the Szafron models, in the comoving

coordinates used here, p depends only on t, and the case p = const is thermodynamically

trivial, we are interested only in the case p,t =/ 0. Hence, from (B.1):

k0 = 0. (B.2)

Also, the velocity field must be invariant under all the symmetries, i.e.:

kµuα,µ−uµkα,µ = 0. (B.3)

21



But in our case uα = δα
0 , which means that all the components of kα must be independent

of t. The remaining Killing equations reduce then to:

kµg11,µ + 2k1,1 g11 = 0, (B.4)

k2,1 g22 + k1,2 g11 = 0, (B.5)

k3,1 g33 + k1,3 g11 = 0, (B.6)

kµg22,µ + 2k2,2 g22 = 0, (B.7)

k3,2 +k2,3 = 0, (B.8)

kµg33,µ + 2k3,3 g33 = 0, (B.9)

where x1 = z, x2 = x, x3 = y. We assume that:

(g22/g11),t =/ 0 =/ (g33/g11),t (B.10)

because otherwise the shear is zero and the solution reduces to an R-W metric. With

(B.10) assumed, eqs. (B.5) and (B.6) imply:

k2,1 = k3,1 = k1,2 = k1,3 = 0. (B.11)

Hence:

k1 = A(z). (B.12)

Eq. (B.8) now implies that there exists a function b(x, y) such that:

k2 = b,x , k3 = −b,y , (B.13)

and since g22 = g33, eqs. (B.7) and (B.9) imply:

b,xx +b,yy = 0. (B.14)

Eq. (B.7) now implies:

(− kxb,x + kyb,y )/[1 +
1
4
k(x2 + y2)]− 2b,yy = 0. (B.15)

We have thus reduced the Killing equations to (B.4) and (B.12) - (B.15). The equations

(B.14) - (B.15) define the following solution:

b =
k

6
[c3(x3 − 3xy2) + c1(3x2y − y3)] + c2xy + 2c3x− 2c1y + c4, (B.16)
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where c1, . . . , c4 are constants.

Now suppose that A =/ 0. Since the coordinate z can be arbitrarily transformed, we

can choose it so that A = 1.

In the following, the cases k =/ 0 and k = 0 have to be considered separately. When

k =/ 0, eq. (B.4) implies:

λ/Φ = g(z) + f(t) (B.17)

where g and f are functions of one variable each (to be determined further). Since we

already assumed that (g22/g11),t =/ 0, we have f,t =/ 0 automatically. It follows then from

(4.7) that:

g = (C − U)/k, C = const (B.18)

Φ2f,tt +3ΦΦ,t f,t−kf = C, (B.19)

and:

(U,z /k − 2c3V1 − 2c1V2)
1
4
k(x2 + y2)+

+(V1,z + 2c3U − c2V2)x + (V2,z + c2V1 + 2c1U)y+

−U,z /k + 2c3V1 + 2c1V2 = 0. (B.20)

The coefficients of (x2 + y2), x, y and the term independent of x and y must vanish sepa-

rately. This implies:

c2U,z /k − 2c1V1,z + 2c3V2,z = 0. (B.21)

Unless this specific relation among the functions {U, V1, V2} exists, there can be no symme-

tries. Since in general U, V1 and V2 are just arbitrary, eq. (B.21) implies c1 = c2 = c3 = 0.

Then (B.20) will be violated unless U, V1 and V2 are constants. Hence, the assumption

A =/ 0 leads to a contradiction, and so in general A = 0 when k =/ 0.

When A = 1 and k = 0, eq. (B.4) implies at once that U = const. In addition,

(B.17) reappears, and an analog of (B.20) follows in which (U,z /k) is replaced by g,z.

Consequently, two differential equations are imposed on V1 and V2. The equations imply

specific forms of these two functions. Hence, with arbitrary U, V1 and V2, again A = 0

follows.

With A = 0, another equation follows from (B.4) instead of (B.20), and it implies:

c3V1 + c1V2 = 0,

2c3U − c2V2 = 0, (B.22)
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c2V1 + 2c1U = 0,

which again do not hold for general U, V1 and V2 unless c1 = c2 = c3 = 0. But then, kα = 0

and there are no symmetries.

Note that there can be no symmetries even with the very special form of λ given by

(B.17) - (B.18), nor even with U = 0 as long as V1 and V2 are arbitrary and the shear is

nonzero. Hence, the two functions of z that are in general hidden in λ (see eq. (4.36)) do

not matter in determining symmetries (this is the point that was not clear in the paper

by Bonnor et al. [18]).

Appendix C

The case investigated by Quevedo and Sussman [7].

Quevedo and Sussman noticed that (4.11) is fulfilled when:

F = X, λ = ΦB0U(z), (C.1)

where B0(t) is a function of t which, in virtue of (4.7), must obey:

B0,tt + 3(Φ,t /Φ)B0,t − (k/Φ2)B0 − 1/Φ2 = 0 (C.2)

(differences between (C.2) and the corresponding equation in Ref. [7] result from our choice

W = 0). Then:

E = (U/Φ)(ΦΦ,t B0,t − kB0 − 1), (C.3)

and so (C.1) is the subcase of (4.23) given by:

A = 1, ψ = −ΦB0/(ΦΦ,t B0,t − kB0 − 1). (C.4)

Substituting this ψ into (A.1) and (A.2) one can verify that F2 = 0 follows. The following

formulae are helpful in the verification:

K(t) = Φ,t /Φ + B0,t/B0 − (B0ΦΦ,t )−1, (C.5)

e−
∫

Kdt = (B0Φ)−1e
∫

(B0ΦΦ,t)
−1dt, (C.6)

∫
(1/Φ,t )e−

∫
Kdtdt =

∫
(B0ΦΦ,t )−1e

∫
(B0ΦΦ,t)

−1dtdt = e
∫

(B0ΦΦ,t)
−1dt. (C.7)
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Using (C.5) - (C.7) one can also verify that with J = H = 0 the function λ given by

(4.28) has indeed the form (C.1) in this case.

