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Shear-free normal cosmological models are the perfect fluid solutions of Einstein’s equations in
which rotation and shear vanish, and which are not static [they were all found by A. Barnes,
Gen. Relativ. Gravit. 4, 105 (1973)]. They are either spherically, plane, or hyperbolically
symmetric. Their symmetries are discussed in various coordinate systems and related to the
conformal group of the three-dimensional flat space. A coordinate representation is introduced
which unites all three cases into a single two-parameter family. The limiting transitions to the
Friedman-Lemaitre-Robertson-Walker (FLRW) models and to the Schwarzschild—de Sitter-

like solutions are presented.

Il. WHAT ARE THE SHEAR-FREE NORMAL
COSMOLOGICAL MODELS AND WHY ARE THEY
INTERESTING?

All the perfect fluid solutions of Einstein’s equations in
which rotation and shear vanish were found by Barnes.'
Some of them are static and thus of no interest in cosmology.
One of the nonstatic solutions is conformally flat; it was
found earlier by Stephani® and studied by this author else-
where.>* The remaining solutions of Barnes, which are of
Petrov type D and nonstatic, qualify as inhomogeneous
models of the Universe and will be called here “the Barnes
cosmological models.”

There are three classes of them: spherically, plane, and
hyperbolically symmetric [the first class was in fact discov-
ered by Kustaanheimo and Qvist® (KQ) in 1948 and reob-
tained a few times more,* also the plane symmetric model
was later rediscovered®]. Because they have three-dimen-
sional symmetry groups acting on two-dimensional space-
like orbits, all structures in them have one spatial dimension.
This is too simple to describe the three-dimensional struc-
tures observed in the real Universe, but may be the first step
in the right direction. As argued by this author,'®'? in the
plane symmetric Barnes model it seems possible to set up
initial conditions in such a way that the matter density is a
periodic function of the (invariant) spatial distance. It
would then be an example of 2 model with a discrete symme-
try group,'? combining large scale homogeneity with small
scale inhomogeneity.'* This is all the more attractive be-
cause, as will be shown further in this paper, all the classical
Friedman-Lemaitre-Robertson-Walker (FLRW) cosmo-
logical models are contained in the Barnes models in the
limiting case of spatially homogeneous matter distribution.
Hence the Barnes models represent an inhomogeneous per-
turbation (within the exact theory) superimposed on the
FLRW background, and are capable of reproducing the
classical cosmological results in the limit.

Since they are too simple for cosmological purposes,
further generalizations are needed. A study of geometrical
properties of the Barnes models may thus be useful. In this
paper, a convenient representation of the three Barnes’s
classes (Sec. III) is used in which each class is generated by
the same differential equation. Symmetry groups of the three
classes (Sec. V) are investigated, and special subcases
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possessing four-dimensional groups are revealed (Sec. VI,
all but one of them are vacuum solutions with A). Since the
symmetries of the models are closely related to the confor-
mal group of the three-dimensional Euclidean space, an ac-
count of properties of this group is given (Sec. IV). A new
coordinate representation is introduced (Sec. VII) which
unites the three classes into a single two-parameter family in
which any one mode] can be continuously deformed into any
other. Symmetries of the three models in these coordinates
are presented in Sec. VIIL. Finally, it is shown in Sec. IX how
the FLRW models result as limiting cases of the Barnes
models.

In order to make this paper self-contained, an account of
Barnes’s original results is given in Sec. II.

The readers should be aware that apart from the Barnes
models, other generalizations of the FLRW models are also
found in the literature. Most important are the geodesic and
shearing perfect fluid models of Szafron'® which generalize
those of Szekeres'® and Lemaitre,'”?° and the Petrov type N
perfect fluid models of Oleson.?! Many more papers were
published, but most of them deal with special cases of those
mentioned here and sometimes they duplicate each other. A
detailed survey displaying the interdependences between the
various models is being prepared by this author. Readers
wishing to contribute to the list are welcome to do so.

Il. THE MODELS AS OBTAINED BY BARNES

Of the several solutions found by Barnes we shall con-
sider here only those which have the expansion scalar and
the Weyl tensor both nonzero. In the table of Ref. 1 they are
contained in the lines IBE and IIE, but those from IBE are
special cases of the latter and need not be considered sepa-
rately. The metric in those solutions [changed to signature
(+ — — —=)]is

Y, \? 2
ds® = Y“z(t,r)[(—i) i _ do* — f2(6)ds* |,
30 r?
2.1
where O(t) (the expansion scalar) is an arbitrary function,

Y(t,r) is given by the equation

r’Y, +rY, —KY=5b(r)Y? (2.2)
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b(r) is another arbitrary function, K = + 1,0,0r — 1, and

sin 4, for K= +1,
Jf(8) =486, for K=0, 2.3)
sinh 8, for K= — 1.
The model with K = + 1 is spherically symmetric, the one
with K = 0is plane symmetric, and the one with K = — 1is

hyperbolically symmetric. The constant K should not be
confused with the FLRW curvature index k; the former is
the sign of curvature of the two-dimensional orbits of the
symmetry groups mentioned above.

