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The Gibbs—Duhem equatichU + pdV=TdS imposes restrictions on the perfect
fluid solutions of Einstein equations that have a one-dimensional symmetry group
or no symmetry at all. In this paper, we investigate the restrictions imposed on the
Stephani Universe and on the two classes of models found by Szafron. Upon the
Stephani Universe and the& #0 class of Szafron symmetries are forced. We find
the most general subcases of {#'e=0 model of Szafron that are consistent with
the Gibbs—Duhem equation and have no symmetry. 1997 American Institute of
Physics[S0022-24887)02012-9

I. INTRODUCTION

In relativity, a perfect fluid is defined as a continuous medium whose state is determined by
the energy—densitye), the pressuref) and the four-velocity(u®) fields, and whose energy-
momentum tensor has the form

Taﬁ:(6+ p)uauﬂ_pgaﬁ (11)

[we will use the signaturé+, —, —, —), Greek indices running through the values 0, 1, 2, 3 and
Latin indices running through the values 1, 3, hdeed, this form of the energy—momentum
tensor guarantees that energy transport occurs only by means of mass-flow. However, a single-
component perfect fluid must also obey the Gibbs—Duhem equation:

dU+pdv=TdS (1.2

which forms a part of the second law of thermodynamics, whkeie the internal energyp is the
pressureV is the volume T is the temperature arfslis the entropy of a thermally isolated portion
of a perfect fluid.

In relativity, and in particular in cosmology, we require that Ef.2) applies when the
internal energy, volume and entropy are referred to one particle of the fluid. If we assume that
there exists a function (the particle number densjtyhich is conserved,

(nu®).,=0, (1.3

thenU=e/n, V=1/n andS=s/n, wheres is the entropy—density, and the relativistic version of
Eq. (1.2 for a perfect fluid with the energy—momentum tengbd) takes the form

d(e/n)+pd(1in)=TdS (1.4)
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It is usually taken for granted that this equation applies. However, most of the perfect fluid
solutions of the Einstein equations considered in the literature are thermodynamically trivial in one
way or another. For dusp=0, e/n=const andS=const, so(1.4) is no limitation. For perfect
fluids with a barotropic equation of statée=€(p), Eq. (1.4) with dS=0 is a part of the definition

of a solution. For cosmological models with a Robertson—Walker, Kantowski—Sachs or Bianchi-
type geometries, all the functiors p andn depend only on the comoving timteof the fluid, so

any equation of state can be imposed on them, and(thénsimply defines entropy. For solutions
that have a symmetry group with two-dimensional orljits example, the spherically symmetric
ones, the functionse, p andn depend on two variables only. In this case, the left-hand side of
(1.4) is a differential form in two variables and is guaranteed to have an integrating factor, hence
T and S obeying(1.4) are guaranteed to exist.

Problems appear when the perfect fluid solution in question has a one-dimensional symmetry
group or no symmetry at all. For such solutioasp andn depend on three or four variables, and
the existence of an integrating factor for the left-hand sid€ldf) is an additional limitation on
the state functions. This problem has received only fleeting attention in the lite(atgdelow.

In this paper, we shall consider the consequenced dj for a few perfect fluid cosmological
models with no symmetry. Ifd(e/n) + pd(1/n)] has no integrating factor, then the solution can

be interpreted as a mixture of perfect flui®ossibly interacting through reversible chemical
reaction$, but not as a single-component perfect fluid(1f3) and (1.4) can be imposed simul-
taneously, then, for brevity, we shall say that the model allows for a thermodynamical scheme.
Note that(1.3) merely defines the functiom(x) and is no limitation on any model; the limitations

all result from(1.4).