Appendix D

The degenerate solution of (5.17).

If the coefficient of (F,X /F ) in (5.17) is zero, then necessarily

(E,Z /E),t +3(Φ,Z /Φ),t = 0,

what integrates to:

E = f1(Z)f2(t)/Φ3, (D.1)

where f1 and f2 are arbitrary functions. Using (D.1) we see that the coefficient of F,X is

zero when:

(Φ,Z /Φ),t f1,Z/f − 6(Φ,Z /Φ)(Φ,Z /Φ),t−(Φ,Z /Φ),Zt = 0. (D.2)

A first integral of this is:

(Φ,Z /Φ),t = f1(Z)f3(t)/Φ6. (D.3)

Note that we can assume f1f3 =/ 0 because otherwise the shear is zero (see Property III in

sec. 5) and the R-W metrics result. If we now substitute eq. (5.8), the definition of E,

into (D.1), then (D.1) and (D.3) will form a set of two partial differential equations to be

obeyed by Φ. The further procedure is this: substitute Φ,tZ from (D.3) into (D.1), the

result is:

Φ,t = kΦ4Φ,Z /(f1f3)− k,Z Φ5/(2f1f3) + f2Φ/(2f3). (D.4)

Now differentiate (D.4) by Z and substitute for Φ,tZ from (D.3) and for Φ,t from (D.4).

The result is:

kΦ,ZZ = −3kΦ,2Z /Φ+kf1,ZΦ,Z /f1 +
1
2
k,ZZ /Φ+k,Z Φ,Z −1

2
k,Z f1,ZΦ/f +f2

1 f2
3 /Φ9.

(D.5)

It follows that if k = 0, then f1f3 = 0, i.e. an R-W metric results (see above). If k =/ 0,

then we find Φ,tZZ from (D.5), equate the result to Φ,tZZ found from (D.3), use (D.3) to

eliminate Φ,tZ , (D.4) to eliminate Φ,t, and (D.5) to eliminate Φ,ZZ . The result is:

Φ,Z =
1
2
k,Z Φ/k +

1
6
f1f3,t/(kΦ3)− 5

12
f1f2/(kΦ3). (D.6)

25



Using this in (D.4) we get:

Φ,t =
1
6
(f3,t/f3)Φ +

1
12

(f2/f3)Φ. (D.7)

This implies (ln Φ),tZ = 0, i.e. an R-W model (Property III in sec. 5).

Note that (E,Z /E),t +3(Φ,Z /Φ),t = 0 and F,X = 0 cannot hold simultaneously. To

see this, substitute both these equations into (5.16) and differentiate the result by X - a

clear contradiction follows.

Appendix E

Consistency of (5.21) with (5.5).

From (5.21) we have:

Φ,2t +k = −g1/(3AΦ)−BΦ2/(3A). (E.1)

We differentiate this by t, use (5.5) to eliminate Φ,tt from the result and (E.1) to eliminate

Φ,2t . The resulting equation is:

g1A,t /(3A2Φ2)− 1
3
(B/A),t Φ = (B/A− κp)Φ,t . (E.2)

Suppose that B/A = κp. Then there are two possibilities:

I. g1A,t = 0 = (B/A),t. In this case κp = B/A = const and the thermodynamics

becomes trivial.

II. (B/A),t =/ 0. Then (E.2) can be solved for Φ, and the solution has the property

(lnΦ),tZ = 0. This is an R-W model (see Property III in sec. 5).

Hence, we can assume B/A− κp =/ 0. Then, from (E.2):

Φ,t = g1A,t /[3A2Φ2(B/A− κp)]− 1
3
(B/A),t Φ/(B/A− κp). (E.3)

This we differentiate by t, use (5.5) to eliminate Φ,tt , (E.1) to eliminate Φ,2t and (E.3) to

eliminate Φ,t. The result is:

−2
9
h2

1(g1/Φ3)2 + [−1
9
h1h2 − 1/(6A) +

1
3
h1,t]g1/Φ3

+
1
3
h2,t +

1
9
h2

2 −
1
6
(B/A) +

1
2
κp = 0, (E.4)
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where:

h1(t) := A,t /[A2(B/A− κp)], h2(t) := −(B/A),t /(B/A− κp). (E.5)

Note that the coefficients of (g1/Φ3)2 and (g1/Φ3) in (E.4) cannot vanish simultaneously

because this would lead to a contradiction. Therefore, there are two possibilities to con-

sider:

I. g1 = 0 so that (E.4) does not determine Φ. In this case (E.3) implies (ln Φ),tZ = 0

what is an R-W limit (see Property III in sec. 5).

II. g1 =/ 0. Then (E.4) can be solved for (g1/Φ3). However, the solution has the form

g1/Φ3 = [a function of t only], hence again (ln Φ),tZ = 0 and an R-W model results. This

proves the concluding statement of sec. 5.
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