The source is in each case a perfect fluid, and the coordi-
nates in (2.1) are comoving; thus the velocity field is

u" = (30Y/Y,)8;. (2.4)

From the form (2.1) it is not easy to reobtain the FLRW
models, so we shall change to another parametrization.

lil. COORDINATES BETTER ADAPTED TO THE FLRW
LIMIT

Let R(¢) be a function (which will coincide with the
scale factor in the FLRW limit), and let

F(r) = — 1/(30).
In the spherically symmetric case we then have
ds? =D?dt? — [R(1)/V(t,x,0.2) 12(dx? + dy* + dZ?),

(3.1)

(3.2)

where
D=FR/V)(V/R),), (3.3)
u=r2 (3.4)
(x,9,2) = r(sin @ cos ¢,sin G sin ¢,cos ), (3.5)
Y(4,r) = V(tu)/[rR(1)], (3.6)

and the function ¥ (t,u) is determined by the equation

R(Hw,,/w*=f(u), 3.7)
where f (u) is an arbitrary function, and, in the present case,

w = V(t,u), (3.8)

b(u) =f(w)u'2. (3.9)
Equation (3.7) is the Kustaanheimo—Qvist equation.’

The FLRW models (all of them) are obtained from here
when f=0 and V, =0, thus V=1 + (1/4)kr’, where
k = const. Without the assumption ¥, = 0 the spherically
symmetric subcase of the Stephani universe’™ results where

k(t) is an arbitrary function.
The matter density and pressure are here equal to

3 8us3 12VI{,, 12uV,2u
KP=F-+ R3 R2 —_ R2 » (310)
3 + 4(uV,2u - VI/,u) ZEI
K — e —— —
P F? R? (F?D)
2uV
+4[ £ (1— 4 "‘)(VV,u—V,V,,)
(RD) V ’ T
(3.11)
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(x = 87G /c*). In the FLRW limit, Egs. (3.10) and (3.11)
reproduce the Friedman equations if the 7 coordinate is cho-
sensothat F= — R/R,.

In the plane symmetric case the metric form is again
(3.2) and (3.3) where this time

u=z, (3.12)

(x,y,2) = (O cos ¢,0sin @, In r), (3.13)

Y(t,r) = V(1,2)/R(1), (3.14)
and again ¥V is determined by (3.7) and (3.8) where

b(u) =f(u). (3.15)

When f= 0 and ¥V = 1, the flat FLRW model results. How-
ever, with f=0 and ¥V =a + bz; a,b = const, the open
(k <0) FLRW model is obtained in a nontrivial disguise, as
will be shown in Sec. IX. The matter density and pressure are

in this case?*?°
2
Kp=}§§-+2‘£l/33—%, (3.16)
_ 3 Vi 2F,
=T TR D)
az[___FV’z ] VWV, —V,V.). (3.17)
(R2DV) iz a ¥z

Finally, in the hyperbolically symmetric case, the metric
form can be transformed into (3.2) and (3.3) where

u=x/y, (3.18)

V(tx,y) = yw(tu), (3.19)
and w(t,u) obeys (3.7). The transformations corresponding
to (3.5) and (3.6) and also (3.13) and (3.14) are carried out
in two steps. We first observe®®?’ that the two-dimensional
metric (d6? + sinh”> #d¢’) may be transformed into
(d7 + €*" dz*) (see Appendix A), so (2.1) can be written
as

ds =F*(1)(Y,/Y)*dt?

—r2Y "2, (dri + r?dr? + r2e*7dz?). (3.20)

Now we define
r = exp{arcsin[ (x/y)2 + 117V}, (3.21)
7= —}n(x*+"), (3.22)
Y={[(x/y)*+1]1""2w(t,u)/R(1), (3.23)

and change (3.20) into (3.2) with (3.3), (3.19),and (3.18).
Moreover, if variables are changed in (2.2) according to
(3.21), (3.18), and (3.19), then w will obey (3.7) where this
time

b(u) =f(u)(u® + 1)*% (3.24)
With f=0and w, = 0, this Barnes model can reproduce the
flat and the open FLRW model, but the limit is not achieved

trivially; see Sec. IX. The matter density and pressure are
here??

30 22+ 1) fuwr | buww,
Kp = F + R 3 R 2
3+ Dwl, 32
- (3.25)
Andrzej Krasinski 434

Downloaded 09 May 2008 to 193.0.83.155. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



3 (W + et 2uww,
kp=——5+ 2 - 3
F R R

2Fr w

. ? 5 F
Fo TR T [(RZD)]

2
P [u —M'i-] (ww,, —ww,). (3.26)
w

The transformations changing (2.2) into (3.7) fulfill in
each case the Barnes equations (6.12), (6.13), and those
following them.

In the previous papers of this author,'®!? the Barnes
models were unknowingly reobtained and some were named
differently. The hyperbolically symmetric model was called
there “line homogeneous.” The ‘“axially symmetric uni-
verse” of Ref. 11 is the unified representation from Sec. VII
of this paper, and the other cases of Ref. 11 lead to one or
another of the three Barnes models.

