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Abstract  

This paper is meant to announce the appearance of a new computer program for symbolic 
calculations in general relativity, named ORTOCARTAN. The program calculates the curva- 
ture quantities from an orthonormal tetrad of forms representing the metric, both the 
tetrad and the coordinate components. The paper describes the main features of the pro- 
gram's input and output, and compares the program's speed to a few general-purpose 
systems, notably LAM, ALTRAN, FORMAC, REDUCE, and SYMBAL. A general overview 
of technical parameters of the program, and conceptual features of the algorithm is given. 

w Introduction 

Although a few general-purpose formula-manipulation systems and a few 

tens of formula-manipulation programs specialized to narrow classes of problems 

are now available in the world (see, e.g., [1-3] ), one still meets difficulties in 

obtaining them with the full set of documentation.  The practical choice for a 
specific user is limited by the computer type to which he has access: most pro- 
grams or systems run on one type only. Therefore every new program increases 

the supply and makes a wider distribution possible. Moreover, it is most useful 
to have a program together with a local group of experts which would be re- 
sponsive to the requests of the users. For these reasons we decided to write a 

67 

0001-7701/81/0100-0067503.00/0 �9 1981 Plenum Publishing Corporation 



68 KRASIlqSKI AND PERKOWSKI 

new program for calculating the curvature tensors in general relativity. The pro- 
gram described in this article was produced by the authors, with occasional 
cooperation of Mr. Z. Otwinowski, in the years 1977-1979. Though directed 
towards calculating the curvature tensors, it contains several subprograms easily 
applicable to other kinds of calculation, and might become the core of a general- 
purpose system. The work to be done in this direction is much less than the 
work already done. At present, we find our program useful enough to be made 
generally available. It can be obtained free, together with the complete docu- 
mentation: user's manual, listing, and detailed description of the code. 

The fastest version now existing consists of a large code, written in the LISP- 
programming language, which is read by the LISP interpreter, and a small package 
of most frequently called subroutines, written in the LAP code which is read by 
the function READLAV. In the future we plan to produce a compiled version 
which would be at least five times faster. 

In this article we want to give the readers enough material to weigh the value 
of our program against the other systems existing, and to encourage them to 
make use of it. 

w (2): Use and Application of the Program 

Our working assumption was that an ideal program requires, on the user's 
part, no previous experience with computers and as little introductory learning 
as possible. The introductory learning now consists of reading 52 standard pages 
of typewritten manuscript, of which only 27 suffice to start the work with 
simple problems. The manual mostly defines quite natural rules just to make 
them explicit, and we believe that our program is indeed very easy to use. This 
is partly at the cost of speed and core economy. 

The program, named ORTOCARTAN, is readily implementable with the 
following requirements fulfilled: 

(1) Language of implementation: LISP, the University of Texas version 4.1. 
Other versions of LISP may require minor modifications in the code. For ease of 
implementation the source version in pure LISP interpreter code is available. 

(2) Computer: CDC Cyber 73 was our computer, but in fact any computer 
with LISP implemented will manage to run the program. 

(3) Operating system: SCOPE 3.4.4. Under other operating systems slight 
modifications may be required. 

ORTOCARTAN is directly applicable to calculating the curvature tensors from 
an orthonormal tetrad representation of the metric tensor. Its input data are the 
components of the tetrad forms. It calculates routinely the inverse tetrad of vec- 
tors, the Ricci rotation coefficients, and the tetrad components of the Riemann, 
Ricci, and Weyl tensors. On request of the user the program can calculate in 
addition the metric tensor (just to test the correctness of the tetrad), the inverse 
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metric, the Christoffel symbols (of the second kind only), the tetrad compo- 
nents of the Einstein tensor, and the coordinate components of the Riemann, 
Ricci, Weyl, and Einstein tensors, with any arbitrary positions of indices. The 
calculation may be stopped at any earlier stage, before the Weyl tensor is cal- 
culated. The user may introduce large amounts of algebraic substitutions at any 
stage of the calculation, thus making the results more tidy and/or concise. 

With more effort from the user, the program ORTOCARTAN may be used to 
produce other specialized programs, e.g., for solving sets of linear algebraic 
equations, solving algebraic equations of higher degrees, writing the Dirac equa- 
tion in different curved spaces, calculating curvature tensors in the coordinate 
formalism or in other tetrads, and so on. The program is equipped with fairly 
general subprograms for algebraic simplification, differentiation, printing the 
results in the mathematical format, inverting matrices, and a convenient scheme 
of the user-program interface. These are accessible by the usual methods of 
handling Lisp programs. Such access requires a careful study of the description 
of our program (and, of course, the knowledge of the Hsp language). The de- 
scription is available on request, together with the listing of our program and the 
reference manual of LISP 4.1, from the authors of this article. 

w (3): Comparison wi th  Other  S y s t e m s  

The commonly accepted test problems for systems to be used in general 
relativity are: calculating the Einstein tensor for the Bondi-van der Burg-Metzner 
(BVM) metric [4], and the same calculation for the metric of Levy [5], which 
contains small corrections of the first order to a background metric. The first 
calculation tests the program's speed, the other one, its ability for handling non- 
trivial substitutions. 

