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ABSTRACT
We investigate the evolution of the galaxy two-point correlation function (CF) over a wide
redshift range, 0.2 < z � 3. For the first time, the systematic analysis covers the redshifts above
1–1.5. The catalogue of ∼250 000 galaxies with i+ < 25 and known photometric redshifts in
the Subaru Deep field is used. The galaxies are divided into three luminosity classes and several
distance/redshift bins. First, the 2D CF is determined for each luminosity class and distance
bin. Calculations are based on the quantitative differences between the surface distributions
of galaxy pairs with comparable and distinctly different photometric redshifts. The power-law
approximation for the CF is used. A limited accuracy of photometric redshifts as compared
to the spectroscopic ones has been examined and taken into account. Then, the 3D functions
for all the selected luminosities and distance are calculated. The power-law parameters of the
CF, the slope and the correlation length are determined. Both parameters do not show strong
variations over the whole investigated redshift range. The slope of the luminous galaxies
appears to be consistently steeper than that for the fainter ones. The linear bias factor, b(z),
grows systematically with redshift; assuming the local normalization b(0) ≈ 1.1–1.2, the bias
reaches 3–3.5 at the high-redshift limit.
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1 IN T RO D U C T I O N

Growth of galaxy structures provides an essential information on
the evolution of the dark matter distribution (Marulli et al. 2013,
and references therein). Observations of the large-scale structures
(LSSs) would – possibly – give insight also into the very nature of
dark energy (e.g. Jenkins et al. 1998; Jennings, Baugh & Pascoli
2011; Huterer et al. 2015). Gravitationally dominating dark matter
induces growth of the density fluctuations that eventually lead to
the formation of galaxies. From that moment on, the large-scale
matter distribution generated in the computer simulations becomes,
at least potentially, subject to the observational constraints.

However, distinctly different physical properties of the collision-
less dark matter and the visible, baryonic matter make the inter-
play between those constituents intricate. Flows of baryonic matter
towards gravitational wells created by concentrations of the dark
matter involve complex processes of gas accretion, shock heating
and radiative cooling. In effect, the observable galaxy structures
do not follow exactly the dark matter distribution. The relationship
between the density fluctuations of the galaxies and dark matter was
formulated on statistical grounds by Kaiser (1984). The amplitude
ratio of these fluctuations, known as the galaxy bias, is roughly
linear, although it depends on the smoothing scale (Mo & White
1996). The bias is also a function of time (e.g. Fry 1996). More-
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over, the galaxy clustering depends on galaxy luminosity, mass,
colour and other parameters. In the local Universe, these rela-
tionships have been extensively investigated (e.g. Coupon et al.
2012, see also Marulli et al. 2013, for the comprehensive reference
list).

Complex dark matter structures generated by the gravitational
instability revealed in the cosmological simulations combined with
the obscure nature of the dark matter itself open a space for models
that describe the distribution of luminous matter with the dark one
(e.g. Berlind & Weinberg 2002; Papageorgiou et al. 2012). The study
of the luminous–dark matter relationship incorporates two separate
issues: adequate statistical description of the galaxy distribution
and comprehensive cosmological simulations of the dark matter.
Both determined over a wide redshift range. In the present paper,
we concentrate on the galaxy distribution. This question has been
investigated extensively for a long time and in recent years gained
momentum mostly as a result of massive automated galaxy surveys.
Although many characteristics of the galaxy clustering are precisely
measured at selected magnitudes and/or redshifts, the evolution of
the clustering over a wide redshift range is still not well determined.
In the present paper, we pursue this question, i.e. to what extent the
observational data constrain parameters of the cosmic evolution of
the galaxy clustering over the whole observable cosmic time.

In most cases, questions related to the galaxy clustering are ade-
quately addressed using the correlation functions (CFs). Usually, the
observed function is satisfactory represented by a power law with
two fitted parameters – the correlation length and slope. Only the
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high-quality statistical material allows for more detailed study (e.g.
Baugh 1996; Norberg et al. 2002; Martinez-Manso et al. 2015).
Here, we apply the power-law model for two reasons. First, the
present data do not allow for the more refined analysis, and second,
our method works efficiently using this approximation. Addition-
ally, we believe that a question of the clustering evolution is still
adequately addressed by the search for variations with time of the
power-law parameters. A large number of investigations in the re-
cent years examined how the shape of the galaxy CF depends on the
overall galactic parameters such as stellar mass, luminosity, type,
colour or star formation rate. In the local Universe and at low to
moderate redshifts, all these studies indicate that the amplitude of
the CF increases with luminosity (e.g. Norberg et al. 2002; Pollo
et al. 2006; Coil et al. 2006; Li et al. 2006; Wake et al. 2011; Zehavi
et al. 2011; Marulli et al. 2013), although strength of this depen-
dence is disputable (Meneux et al. 2009), or limited to specific types
of galaxies (e.g. Lin et al. 2012; Mostek et al. 2013). On the other
hand, several studies indicate little or no dependence of the correla-
tion slope on galaxy parameters (e.g. Norberg et al. 2002; Coil et al.
2006; Marulli et al. 2013), but see Pollo et al. (2006).