Several special solutions of Eq. (3.7) were found by dif-
ferent authors>®#8-37 (the list of references is not guaran-
teed to be complete), and the existence of solutions consist-
ing of elementary functions was systematically investigated
by Stephani.®® The result was that Eq. (3.7) can be integrat-
ed to afirst-order equation when f () = u” or f () = e* or
fW)=w+a)y"(u+p) "% (aBn are constants),
and it can be completely solved in elementary functions
whenf (1) = u~""7orf (u) = (au® + 2bu + ¢) ~>'? (a,b,c
are constants). For this last case Wyman®® provided a gen-
eral formal solution (not necessarily elementary). In the co-
ordinates used in this section, all these results translate im-
mediately into the corresponding plane and hyperbolically
symmetric cases even though the papers quoted were con-
cerned with spherically symmetric space-times. However, as
argued in Refs. 10 and 11, it may be more important from the
physical point of view to solve Eq. (3.7) in the variable
I(u,t)|,-, , where [ is the affine parameter on the geodesics
orthogonal to the fluid flow and to the group orbits, since /
has a direct geometrical meaning while « has not. The trans-
formation u — /() may not be elementary.

The transformations that change (2.1) into (3.2) pre-
serve in each case the comoving character of the coordinate
system, and so

u*=D~'55. (3.27)

The Weyl tensor? is in each case proportional to the
arbitrary function f(u), and so will vanish whenever
S (1) = 0. Then, each of the Barnes models becomes a sub-
case of the Stephani universe.2* With f #0, the Barnes mod-
els are of Petrov type D. Note that the Stephani universe has
in general no symmetry,? so only its special cases are con-
tained as limits f— 0 in the Barnes models.

Since the space metric in (3.2) is manifestly conformal-
ly flat, its symmetries will be closely related to conformal
symmetries of the flat space. These are shortly described in
the next section.
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IV. THE CONFORMAL GROUP OF A FLAT SPACE

In this section we shall consider a flat Riemannian space
of arbitrary signature and arbitrary dimension n. Let x4,
A = 1,...,n, be the Cartesian coordinates so that the metric
form is

ds: = €,(dx")> + -+ +€,(dx")?, (4.1)

where each €; equals either + 1 or — 1. A transformation of
coordinates x—y* (x) is called a conformal symmetry of
(4.1) if it changes the metric form (4.1) to

dsk = D(p)ds’_,, (4.2)

where ® is a function and ds>_ , is obtained from (4.1) by
replacing all x* by y*. The conformal group (i.e., the group
of conformal symmetries) of an n-dimensional flat space has
[4n(n + 1) + 1] parameters; in(n — 1) of them belong to
the symmetry group (for which @ = 1) and 1 belongs to the
dilatation transformation, x*/y* =I=const (where
® =/ ~?). The remaining # parameters are connected with
the following transformations:

x?'= (' + CYy®)\/T,

et 4.3)
T= 1+2Csy® + CsC%pyF,

where C*, 4 = 1,...,n, are the group parameters. After Ple-
banski*® we shall call (4.3) the Haantjes transformations,
although Haantjes derived in fact only the special cases of
(4.3) where (1) CsCS = 0 (Ref. 40) and (2) just one C*
was nonzero.*! The group (4.3) is Abelian. Composing two
such transformations with the sets of parameters C* and D"
results in a single transformation (4.3) with the set of pa-
rameters (C* 4+ D*). Consequently, the inverse transfor-
mation to (4.3) is obtained by interchanging x’s with y’s and
replacing all C* by ( — C*). The generators of (4.3) are

a d
Ja =.VRJ’R — ZJ’B.VR =

P pw . (4.4)

The following properties of (4.3) are useful in calcula-
tions:

x x*=y y'/T, (4.5)
dx, dx*=dy, dy*/T> (4.6)
Equation (4.3) can be interpreted as the succession of
the following three transformations.*®
(1) Inversion in the (pseudo-) sphere of radius L cen-
tered at x* =0, x* = L *u* /usu’.
(2) Translation by the vector L 2C“4, u* = w* + L2C*,
(3) Inversion in an identical pseudosphere centered at
w* =0, w* =L /Y.
Since L cancels in the end, it may be assumed that L = 1

without loss of generality. In the following we shall often
denote (4.3) by

Xt = H(C,...,C")y
its inverse is then y* = H( — C',...,, — C" )x*.