The BVM metric is 

ds 2 = ((V/r)X/: e ~ [ t i t  + ( r /V )  d r ]  }2 _ [(r /V)~/:ee  d r ] 2  

- [reV(dO- Ud t ) ]  2 _ [r sin Oe -v d~p] 2 (1) 

where/3, 7, U, and V are arbitrary functions of t, r, and O, and the choice of the 
orthonormal tetrad of forms is unambiguously suggested by (1). 

ORTOCARTAN calculated the tetrad components of the Einstein tensor for 
the metric (1), including printing all the intermediate results, in 536 sec at 
53 248 (150 000 octal) words of core. This is to be compared [1] with 104 sec/ 
400 kbyte for LAM, 255 sec/350 kbyte for ALTRAN, 162 sec/300 kbyte for 
EORMAC, 856 sec/500 kbyte for REDUCE, and more than 3600 sec for SAC-l, 
all on IBM 360/375, and with 35 sec/33 000 words for SYMBAL on CDC 6600. 
The program CLAM [6, 7] calculated the same quantities in 33 sec at 40 960 
words on CDC Cyber 73. 
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The comparison of bare numbers gives the impression that ORTOCARTAN 
does not perform too well. It should be stressed, however, that the BVM metric 
is a very unfavorable case for the exterior calculus in the orthonormal tetrad, as 
the tetrad components of the curvature tensors happen to be much larger than 
the corresponding coordinate components. The most natural tetrad for the BVM 
metric is a null one, not the orthonormal. For this reason ORTOCARTAN had 
simply much more work to do with the BVM metric than did the systems which 
use the algorithm of the tensor calculus. A more informative comparison is, 
e.g., the static spherically symmetric metric in the standard Schwarzschild co- 
ordinates for which the size of the expressions processed is nearly the same in 
the coordinate calculus as in the orthonormal tetrad calculus. We compared this 
calculation by ORTOCARTAN with that by REDUCE version for CDC computers. 
Here, ORTOCARTAN performed the calculation in 42 sec at 27 136 (65 000 
octal) words of core, to be compared with110 sec at 22 528 words for REDUCE, 
on CDC Cyber 73. 

The Levy metric is 

ds 2 = (e 2u + ehoo) d t  2 - e2k-2U(dr 2 + dz 2) - r2 e -2u d~o 2 + ehi i dx  i dx  i (2) 

where i,] = 1,2, 3, xl = r, x 2 = z, x 3 = ~. The quantities u, k, ho0 and all the h 0 
are arbitrary functions of t, r, and z, while e is a small parameter whose powers 
higher than the first are to be replaced by zero. Also, each time-differentiation is 
assumed to produce the factor e. 

The orthonormal tetrad of forms for the metric (2) we have taken to be 

e ~ = (e u + �89 ee-Uhoo) d t  

e 1 = e k-u dr - eeU-k(�89 h l l  dr + hl~ dz + h13 d~) 
(3) 

e: = e k-u dz - eeU-k(�89 h2: dz + h:3 d~) 

e 3 = (re -u  - �89 eeUh33/r) d~ 

Here the only inconvenience for the user is the necessity to replace the deter- 
minant of the base of forms calculated by the program to be 

re2k-2u _ 1_ e(_re2k-4Uhoo + rhxl +rh22 + e2kh33/r) (4) 
2 

by the hand-calculated expression: 

(e2U-2k/r + 1 e [-e -2 khoo/r  + (e4U-4k/r) (hl i  + h22) + #u-2kh33 /r3  ])-1 (5) 

equal to (4) up to terms linear in e. This is necessary in order that the inverse 
tetrad of vectors, and all the further quantities, be expressible in terms of poly- 
nomials in e, and not rational functions. Other substitutions are fairly obvious, 
as seen from the Appendix. The calculation was successfully performed even 
though ORTOCARTAN has no built-in handling of truncated power series, and 
the approximations had to be introduced ad hoc by the user. 
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To calculate the tetrad components of the Einstein tensor and print all the 
intermediate results for the metric (2) took ORTOCARTAN 1104 sec, to be 
compared with [1] 210 sec for LAM, 691 sec for ALTRAN, 321 sec for FORMAC, 
234 sec for REDUCE, and 47 sec for SYMBAL. Memory occupied and computer 
used were in each case the same as before. 