Bona and Colfl were apparently the first to observe th{at4) may restrict a metric: they
showed that the Stephani Univefseallows for a thermodynamical scheme only if the metric
acquires a 3-dimensional symmetry group acting on two-dimensional orbits. Relativistic thermo-
dynamics of perfect fluids was discussed at length by Coll and Fertavittmut invoking explicit
examples. Quevedo and Sussthgave an example of the Szarfr@i=0 modef that has no
symmetry and allows for a thermodynamical scheme, and showed that the parabolic Bz&fton
model does not allow for it unless it has a symmetry. Quevedo and Sussisaranalyzed the
conditions for the existence of a thermodynamical scheme in the Stephani Universe, and derived
the corresponding nonbarotropic equation of state. In this case the equation of state does not allow
any plausible physical interpretation. The Gibbs—Duhem equdliagh together with the conti-
nuity equation(1.3) were also discussed by Godfland by Coley:! Goode discussed them as an
element of thermodynamical interpretation of a solution with a heat-conducting dust source.
Goode’s solution, before thermodynamics is imposed on it, is a generalization gf f#esolu-
tion of Szekeres? After imposing the thermodynamical relations, the solution simplifies. Whether
the simplification necessarily involves symmetries is not known. Cbleyphasized the impor-
tance of consideringl.3—(1.4) as a necessary part of physical interpretation of any cosmological
model. This seems to be the whole body of literature on the subject published so far.

In this paper, we identify the most general Szafron models of3tk€0 family that allow for
a thermodynamical scheni8ec. I\) even though they have no symmetry; we also verified that
the general Szafron models of ti#+0 family do not allow a thermodynamical scheme unless
they have symmetrieSec. \J. These are the main results of the paper. In addition, in Sec. Il we
describe the necessary conditions for the existence of the thermodynamical scheme, and in Sec. llI
we give some additional details of the result of Bona and'doli the Stephani Universe.

The models of Stephahiand of Szafrofiare so far the only known exact solutions of the
Einstein equations that have no symmetry, can be considered to be cosmological (nedslse
they generalize the Robertson—Walker class of solutiand allow for nontrivial thermodynam-
ics; see also Ref. 13. The other class of solutions found by Steitims no symmetry as well,
and has some cosmological relevafitbuyt it has constant pressure. Therefore its source is in fact
dust in a spacetime with cosmological constant, &hd) is trivially satisfied for it. The well-

J. Math. Phys., Vol. 38, No. 5, May 1997

Downloaded-09-May-2008-t0-193.0.83.155.-Redistribution-subject-to-AlP-license-or-copyright;~see=http://jmp.aip.org/jmp/copyright.jsp



2604 Krasinski, Quevedo, and Sussman: Thermodynamics of perfect fluids with no symmetry

known Szekeres solutiotfswith no symmetry are the dust limit of the Szafron models considered
here, and so pose no thermodynamical problems either.

II. THE NECESSARY CONDITIONS FOR THE EXISTENCE OF THE THERMODYNAMICAL
SCHEME

Let us write(1.4) in the form
w:=(1n)de—(1In?)(e+p)dn=TdS (2.1

In general, the quantities, and p are obtained from Einstein’s equations as functions of the
coordinates. EquatiofiL.3) can always be integrated yielding a functiorin terms of the coor-
dinates, and s@ will be a given differential form in four variable@lthough the form is spanned
on just two differentialsde anddn, the functionp will in general be functionally independent of

e andn). Equation(2.1) can be solved fol andSif w has an integrating factor, i.e.df/\dw =0.
This may be written equivalently as

de/Adp/Adn=0, (2.2

which means that a functional dependefae equation of stajeconnectse, p andn.

Note that Eq.(1.3) is a necessary, but not a sufficient condition fioto be interpreted as a
particle number density. The physical particle number density must obey a thermodynamically
meaningful equation of state, which should be derived from(E®). In this paper, we shall not
impose any condition on apart from(1.3) and(2.2). Therefore, only our negative results will be
conclusive: if(1.3) and (2.2) imply additional symmetry, then the model does not allow for a
thermodynamical scheme in general.(1.3) and (2.2) can be imposed without introducing a
symmetry, then additional work on the interpretationrofs required. This we postpone to a
separate paper.