4.7
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V. SYMMETRY GROUPS OF THE BARNES MODELS

For the spherically symmetric and the plane symmetric
model, the symmetries are well known. The generators are
J; = €;x (3/3x*) in the former case and J, =3/dx,
J,=3/dy, J; =x(8/dy) — y(3/dx) in the latter. For the
hyperbolically symmetric model in the form given by (3.2),
(3.3), (3.7), (3.18), and (3.19) the generators are found
from the Killing equations to be

a J J
J =x—= = =, 5.1
! x8x+y8y+zaz .1
J
Jy=—, 5.2
2= (5.2)

d a a
Ji= —~2xz— —2yz— + (X2 4+ py*—22)=. (5.3)

3 ox ¥ dy 4 a9z
The corresponding symmetry transformations are, respec-
tively,

x'=I' i=123, [=const, (5.4)

zZ=z+4+a, a=const, (x')=(xyp), (5.5)
and the Haantjes transformation,

(x'y,2") =H(0,0,C)(xyz), C=const, (5.6)

which will be for once written out explicitly:

y=2 7= [2+ COx* +y* +2))]
Tu Ty’ T, ’

Ty =14+2Cz4+ CHxX*+y° +2°). (5.7)

It may be verified that the algebras of the symmetry
groups of the three models are of Bianchi types IX, VII,, and
VIII, respectively. These are all the Bianchi types possible
with two-dimensional orbits.

As usual, while solving the Killing equations several al-
ternatives are encountered, of the form: either a certain dif-
ferential expression vanishes and a constant in the Killing
vector survives, or else the constant vanishes and a possible
one-parameter symmetry group is absent. In this way, spe-
cial subcases of a class of metrics are revealed that have high-
er symmetry. Such special cases of the Barnes models will be
presented in the next section. However, a few more cases
show up in several places which will be ignored for the rea-
sons explained below.

(1) If ¥, =0, then Eq. (3.7) implies that either (a)
R, =0, and Eq. (3.3) becomes invalid, or (b) w,, =0.
Equation (3.3) results from the Einstein equations22
Gy =0,i=1,2,3, for the metric (3.2) if (V¥ /R) , #0. Oth-
erwise, G, =0and D remains arbitrary. However, then mat-
ter density does not depend on time and ® =0 [see Eq.
(7.2) inRef. 14]. Thus case 1(a) is of no interest for cosmol-
ogy and will be ignored here. In case 1(b) a FLRW model
results (see Sec. IX) whose symmetries are well known.

(2) If V'separates, V = g(t)v(x,y,z), then Eq. (3.7) im-
plies again that either (g/R), = 0, which is equivalent to
case 1(a), or else case 1(b) occurs.

(3) If f (1) = 0, then a subcase of the Stephani universe
results (see Sec. IX) that is beyond the scope of this paper.

These subcases will be called “trivial.”
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VI. SUBCASES OF HIGHER SYMMETRY
A. The spherically symmetric model

A detailed analysis of the Killing equations shows that
only one subcase of higher symmetry exists here which is in
fact also trivial, but different from those mentioned above.
The subcase results when the arbitrary function f (u) from
(3.7)isf= B /u’'?, where B = constand w(t,u) = V(t,u) is
given by

()% (2
R/ u R\R/,.
_2 B (Z)’_L(L_A)ﬂ
3 w32 \R 4u \F* 3 ’

where A is (the cosmological) constant. Equation (6.1) isa
first integral of (3.7) and is equivalent to Eq. (6.7) from Ref.
42 (the correspondence is V/R=®, u=r, B=f, 1/
F=g). Therefore (6.1) defines the Schwarzschild—de Sitter
solution which in the more familiar “standard” spherical
coordinates has the form

ds®=Pdt>— P 'dr? —r2do*
— (r?*/K)sin®(K '?0)d¢?,

def
where P=K —2m/r —iAr,m = —4B,andK = + 1 (for
the proof see Ref. 42). The reason for the peculiar notation
will become clear further on. The additional symmetry is
time independence in the coordinates of (6.2).

(6.1)

(6.2)

B. The plane symmetric model

Two subcases of higher symmetry exist here, one of
which is again trivial in the same sense as (6.1). In the trivial
case the function f (u) from (3.7) is f= C = const and
w = Vis given by the following first integral of (3.7):

Vo o2 Vy? 1 1

(R),z 3 C(R) A=l
As indicated in Appendix B, this case can be transformed
into (6.2) with K = 0, i.e., is the plane symmetric analog of
the Schwarzschild—de Sitter solution. The additional sym-
metry is again time independence in the form (6.2).

The other subcase of higher symmetry has F = const
and

V=R(t)azv(azt), (6.4)
where a is an arbitrary constant and v(.X) is defined by
X% yx + 2Xv y = BY?, (6.5)

where X = azt, Bis another arbitrary constant, and the func-
tion f (u) from (3.7) is

(6.3)

f=B/(a). (6.6)
The metric is
ds* = (azv x/v)* dt* — (azv) ~*(dx* + dy* + dz*). (6.7)

With (6.6), Egs. (3.7) and (6.5) are consistent. The addi-
tional symmetry is

=t'/l, (x3,2) = I(x Vh2'),

and its generator

(6.8)
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a a a d

Jo= —t—+x—+y—+z—

¢ ot dx ¥ dy 0z

has the following commutators with the other three genera-

tors,J, =3d/9x,J, = 3 /dy,and J; = x(3 /dy) — y(d /3x):
[Jodi] =J0 i=12 [Jp,] =0. (6.10)

Note that the group generated by J,, J,, J, is of Binachi
type V and has three-dimensional orbits. The orbits are not,
however, orthogonal to the flow lines of the fluid and have
indefinite geometry (J, may be spacelike in one place and
timelike in another). Thus (6.7) is a tilted Bianchi type V
space-time, with an additional symmetry generated by J;.
Up to inessential reparametrizations, the solution coincides
with the one investigated in detail by Collins and Wain-
wright**** and so has a barotropic equation of state.