If no information on the galaxy radial distance is available,
the amplitude of spatial correlations is derived from the 2D CF.
Efficiency of this approach is limited to relatively shallow galaxy
samples. This is because in the deep galaxy surveys the correlation
signal is diluted by a large number of random coincidences. Galaxy
catalogues with redshifts offer a natural method to eliminate most
of the random coincidences, what substantially improves the signal
to noise (S/N) ratio. Unfortunately, acquisition of the spectroscopic
redshifts is time consuming and restricted to relatively bright
objects.

The photometric redshifts, as compared to the spectroscopic ones,
are substantially less accurate distance indicators. Nevertheless,
they provide at least raw estimate of the galaxy position. Thus,
photometric redshifts could be used to identify and extract evident
random pairs, and to increase in this way the S/N ratio of the cor-
relation amplitude measurement. The photometric redshifts were
successfully used in the past for the investigations of the angular
clustering (Heinis et al. 2007; McCracken et al. 2008; Wake et al.
2011), and the spatial clustering (Arnalte-Mur et al. 2014; Bielby
et al. 2014). In the present paper, we apply a different technique to
obtain the galaxy CF for a wide range of redshifts, not covered by
previous investigations. We use the 2 deg2 COSMOS photometric
redshift catalogue by Ilbert et al. (2009) available through the Web
site of IPAC/IRSA.

According to a standard procedure, to determine the 2D CF one
generates a large set of randomly distributed points. Properly nor-
malized numbers of galaxy-random point pairs is then used as a
reference distribution of pair separations representing a random
galaxy population. A comparison of the physical galaxy–galaxy
pairs with the galaxy-random point pairs allows one to assess fluc-
tuations of the galaxy distribution and eventually to calculate the
correlation signal. The efficiency of this method is highly sensi-
tive to the interference with the cosmic signal of various selection
effects related to the data processing. For instance, even a minute
variations in the catalogue depth or the image quality result in
fluctuations of the surface density of objects, that could be easily
misidentified with the galaxy clustering. To minimize these kind
of confusions, the ‘random’ points should be distributed in such a
way as to mimic all the inhomogeneities of the non-cosmic origin.
The performance of this widely applied procedure depends on how
precisely such mock catalogues are free from all the observational
biases.

Figure 1. Distribution of ∼250 000 COSMOS galaxies. An uneven data
coverage affects the galaxy correlation analysis.

To reduce the instrumental bias, we apply here a different atti-
tude. We assess the number of galaxy pairs expected for the random
distribution by means of the galaxy–galaxy pairs with sufficiently
different photometric redshifts that effectively exclude physical con-
nection. Distribution of such pairs incorporates most signatures as-
sociated with the data bias and processing, while it is free from the
physical clustering signal.

The organization of the paper is as follows. In the next section,
we give a short description of the COSMOS photometric redshift
catalogue. In Section 3, we describe the details of the present method
to calculate the 2D CF, derive the relevant formulae and present
results of these calculations. Formulae applied to determine the
3D CFs for different luminosities and over a several redshift bins
are given in Section 4. Also statistical properties of the photometric
redshift measurements are described in this section. The evolution of
bias in the linear model, and short comparison of our measurements
on the CF evolution with the selected previous results is presented
in Section 5. Strong and weak points of our method are summarized
here.

In the paper, we consistently parametrize the COSMOS cat-
alogue data and results of the investigation using the comov-
ing distances alongside the redshift. To convert redshifts to the
comoving distances, we use the flat cosmological model with
Ho = 70 km s−1 Mpc−1, �m,o = 0.3 and ��,o = 0.7.