The complete input data for ORTOCARTAN in both cases, and a sample 
output for the BVM metric, are given in the Appendix. 

w (4): General Features o f  oR TOCAR TAN 

The characteristics given below closely follow Table I of [1 ] so that 
ORTOCARTAN may be thoroughly compared with the six other systems re- 
viewed in [1]. 

(1) Version available: 1979. 
(2) Minimum core memory: 29 696 words (72 000 octal) to run small size 

problems on CDC Cyber 73. Of these 20 480 (50 000 octal) are necessary to 
load the LISP system. 

(3) Core memory for the BVM metric: 53 248 (150 000 octal) words were 
used in the test, but 40 960 (120 000 octal) would suffice, with a slightly longer 
time of execution. 

(4) Implementation language: LISP (U.T. version 4.1). 
(5) Computer: any, with LISP implemented. 
(6) Distribution: free; new users are warmly welcome. 
(7) Distributed as: magnetic tape or punched cards. 
(8) Maintenance: continuous, partly responsive to user's requests. 
(9) Correction of system: easy, with complete regeneration. 
(10) Dialog version: not existing. However, though working in the batch- 

mode, the system gives the user much opportunity to control the run of the 
calculation. 

(11) Syntax: mixed FORTRAN-LIsP-like, far trivialized, on input, normal 
mathematical on output. 

(12) Declaration of variables: only spelling, with assignment to the classes: 
constants, coordinates, arbitrary functions, symbols of explicit expressions. 

(13) Debugging facilities: some, rather simple. Those of LISP 4.1 are very 
powerful, but accessible only to more expert users. 

(14) Output form: adjustable pagewidth, partial suppressing possible, no 
further choice. 

(15) User's documentation: detailed manual intended for extreme nonex- 
perts, with sample calls and prints. 

(16) System documentation: full listing, detailed description of the code 
with directions for installation and maintenance. 

(17) Exact arithmetics: infinite precision. 
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(18) Floating-point arithmetics: floating-point numbers illegal. 
(19) Most general expression: only real expressions, no further limitations. 
(20) Knowledge of elementary functions: most. 
(21) Definition of differentiation rules: built-in for arbitrary functions, 

known elementary functions and symbols of explicit expressions, user-defined 
rules possible to introduce. 

(22) Pattern matching: limited, only in user's substitution rules. 
(23) Analysis of expressions: poor, 
(24) Rational function algorithms: none, but ad hoc transformations of 

definite expressions introduced by the user may do the work in each case. 
(25) Modernity of algorithms: fair. 
(26) Handling of truncated power series: none built in, but possible with 

user-defined substitutions. 
(27) Formalism for vectors and matrices: some for matrices, but not acces- 

sible to nonexpert user. 
(28) Gamma-matrix algebra: no. 
(29) Noncommutative algebra: no. 
New users wishing'to obtain a copy of ORTOCARTAN or its documentation 

should contact the authors. 

w Essential Features of the Algorithms Used 

Here we describe the features of the algorithms used in ORTOCARTAN 
which we think might be of some interest. 

The procedure for printing expressions in the mathematical format is recur- 
sire and can handle exponential expressions built upwards to an arbitrary height. 

The simplifying subprogram is organized so that to every mathematical oper- 
ation there is a specialized simplifying procedure to be called together with it. 
For instance, when a few expressions are to be added, then on the list of them 
the function SPLUS is called, which looks for the opportunity to make only those 
simplifications which are specific to addition (e.g., adding numerical coefficients 
of identical expressions, or deleting terms whose numerical coefficients summed 
up to zero). The terms added are assumed to be internally simplified before. 

We devised a subroutine for substitutions which not only does not repeat 
simplifications, but also avoids unnecessary copying. It copies the expression in 
which a substitution is performed only upwards from the level where the substi- 
tution indeed occurred. 

Determinants are calculated by making the array triangular, and so the 
algorithm is applicable also for large arrays. However, the algorithm of inverting 
matrices by making them triangular, inverting in the triangular form, and then 
constructing the searched inverse array by "detriangularization," which is known 
to be quite fast in numerical programming, poses here nontrivial problems with 
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factorization. Therefore, arrays are inverted by the ordinary rule of dividing the 
appropriate minors by the determinant. 