(6.9)

C. The hyperbolically symmetric model

As in the spherically symmetric case, the analysis of the
Killing equations shows that only one subcase of higher sym-
metry exists here, in which w(#,u) is given by the following
first integral of (3.7):

(@), e frae ()
R/. 144 R 3 (1+u%)%2\R

w 2 1 1 A 172
_[R(1+u2)] +1+u2(7?_2—?)} ’
(6.11)

where B is a constant given by f (1) =B /(1 + u*)*?, f is
the function from (3.7) while A is the cosmological con-
stant. By coordinate transformations the solution defined by
Eq. (6.11) can be reduced to (6.2) with K= — 1 [then
sin (K /20) =sin(i#) = i sinh 8] and so it is the hyperboli-
cally symmetric counterpart of the Schwarzschild—de Sitter
solution. The additional symmetry is time independence in
the coordinates of (6.2). The transformation from (6.11) to
(6.2) is sketched in Appendix C.

The metrics represented by (6.2) belong to the type D
metrics investigated by Kinnersley,*® and are a subcase of
those given by Eq. (25.74) in Ref. 26, but in a different coor-
dinate system.

Vil. COORDINATES COVERING ALL THREE MODELS
SIMULTANEOUSLY

The following metric represents all the three models of
Barnes simultaneously,

ds* = Fz(t)(g)2 (i)z dt?
S R/,

__ R
(z+ b)’S*(1,2)
where F(¢) and R(#) are arbitrary functions, b is an arbi-

trary constant, the variable Z is defined by

_a—xz—yz——zz

2(z+b)
a is another arbitrary constant, and the function §(¢,Z) is
defined by the KQ equation,

(dx* +dy* +dz), (7.1)

, (7.2)
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R(1S 22/8% = f5(2), (7.3)

Jfc (Z) being an arbitrary function. With any given S(z,Z),
Egs. (7.1) and (7.2) represent a two-parameter family of
metrics. However, we shall show that (7.1)-(7.3) are al-
ways equivalent to one of the Barnes models, namely, (I)
with @ <b? to the spherically symmetric one, (II) with
a = b? to the plane symmetric one, (III) with a> b2 to the
hyperbolically symmetric one.

Thus in the coordinates of (7.1)—(7.3), continuous de-
formations of one model into another are possible.

A. The spherically symmetric model
We introduce the constant a by
a=b%—a? (7.4)

The cases when a>0 and a<0 will have to be considered
separately. When @3>0, we define the constants 4 and / by

a=A%*(1+424)72,

a=[2I(1+4DH]7}, (7.5)
which implies
b= (14241 +24%%/[20(1 + AD (1 +24D]. (7.6)

The equations are solvable for 4 and / without further condi-
tions on a and a. Then we perform on (7.1)—(7.3) the se-
quence of three transformations

(1) z=2"+A/(1 4 24]), (7.7

(2) the Haantjes transformation,

(xy,2') = H(0,0, — 1) (x'y',z"), (7.8)

3) ' =2"—A. (7.9)
The final result is transforming Z given by (7.2) into

7 I(1 + 4D u—A? (7.10)

1424 Pu— (1 +4D%’
where u = x'? + y'? 4 2%, and the metric (7.1) into
ds’ =D?dt> — (R/V)2(dx? + dy* + dz"*), (7.11)
where D = F(t)(R/V)(V/R) , and

V=_[1%— (1+4D*1S/[21(1 + 4D]. (7.12)

This suggests that the substitutions (7.10) and (7.12)
change (7.3) into (3.7) and (3.8). This is indeed the case,
and f (u) from (3.7) is here

f) =2[1A0 + ADPLIPu — (1 + AD?] 7 fG(Z(w)).
(7.13)

Note that all the operations make sense also for a = 0 (then
A4=0).
When a<0, we define 4 and / by

a= —A*(1 4241 +24%%) 72,
a=[20(1+ 4]},
which implies
b= (1+24N/121(1 + Al (1 +24] +24%7)].

Again, (7.14) are solvable for 4 and / without further condi-
tions on @ and a. In the sequence of transformations step (1)
is to be replaced by

(7.14)
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(1) z=z' 4+ A1 +24D/(1 + 241 +24%?), (7.15)
steps (2) and (3) remaining unchanged. The final result for
Zis
_ 1(1 4+ 4]) u+A?
14241 42442 Pu— (1 4+ 4%’

(7.16)

and for the metric it is again (7.12) and (7.13). Just as be-
fore, the substitutions (7.16) and (7.12) change (7.3) into
(3/7) and (3.8) with f (u) given again by (7.13). The limit
a—0 (thus 4-0) of (7.14) and the subsequent operations is
the same as of (7.5)-(7.13). In either case, each step of the
transformation was invertible, so we proved that (7.1)-
(7.3) with a < b? is equivalent to the spherically symmetric
model for all possible values of a and b.