The result of this paper is that for the Szafron models itk 0 a nontrivial thermodynami-
cal scheme imposes symmetries, while the Szafron modelsgtitd are restricted by the ther-
modynamical scheme in a different way which not necessarily implies a symniateycall the
thermodynamical scheme trivial if it impligs=const, and in particulap=0.)

Ill. THE THERMODYNAMICAL SCHEME IN THE STEPHANI UNIVERSE
The metric of the Stephani Universe is
ds?=D2dt>—V~2(t,x,y,2)(dx?+ dy?+ dZ?), (3.1
where
V=R H1+ 7 K(O[(X—%o(1) >+ (y—Yo(1)?+(z2—20(1))?]}, D=F()V,/V, (3.2

and F(t), R(t), k(t), xq(t), yo(t) and zy(t) are arbitrary functions of time. The source in the
Einstein equations is a perfect fluid with the velocity fieft=D 155 and energy—density and
pressurep given by

ke=3C3(t), kp=—3C?+2CC\VIV,, (3.3
wherexk=87G/c* andC(t) is connected with the other functions of time by

k(t)=[CA(t)— LF%(t)]R2(1). (3.4)

J. Math. Phys., Vol. 38, No. 5, May 1997

Downloaded-09-May-2008-t0-193.0.83.155.-Redistribution-subject-to-AlP-license-or-copyright;~see=http://jmp.aip.org/jmp/copyright.jsp



Krasinski, Quevedo, and Sussman: Thermodynamics of perfect fluids with no symmetry 2605

The Stephani Universe has in general no symmetry and is the most general conformally flat
perfect fluid solution with nonzero expansi@ee theorem 32.15 in Ref. L5A particle number
density function obeyingl.3) has here the form=N(x,y,z)V3, whereN is an arbitrary function.

The problem of existence of a thermodynamical scheme in this model was solved by Bona
and Coll! The scheme exists wheén has the special form

k
V=1r (X?+y?+ 72— 2Xox+ 4AXo+ 4B), (3.5

whereA andB are arbitrary constants. Only the rotational symmetry in the)(plane is evident
here, but in fact this subcase of the Stephani Universe has a 3-dimensional symmetry group acting
on 2-dimensional orbits; see Ref. 1. The generators of the group, found from the Killing equations,

are
K= 1 A a 11 . L, Ax—B J 1 d
1=| T3 XYFAY| =t | (X oy 20— Ax— w 2Y%5
o=| — 2 xztAz] 2o Tyz L 4| E oeryr-2)- Ax-B 3.6
2=| 5 XZ+AZ 5—§yzw+ Z(X +y—z%)— Ax— o7’ (3.6)
Ko d d
3—25 YE'

and the commutators among them akg,k,] = (A%+B)ks, [k,,ks] =k; and [ks,k;]=k,. From
here, it is seen that witlB>—A? the solution is spherically symmetric, witA< —A? it is
hyperbolically symmetric, and witB= — AZ it is plane symmetric. This result is equivalent to the
one by Bona and Cdilexcept that Bona and Coll obtained it by postulating invariance with
respect ta3.6), while we have found that it is a general solution of the conditions for a thermo-
dynamical scheme, and invariancerphecessarily follows. Thal=n/V? is restricted by(2.2) to

the form

N=CG(w)/(x—2A)3, (3.7
whereC is an arbitrary constanG is an arbitrary function and
Wi=xX+(y2+ 22+ 4A%+4B)/(x—2A). (3.9

In Ref. 9, the thermodynamical scheme conditions for a special case of the s¢Bifpwere
investigated using the work by Bona and CSIiThe result of Ref. 9 is erroneous; that special
solution admits in fact a 3-dimensional group of isometries.