The printing subprogram operates only at the end of the execution of a job, 
so it resides on a separate file as an overlay, to be loaded after the calculation. 
The simplifying procedure and the differentiating procedure remain in core 
during all the calculation. Most of the other procedures (more than half the 
code) are needed only in consecutive short intervals of the calculation. There- 
fore, they are read from the input file only when first needed, and removed from 
core immediately after the last use. In this way the system gradually destroys 
itself while it runs, so that it is not able to perform more than one calculation 
in each job, but on the other hand, thanks to this, at any moment less than half 
the code really resides in core. This has the obvious effect of increasing the 
space available for calculation. 

w (6): A Subjective Evaluation of the Program 

We shall first describe how the program was debugged. During two years, 
since summer 1977 till summer 1979, every change or correction of the code 
was followed by testing the program on the set of 20 to 30 metrics, all taken 
from the published literature, most of them giving some simple well-kn0wn 
result. In addition to the already-mentioned metrics of BVM [4] and Levy [5 ],  
and some unusual metrics meant only to test error messages or special facilities, 
they included the empty-space solution of Schwarzschild [8], the empty-space 
solutions with the A term of Schwarzschild and de Sitter (Reference 8, p. 184), 
types C and D of Krasifiski [9], and that of Nariai [10, 11] ; the conformally 
flat metrics of de Sitter (Reference 8, p. 184) and Robertson and Walker (Ref- 
erence 8, p. 210), the dust-like solutions of G6del [ 12] in the coordinate system 
of [13] and of Lanczos [14] ; along with more general metrics, like the most 
general spherically symmetric metric in the standard coordinates [15], the same 
metric in the isotropic coordinates [11 ],  the solution of Robinson and Traut- 
man [16], and the solution of Kowalczyriski [17] in a special coordinate 
system. Needless to say, in each case the correct result was finally obtained, 
and, just in passing, an error in the sign in the formula (17) of [16], suspected 
earlier, was confirmed. The solution of Kowalczyfiski [17] strained the abilities 
of our program to the extreme, being very complicated and requiring large 
amounts of a great variety of substitutions to keep the formulas of a manageable 
size. In fact, this solution forced us to introduce a few more facilities for the 
user's convenience. At present the Kerr metric in the ellipsoidal coordinates 
[18] is under testing, and it is even more straining as the orthonormal tetrad is 
very unsuitable here and the calculation deals with terrifying sets of rational 
functions. What makes us optimistic is the fact that our program can process 
formulas of that complexity and size (up to three pages of computer paper per 
one component of the Riemann tensor). 
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The program has no unique advantages as each of them can be found in at 
least one of the other well-known systems [1 ]. However, we think we have 
achieved a convenient combination of useful features which makes the program 
strongly user oriented. It has an easy input format, which seems to be its 
advantage over CLAM, and is comparable to other systems. It has a neat output 
which looks nearly like print in a book, which is its strong advantage over 
ALTRAN, CAMAL [19], and SYMBAL, and to some extent also over FORMAC 
and REDUCE, being comparable to LAM and CLAM (with the disadvantage, how- 
ever, that no care is taken in our program to transfer the print to the next line 
so that the break would occur only + or - ;  instead the break may occur any- 
where). It requires very little introductory learning and practice, which makes 
it comparable to CLAM, and seems to be an advantage over most other systems. 
It can process functions and functional expressions without simulating them by 
atomic variables, which is a strong advantage over ALTRAN, SYMBAL, and 
scrlOONSmP [20], and makes it comparable to other systems. It is fairly com- 
pletely documented, seemingly in contrast with most other systems (the lack of 
documentation may, however, be simulated by the custom of not answering 
letters, which seems to be common among computer people). The only real 
disadvantage is ORTOCARTAN'S relative slowness (sometimes, however, it per- 
forms better than REDUCE), which we hope to cure in the future. The lack of 
dialog version we do not consider to be a disadvantage as calculations of such 
complexity as are met in general relativity usually cannot be comprehended 
readily by a person sitting at a console. One has to look carefully through the 
output to conceive a substitution or to solve an equation, and this is better done 
when one can sit down in a quiet place with the print in front of one. However, 
with the dialog mode of LISP 4.1, ORTOCARTAN can be quite easily (in a 
month's time or so) reworked into an interactive system. 
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Appendix 

Table I below shows the complete input data for the BVM metric, as written 

on cards. 
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Table I. Input Data OCTOCARTAN in the Case of the BVM Metric 
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ORTOCARTA~ (( 
(~ONDI METPIC) 
(COORDINATES T P THETA PHI) 
(FUNCTIONS V (T R THETA) ~3 (T R T~ETA) ~ET (T R THETA) 

GAM (T R THETA) ) 
(EHATRIX (V #~ ( I  ~) ~ (EX D BET) / R #~ (1 2)) 