B. The plane symmetric model

The cases a = b25£0 and @ = b = 0 have to be treated
separately. In the first case, we perform the sequence of two
transformations

(4) z=2 +b, (7.17)

(5) the Haantjes transformation,

(x3,2') = H(0,0, — 1/(2b))(x'y',2"). (7.18)
The result on Z in (7.2) is

Z=>bz"/(z" —2b), (7.19)

and the metric (7.1) is transformed into (7.11) with

V= (z"—-2b)S. (7.20)
Just as should be expected, the substitutions (7.19) and
(7.20) change (7.3) into (3.7) and (3.8) where this time
u=2z"and

f(2") =4b*f5(Z(2"))/ (2" — 2b)°. (7.21)

When a = b = 0, the sequence (4) and (5) should be
changed to

4)z=z+1, (7.22)

(5 (xy,2') =H(0,0, —1)(x'}y,2"), (7.23)
resulting in

Z=yz" -1 (7.24)
and

V(tz") = (" — DS(t,Z(z")). (7.25)
The function £ (z") from (3.7) is here

f@) =4f6(ZE))V (2"~ 1) (7.26)

Each step of the transformations is invertible, so (7.1)-
(7.3) witha = b 2isequivalent to the plane symmetric model
for each possible value of a.

C. The hyperbolically symmetric model
We introduce a by
a=b*+a’ (7.27)

Thecases 5> 0, b <0, and b = 0 have to be considered sepa-
rately. When b > 0 we define /, and /, by

438 J. Math. Phys., Vol. 30, No. 2, February 1989

b= =212, (7.28)
a='=211l, (7.29)

and then perform the following sequence of three transfor-
mations:

(6) x=U} +I'"2/(hk), y=x/L+y/l,

z= —-x/L+y/l, (7.30)

(N x'=x"+1/21), (7.31)

(8) (-x”,yl’Z') =H( - Il) - 12’0) (X"',}’”,Z")- (7'32)
The final result for Z given by (7.2) is

Z=au/(bu — a), (7.33)
where

u=x"/y", (7.34)
and for the metric (7.1) itis (7.11), where

V=y"(bu—a)S(t,Z(u))/a"> (7.35)

This suggests that the substitution (7.33) together with
S = a'"?w(t,Z(u))/(bu — a) (7.36)

will change (7.3) into (3.7) with (3.18). This is indeed the
case. Thus the metric (7.1)—(7.3) with 5>0and a> b2 can
be transformed into the hyperbolically symmetric Barnes
model; the function f (u) is then

[ (u) =a%a®*f(Z(u))/ (bu — a)>. (7.37)

When b <0, we change (7.28) to

b~'= -2/, (7.38)
and the transformation of z in (7.30) to

(6) z=x/1,—y'/L,, (7.39)

the other steps in the sequence of transformations remaining
unchanged. Instead of (7.33) we then obtain

Z =au/(bu + a), (7.40)

which corresponds to replacing bby — band Zby — Zin
(7.33). Hence (7.33) also covers, in fact, the case b <0.

The sequence of transformations is different for b = 0.
Then we define

a=a?Z 1/(a1%), (7.41)
and perform the transformations

(9 x=x"+1/02D, (7.42)

(10) (x'p,z) =H(—-10,0)(x".y,2"), (7.43)
which result in

Z= —au (7.44)
with

u=x"/y. (7.45)

Equation (7.44) is in fact the limit of (7.33) when b =0.
However, the transformations (6)—(8) do not have a mean-
ingful limit 56— 0, so the effect of (9) and (10) on the metric
(7.1) has to be calculated separately. It turns out that (7.1)
changes to (7.11) where
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V=yS(tZ(u)) (7.46)

which shows that the resulting metric is the hyperbolically
symmetric Barnes model. The function f from (3.7) is here

f(u) = a*f5(Z(u)) (7.47)

[this is again the limit b0 of (7.37)]. Thus (7.1)-(7.3)
can be transformed into the hyperbolically symmetric model
when a > b ? for each possible value of b. Since each transfor-
mation in the sequences (6)—(8) and (9) and (10) is invert-
ible, (7.1)-(7.3) with a> b? is in fact equivalent to the hy-
perbolically symmetric model.

VIil. SYMMETRIES OF THE BARNES MODELS IN THE
COORDINATES OF SEC. VI

Since in the form (7.1)~(7.3) the symmetries are rather
difficult to recognize, we shall present them explicitly. Apart
from special cases discussed in Sec. VI, the generators of
symmetries are

Ji= —2Xyi+(x2-y2+zz+2bz+a)i
dx dy
ad
—29(z+ b) —, (8.1)
oz
Jy= (=% 4+ + 2+ 2bz + a) S~
ax
) a
—2xy — —2x(z+ b) —, 8.2
yc?y ( )az (8.2)
aJ a
Jo=x——p—. 8.3
3 xay y Ew (8.3)
The commutation relations are
[J]9J2] =4(b2 _a)J39 [J2;J3] =Jls [J3,Jl] =J2‘
(8.4)

Just as the results of Sec. VII suggest, whena <b?,a=b? or
a> b?, the Bianchi type of the algebra (8.4) is IX, VII,, or
VIII, and it corresponds to the symmetry, spherical, plane,
or hyperbolic, respectively.