IV. THE THERMODYNAMICAL SCHEME IN THE SZAFRON MODELS WITH g'=0

The metric of the Szafron models wigi =0 is

ds’=dt?—e?*dZ—e?f(dx®+dy?), (4.2)

where
eP=d(1)/[1+ L K(E+y?)], (4.2
e“=\(t,z) +Sé, 4.3
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S=[3 U(2)(x®+y?) +V(2)x+ V,(2)y+2W(2)], (4.4

k is an arbitrary constantJ(z), V,(2), V,(z) andW(z) are arbitrary functions, the functich(t)
is determined by the equation

20, [P+ D, 2 D2+k/D?+ kp(t)=0, (4.5

wherep(t) (the pressure in the perfect fluid sourde an arbitrary function, and the function
\(t,z) is determined by the equation

DN,y + DNy — (D + D, 2D +K/ID)N=U(Z) +kW(2). (4.6)

The source in the Einstein equations is a geodesically and irrotationally moving perfect fluid
with the pressurg(t), the velocity fieldu*= &5 and the energy-density given by

ke=2E(t,z)e” “+3(P,2+k)/D?, (4.7)
where
E(t,Z) :)\q),tt/cp_)\,ttzq),t)\,t/(p_(CD,t2+ k))\/q)z—(U+k\/\/)/q) (48)

The 8'=0 means thaj3 does not depend on; this case has to be considered separately
because the limiB,,—0 of the corresponding solutions wiiB,#0 is singular; see Sec. V. An
overview of properties of these solutions, along with a complete list of literature about them, is
given in Ref. 13. Thes’'=0 solutions simultaneously generalize the Robertson—WdRei\)
metrics(which result wherm\=0 andU = —kW, k is the spatial curvature index in the limand
metrics with the Kantowski-Sachs(K-S) symmetry>"18 (which result when
U=V;=V,=W=\,,=0).

With no loss of generality, we can assu§(z)=0. This specialization amounts to just
redefiningU and\ (see Ref. 18 and we shall do so in the followingAfter such a specialization
the R—W limit changes tdU= —ku(z), A=®u}). Note that the coordinate is not defined
uniquely. All the formulae given are covariant with the transformatizad(z'), wheref is an
arbitrary function. The particle number density function obeyifigd) has here the form
n=N(x,y,z)e” ¢ 2# whereN(x,y,z) is an arbitrary function.

Equation(2.2) implies hereN=e?®F(Sé?,z), whereeB=ef/®, and

[(N®+X)E,;—EN,z/®]F,x/F+EF,,/F=E,5, (4.9

where X=Sé®, Z=z. This is a quasi-linear partial differential equation determinfx,Zz).
However, the coefficients it4.9) do depend on time, whileé should be, by the definition dfl,
independent of. We first solve(4.9) as if F were allowed to depend dnand then we impose the
conditionF,,=0. The general solution @¢#.9) is F=EG(%), whereG is an arbitrary function and
7. =(N®+ X)/E+f(t), with f(t) being another arbitrary function. The conditién,=0 reads
now as

E,tG"_G,//[()\/(D),t_()\/(I)+X)E,t/E+f,tE]:0 (41@

Three cases arise hereH,,=0=G,,,, this will turn out to be included in the case Ill below and
does not require a separate treatmentgll.=0, (\/®),,= —f,;E, this one will be considered
separately further on; llIE,;#0+# G,,,, this is the generic case that we will consider first.

In case lll, Eq.4.10 impliesG,,,,,=0, i.e.,F=A(N® + X) + (t) E, whereA is an arbitrary
constant andi(t) is an arbitrary function. Now it is seen that the c&se=0=G,,, is contained
here as the subcage=0=E,;= ¢,, . We can assumg+0 because withy=0 the conditiorF,;=0
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implies eitherA=F=0, i.e., n=0—a thermodynamical nonsense, 0v/®),=0, i.e., a R—W
metric. The conditior,;=0 implies nowAN/® + yE=H(z), whereH(z) is an arbitrary func-
tion. Substituting the definition dt into this we obtain

Ni=K(t)N+L(t,2), (4.11
where
K(t):=®,,/P+kiI(DPD,)—Al(4D,), L(t,2:=U2)/D,+H2)P/(yP,;). (4.12

(We may assumé,,#0 because otherwige=const) The solution of Eq(4.1]) is
)\:J(Z)eIKdt_l_edetJ Le/Kdtg (4.13

whereJ(z) is another arbitrary function af. Substituting(4.13 into (4.6) we obtain an equation
of the following form:

whereF, F, andF; are functions of composed ofb,y and their derivative¢see Appendix A
Three possibilities now arise.