(R #~ ( i  2) ~ (EXP SET) / V ## ( I  2)) 0 0 
(R ~ ( I  2) ~ (EXP BET} / V ~# (1 2)) 0 0 
( -  R ~ U ~ (EXP GAM}) 0 (~ # (EXP GA~)) 0 
(R * (SIN THETA) * (EXP ( -  GA~I))) ) 

(TE~SORS EINSTEIn,) 
(STOP AFTER EINSTEIN) 

)) 

0 

0 O 

Table 1I. Sample Output for the BVM Metric 

2 
> R[E = - 2 R E• ( -  2 GAff; SIN (THETA) BET, - ~ R EXP ( - @  

I 3 1 3 R 

2 2 ~ 2 2 
> ~AM) SIN (THETA) 5AM., '~ R EXP ( - 2  GAM) g in  (THETA} GAM) - R  

R R 

2 2 2 
> E'XP ( -  2 GAM) SIN fTHETA) GAM~ + 2 R EXP [ -  2 GAM) SIN (THETA) 

R R 

> BET~ GAM~ 
R R 

Table II shows the coordinate component R 1 a 13 of the Riemann tensor for 
the BVM metric, as an example of the output form of ORTOCARTAN. The 
markers ~ at the left point to the base-level lines. 

Table III shows the complete input data, as written on cards, for 
ORTOCARTAN in the case of the Levy metric. 

Most of the statements in the tables should be self-explanatory. The entry 
(TENSORS EINSTEIN) in Tables I and III means that the tetrad components 
of the Einstein tensor are to be calculated (they are calculated only when this 
special request is found in the data). 

The trick used in the Levy metric is that the functions do not depend 
directly on the time coordinate x ~ , but on t = ex ~ , and thus each differentiation 
with respect to x ~ automatically produces the factor e. The entry (METRIC 
SUBSTITUTIONS.. .  ) just tells the program that t is a symbol for the explicit 
expression e �9 x ~ . The entry (SIMPLIFY SUBSTITUTIONS.. .  ) specifies the 
substitutions to be made during the calculation. Each specification consists of 
the list of names of the quantities in which the equation that follows should be 
applied. The right-hand side of each equation is substituted for its left-hand side. 
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"[able I i i .  Input Data for the Levy Metric 

ORTOCARTAN ( (  
(LEVY METRIC UP TO EPSILON LINEAR) 
(CONSTANTS EPS) 
(COORDINATES XO R Z PHI)  
(FUNCTIONS U (T R Z) K (T R Z) HO0 (T R Z) H11 (T R Z) 

H12 (T P Z) H I3  (T R Z) H22 (T R Z) H23 (T R Z) 

H33 (T R Z) ) 
(METRIC SUBSTITUTIO~S T = (EPS * XO)) 
(EMATRIX ((EXP U) + ( I  2) * EPS * (EXP ( -  U) }  * HO0) 0 0 0 

( (EXP (K - U) )  - ( I  2) * 
( -  EPS * (EXP (U - K ) )  * 
( -  EPS * (EXP (U - K ) )  * 
( (EXP (K - U) }  - ( I  2) * 
( -  EPS * (EXP (U - K ) )  * 
(R ":~ (EXP ( -  U) )  - (1 2) 

(TENSORS E INSTEIN)  
(S IMPLIFY SUBSTITUTIONS 

9ETER~'~INANT IE  AGAMMA RI 
DETERMINANT IE  AGAMMA q l  
DETERMINANT IE  AGAMMA 
DETERMINANT ACTUAL = ( ( ( E X P  

- ( I  2) * EPS * (EXP ( -  
+ ( I  2) * EPS * (EXP (4 
�9 ( i  2) * EPS * (EXP (4 

+ ( i  2} * EPS * (EX p (4 * U 
) 

(STOP AFTER E INSTEIN)  
) )  

[PS * (EXP (U - K ) )  * H I I )  
H I 2 )  
H I 3 )  0 0 
EPS * (EXP (U - K ) )  * H2P_) 
H23)  0 0 0 
�9 EPS * (EXP U) * H33 / ' R )  

EMANN (EPS * *  2) = 0 
EMANN (EPS * *  3) = 0 
(EPS * *  r : 0 

(2 * U - 2 * K ) )  / R 
�9 K) )  * HO0 / R 

�9 U - 4 * K ) )  * H l i  / R 

�9 U - 4 * K ) )  * H22 / R 
- 2 * K ) )  * H33 / R * *  3) * *  - I )  

In the last case, the left-hand side being ACTUAL, the program just replaces the 
old expression, whatever it was, with the right-hand side of the equation. 
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