The transformations generated by J, are evidently rota-
tions. Those generated by J, are generalizations of the
Haantjes transformations,

x'=x/W, zZ=(z+b)/W-—b,

(8.5)
V' = [ycosh(2B7) + (U /2B)sinh(2B7) 1/ W,
def
where 7 is the group parameter, 8 = (a — b?2)"/?,
def
U=x>+y*+22+2bz+a,
WS [a—x2—y* — 72 — 2bz — 2b* (8.6)

+ Ucosh(287) 1/(282) + (y/B)sinh(287).
Equations (8.5) and (8.6) cover all three cases given after
Eq. (8.4): when a < b?, Bbecomes imaginary, so f = iBand
cosh(267) = cos(2B7), 8~ ' sinh(287) = B ~'sin(2B7).
With @ = b2 we have

lim W=1+42ry+ 2(x* 4y 4+ 22+ 2bz + b?),
B-0
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in that case (8.5) and (8.6) is a composition of z” =z + b
and the Haantjes transformation (x',y',z') = H(0,0,7)
(xp,z").

The transformation generated by J, is obtained from

(8.5) and (8.6) by just interchanging x with y and x’ with y'".

iX. THE FLRW LIMIT OF THE BARNES MODELS

Let us change the 7 coordinate in (3.2) and (3.3) to T(¢)
defined by
FR,

ar_ R,
dt R
Then, in the new coordinates

D= —R*V/R)/(VR;)= —V R/(VR;) + 1.
(9.2)

Thus the T coordinate was chosen so as to make F(T)
= — R(T)/R ;. In what follows, we shall use just this co-
ordinate.

In order to obtain the FLRW models from the Barnes
models, we must first make the latter conformally flat. As
was stated after (3.27), this happens when the function f (1)
from (3.7) vanishes. Solving (3.7) in that case we obtain

w(t,u) =a(t) + b(Hu. (9.3)

With arbitrary @ and & the metric corresponding to (9.3) is
in each of the three cases a subcase of the Stephani uni-
verse>™ [in order to verify this, one has to occasionally use
transformations like (9.7), (9.9), or (9.10) below].

Now the three models have to be considered separately.
In the spherically symmetric case, Eq. (9.3) implies that V
in (3.2) will be

9.1)

V=a(T) + b(T)(x* + y* + 2°). (9.4)

If a#0, then it can be scaled to 1 by redefining 5(7) and
R(T). Let us then assume @ = O first. Then obviously b #£0,
and so b can be scaled to 1 by redefining R( 7). From (3.10)
and (3.11) wethenseethatp = p(f) andp = p(¢),i.e., (9.4)
with a =0, 5 = 1 should be a FLRW model. Indeed, the
standard form of the FLRW metric,

ds* =dT? — [R(T)/V 1°(dx® + dy? + dz?)
with
V=1+kx*+y"+2%) (9.6)

is obtained in this case by the sequence of two transforma-
tions,

(9.5)

(1) z=2'"—1,

9.7)
(2) v(xyy;zl) = H(O’Orl ) (x',}",z")-

The resulting & = 0.

With a0, we scale ato + 1 and find from (3.11) that
D.. = 0 implies either b = const or p = — p = const. The
latter case is the de Sitter solution, the former covers all the
FLRW metrics (kK =0, + 1). Thus (9.4) leads to (any)
FLRW model when g and b are both constants.

In the plane symmetric case (9.3) implies for (3.2)

V=a(T) + b(D)z. (9.8)
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If b =0, then this is evidently the flat FLRW model. Any
b #0 can be scaled to 1 by redefining R( 7). In that case we
find from (3.17) that p, = 0 implies either @ = const or
p = — p = const. The latter case is again the de Sitter solu-
tion, while the former is a FLRW model. The transforma-
tions to (9.5) and (9.6) are the following. When a+#0,

(3) (x,2) =H(0,0, — 1/(2a))(x',y’,2"),

! ’ ! n " " (9'9)
(4) (x'y,2')y=a(x"y",z");
and, when a = 0,
(5) (x,pz) =H(0,0,)(x"y.2"),
Y Xy (9.10)

6) z2=2z"-2.

In both cases the resulting k is necessarily — 1. Hence the
plane symmetric Barnes model can reproduce only the flat
(k =0) and the open (k= — 1) FLRW models.