() All the three functionsJ, U and H are linearly independent. Thef#.14) implies
F,=F,=F3;=0, and it can be shown frorfd.5) and (4.6) that p=const, so this case is thermo-
dynamically trivial.

(B) Two of the functiongJ,U,H} are linearly independent, while the third one is their linear
combination. In each of these cases, two linear combinations of the fun¢fqn,,F;} must
vanish, which leads to a set of two differential equations to be obeyedthyandd(t). Some of
the resulting solutions are nontrivial, but not all of them. For example, the trivial solution from
point («) reappears in the two casé$=0, with{J,U} being linearly independent, ahél=0, k#0
with {J,H} being linearly independent. However, with=k=0 and{J,H} being linearly inde-
pendent, the function® and ¢ have to obey only one equation:

O,=—Aly+3D 2D -y, D, ], (4.15

which means tha(t) can be arbitraryp(t) (in general nontrivigl is determined by4.5) with
k=0, andy(t) is determined by4.15. It can be showriby careful retracing and adaptation of the
reasoning in Ref. 19 to the cape:0) that withU=k=0, (A\/®),,#0 and generi¢/, andV, the
model has no symmetry. Hence, the case we have just identified is an example of a Bzafdon
model with no symmetry that allows for a thermodynamical scheme.

(y) Each pair in the sefJ,U,H} is linearly dependent. This means that there is only one
function of z in this set and tha® and ¢ are connected b{4.14) with J, U, andH replaced by
arbitrary constants, i.ed(t) is again arbitrary. It can be shown again that the Szafron model has
in general no symmetry also in this case, so we have here another example of a model with a
thermodynamical scheme and with no symmetries. The case discussed by Quevedo and’Sussman
is contained in the clasg) as the casd=H=F,=0.

It remains now to investigate the case Il of the three cases listed afté4.EEf. We have then
E,.=0 and

A=—E@)f(t)®(t)+H(2)®(1), (4.1
whereE(z) andH(z) are arbitrary functions. This must obey(4.6) with W=0 and(4.8) with
E=E(2). The conditionF,,=0 is identically satisfied. This subcase has nonzero shear as long as
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f,#0 (if f,;=0, then the thermodynamically trivial solution widh,=0 result3. Equationg4.16),
(4.6) and (4.8) lead to the following two equations determinidgand f:

f=kf/(DD,)—1/D,,—Cl(DD,), (4.17)
O(P+C)P,— k(P +C)— (30 +C)D, 2= (—k+ DD, — P, 2)kf, (4.18

whereC is an arbitrary constant. The functioBsH andU are connected byH+U=CE. When
k=0, Eq.(4.18 decouples front4.17). Even in that special casp,is not constant and the solution
has in general no symmetry. Hence, this is another example of a Szglfra€h model without a
symmetry and with a nontrivial thermodynamical scheme.

V. THE THERMODYNAMICAL SCHEME IN THE SZAFRON MODELS WITH g'+#0

The metric of these models is of the same form a@glifi) but here(in a notation adapted from
Szafrof):

eP=d(t,2)/S(x,y,z), e*=h(z)S-(e?),,, (5.1
S:=A(2)(X2+Yy?)+ 2B (z)x+2B,(2)y+ C(2), (5.2

whereh, A, B, B, andC are arbitrary functions of, the function®d(t,z) is determined by Eq.
(4.5 with k being a function of that obeys the relationship:

AC-B2-B3=3%[h"2(2)+k(2)]. (5.3

Note that the limitB,,—0 of this solution is singular. Therefore the cgge=0 discussed in Sec.

IV has to be derived separately from the Einstein equations. The source in the Einstein equations
is again a geodesically and irrotationally moving perfect fluid with the velocity fiékd &5, the
arbitrary pressur@(t), and the energy—density:

ke=(h/®?)E(t,2)e” “+3(®,2+k)/P2, with E(t,2)=D(P,2+k),,—2®,,(P,Z+k).
(5.4)

The R—W limit results whedb=zR(t), andk=k,z?, wherek, is a constantthe spatial curvature

index of the R—W metric'®?° The particle number density function defined Hy3) is here
n=N(x,y,z)e"“ 22, In this case, Eq(2.2) can be showriby a rather long and tedious calcula-

tion) to either reduce the solutiof®.1)—(5.4) to dust or to impose a symmetry group on it. The
group has at least 3 dimensions, and its orbits are at least two-dimensional. Hence, for this class
of Szafron models a nontrivial thermodynamical scheme can exist only if there are symmetries in
the spacetime.

VI. CONCLUSIONS

We have verified the following

1. For the Stephani Universe and the Szafron models gl/i#h0 a nontrivial thermodynamical
scheme(that is, one in whichp#0) can exist only in those subcases in which the spacetime
acquires an at least 3-dimensional symmetry group acting on at least 2-dimensional orbits.

2. The Szafron model witl3’ =0 does have subcases that have no symmetry and allow for a
nontrivial thermodynamical scheme. In the subcase of dlgss Sec. IV, the scale factob(t)
remains arbitrary, but the form of the functians limited. In the nontrivial subcases of clag®,
the evolution of the scale factor is fixed, while the generality. a$ limited to a lesser degree.

Like we stated in the Introduction, only the first result is conclusive. For the Szafron model
with B'=0 it remains to be verified whether among the functiarthere are any which obey an
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interpretable equation of state. Also, as stated in the Introduction, the negative result of point 1
above only means that these models cannot be interpreted as single-component perfect fluids. It
remains to be seen whether they can be interpreted as noninteracting mixtures of perfect fluids or
mixtures in which reversible chemical reactions occur. Our results show that there is no simple
connection between the existence of a thermodynamical scheme and symmetries.

The hope that motivated this paper was that the Gibbs—Duhem equat®mwould force a
definite form upon the arbitrary functions of time in the models, and thus would play a similar role
as the equation of state does. This happens indeed in the(glas®odels of Sec. IV, but it is not
a general rule. In the clagy) models of Sec. 1V, the one arbitrary function of tinpg€t), survives
intact after the integrability of1.2) is ensured.

In those classes in which arbitrary functions of time are present in spite of the lack of
symmetry, an equation of state still has to be imposed on the resulting solution. We(seeall
Refs. 3 and 2)lthat for the Szafron model the barotropic equation of gpatg(e) trivializes it to
a spatially homogeneous of@nd in particular to an R—W one in some cases

ACKNOWLEDGMENTS

A.K. wishes to thank H.Q. and R.S. for their kind hospitality at the Instituto de Ciencias
Nucleares of the UNAM where this collaboration was initiated. This work, including A.K.’s visit
to Mexico, was supported by CONACYT Grant No. 3567-E.

The calculations for this paper were partly done with the algebraic computer system$Maple
and Ortocartaf®

APPENDIX A

The three functions appearing in Eg.14) are defined as follows:

Fi()=|KID =KD, /D, 2+AD i, [ (fPD,) + ADD /(D ,?)
k A2 . 3A
+ E—Z (D/q),t—7 ex;{det , (A1)
F,(t)=F (t)J(l/CI) ) p( det)dt+1+ K _AD PP (A2)
= WexXp — -,
20 t @7 Yo7 D)
®
F3(t)=F1(t)f L/IT% exp{—f Kdt|dt+ Z

L k A D] 20 D%y, A3
e er ey o

whereK(t) is given by(4.12).
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