Finally, in the hyperbolically symmetric case, (9.3) im-
plies for (3.2),

V=a(T)y+ b(T)x. (9.11)

If either a = 0 or b = 0, then (9.11) is equivalent to (9.8)
with @ = 0. We shall thus consider the case ab #0. Then a
can be scaled to 1 redefining R(7), and from (3.26) we
conclude that p, =0 implies either b=const or
p = — p = const. The latter is once more the de Sitter solu-
tion, while the former is a FLRW metric. It can be trans-
formed to the standard form (9.5) and (9.6) by the follow-
ing sequence of transformations:

(7) (x,y,Z) = H( - %,b,O) (xlyy”zl)!

8) xX=x"—1, y =yp"—1/b, (9.12)

(9) (x"p"2) =162+ 1)/ 20) ] (x"y".2").
The resulting k is necessarily — 1. Hence the hyperbolically
symmetric Barnes model can reproduce the open (k <0)
FLRW model. It can also reproduce the flat (k = 0) FLRW
model if the following trick is applied to (9.11) (witheand b
being constant). We first transform x = x' = + B /b, and

then let 5—0. In this way (9.11) becomes V' = ay + B, and
in the limit @ — 0 this is the flat FLRW metric.
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APPENDIX A: TRANSFORMING THE HYPERBOLIC
TWO-METRIC

We shall transform the two-dimensional metric
ds3 = d6? + sinh? 0 d¢*

into
ds}=dr?+ " d? (A2)

(compare Refs. 26 and 27). The following formulas alter-
nately present the transformation and its result on the pre-
vious metric form:

=In(1+2p)—In(1—-2p),
ds? = 16(1 — 4p*) ~*(dp® + p* d¢?),

(A1)

(A3)
(A4)
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u=psing —4, v=pcosd, (A5)
ds? = (u+ u® + v*) " 2(du® + dv?), (A6)
u=[w— (W +2)/T, v=2z/T,

Td=efl—2w+w2+zz, (A7)
ds} = (dw’ + d2*)/w’ (A8)

[if the previous step looks miraculous, then consult Sec. IV,
it is the Haantjes transformation in two dimensions,
(uv) =H(—-1,0)(w,2)],

w=e (A9)

and the resulting metric is (A2). [ ]

APPENDIX B: THE PLANE SYMMETRIC ANALOG OF
THE SCHWARZSCHILD-de SITTER SOLUTION

In order to bring out the analogy of (6.2) with Eq. (6.7)
in Ref. 42, let us change the variable z and the function w
according to

z=In¢{, w=RP(1,£)/¢. (B1)
Then (6.3) will change to
D, =(P/0) + [%C(¢/§)3 +F~%(1) — A/3]1/2, (B2)

where ¢ plays the role of r from Ref. 42, and the metric
becomes

ds® = F2(£)®2®2 dt? — &~2[d(? + £2(d6? + dg?) ],
(B3)

where x = 6 cos ¢, y = € sin ¢. By the methods of Ref. 42, it
can now be shown that a coordinate transformation of the
form#(¢",§"),5(¢',§ ") existsthat preservesthealgebraicform
of (B3), but changes ® so that the term F ~2in (B2) disap-
pears, thus making the new ® time independent. The new g,
becomes ({® . — P)? (primes dropped). The further coor-
dinate transformation r = {® ' reduces then the metric to
(6.2) with K—~0and m = — C /3. The generator of the ad-
ditional symmetry, which in the original coordinates
(t,x,y,z) was

Ji= — — A B4
4 2F | (w/R), a " 2F oz (BH)

is then transformed into @ /3.

1 (w/R),z]a 1 43

APPENDIX C: THE HYPERBOLICALLY SYMMETRIC
ANALOG OF THE SCHWARZSCHILD-de SITTER
SOLUTION

Let us perform the change of variables inverse to
(3.21)~(3.23) in the metric (3.2) with (3.18) and (3.19)
and w given by (6.11), i.e.,

x=e""cos(Ing), y=e "sin(In{), (C1)
which implies
u=x/y=1/tan(In {), (C2)

where £ plays the role of » from (3.21). The metric then
becomes
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ds’ = F*(R /w)*(w/R)? dt?
— (1 + &) [R/w(t,u)1*(dE*/E? + dT? + €27 dZ°).
(C3)
Let us next introduce the new function Y(¢,u) in (6.11) by
w= (1+4*)"?RY, (C4)

then change the variable according to (C2), and finally in-
troduce the new function ®(#,{) by

Y=®/¢. (C5)
The resulting equation for ®(z,£) will be
O, =0/ + [ — (P/5)?
+3B(®/5) + F2(1) — A/3]"2 (C6)

This is analogous to Eq. (6.7) in Ref. 42 [the sign before ($/
£)? is opposite here]. The methods of Ref. 42 work here
exactly as described in Appendix B, so a transformation to
(6.2) with K = — 1 exists, wherem = — B/3andr=¢_"/
®, £ ' being that variable in which 1/F2 drops out from (C6).
The generator of additional symmetry which in the coordi-
nates of (6.11) is

R
J4=[(1+u2) W)y W/R ]
(w/R), (w/R) ,
19 »yd x90 (CT)
Fot Fdx Foay

reduces in the coordinates of (6.2) to J, =d/dt.
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