2 TH E DATA

The COSMOS photometric redshift catalogue is presented in detail
by Ilbert et al. (2009). Here, we give only the information relevant to
the present investigation. The catalogue contains 38 5065 objects in
the deep Subaru Area, of which almost 252 000 have been classified
as galaxies brighter than i+

AB = 25. The galaxies are distributed
within a square of 84 arcmin a side centred at αc = 150.◦1 and
δc = 2.◦2 (Taniguchi et al. 2007). However, the data coverage is
non-uniform on various angular scales. In Fig. 1, the distribution of
all the galaxies is shown. One can see a large number of masked
areas of poor image quality (mostly saturated star images and CCD
related problems).
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Galaxy clustering using photometric redshifts 1015

Figure 2. The spatial density of the COSMOS galaxies as a function of
the comoving distance (bottom abscissa) or redshift (top abscissa). Highly
fluctuating (dotted) curve represents the moving average calculated within
±50 Mpc, while the smoother one (solid) – within ±500 Mpc.

To measure the photometric redshifts Le Phare 1 algorithm
(Arnouts & Ilbert 2011) was applied using 30 filters that cover
UV, optical and NIR. According to Ilbert et al. (2009), the photo-
z accuracy depends on galaxy redshift and magnitude, and it is
suitably characterized by σ�z/(1+zs) defined as 1.48 × median(|zp −
zs|/(1 + zs)), where zp and zs denote photometric and spectroscopic
redshift, respectively. For i+

AB < 22.5 a dispersion σ�z/(1+zs) =
0.007, while for i+

AB < 24 and z < 1.25, σ�z/(1+zs) = 0.012. At
fainter magnitudes, the estimates are less accurate, e.g. for i+AB ∼ 24
and z ∼ 2, σ�z/(1+zs) = 0.06.

Although the distribution of differences (zp − zs)/(1 + zs) is
roughly fitted by a Gaussian function, the median statistics in the
σ�z/(1+zs) definition above indicates that gross errors affect occa-
sionally the zp estimates. Ilbert et al. (2009) define a ‘catastrophic
failures’ of the zp estimate if |zp − zs|/(1 + zs) > 0.15. In the case
of bright galaxies (i+

AB < 22.5), the fraction of catastrophic failures
amounts to 0.7 per cent. It rises however, to 20 per cent for galaxies
at 1.5 < zs < 3. The median apparent magnitude of those galaxies
i+
AB ∼ 24.

The distribution of zp over zs exhibits also some peculiarities that
are not depicted by σ�z/(1+zs). The zp − zs differences are correlated
with zs over scales comparable and larger than the quoted above
dispersion σ�z/(1+zs). In the right-hand panel of fig. 10 in Ilbert et al.
(2009), the distribution of zp versus zs exhibits systematic, to some
extent coherent variations around the line zp = zs, indicating the non-
random, large-scale deviations between zp and zs. The effect of the
non-random character of zp deviations from the spectroscopic data is
graphically demonstrated in Fig. 2, where we plot a moving average
density of galaxies in the COSMOS catalogue. We count galaxies
within 50 Mpc of the radial distance for each object in the catalogue.
The zp redshifts are used in the calculations. Number of neighbours

1 www.cfht.hawaii.edu/˜arnouts/LEPHARE/DOWNLOAD/lephare_doc
.pdf

Figure 3. The distribution of galaxies in the absolute VJ magnitude –
comoving distance plane. Inclined dashed lines indicate luminosity sub-
samples A–D, while the vertical lines define distance bins used in the cal-
culations. Full dots – see text.

is then used to assess the local spatial concentration of galaxies as
a function of distance. Apparent quasi-periodic oscillations around
the average galaxy density in the distance range ∼2000 through
∼7000 Mpc with the characteristic length of ∼330 Mpc demonstrate
the large-scale inhomogeneities in the zp measurements.

Both the zp inaccuracies and the sky coverage discontinuities
introduce multiple biases in the COSMOS galaxy data that distort
the actual spatial structures. Although it is feasible to construct the
mask that would eliminate (all ?) the area not covered by the COS-
MOS catalogue, the remaining surface non-uniformities potentially
present in the data would persist. In the next section, we present a
practical method how to isolate the real clustering signal from all
the non-cosmic effects.

The sample spans a wide range of absolute magnitudes. In Fig. 3,
the absolute VJ magnitudes (Ilbert et al. 2009) are plotted against
the distance. Apart from the clear effects introduced by the zp dis-
tortions, an inclination of the high-luminosity envelope defines a
rate of the average galaxy luminosity evolution. Black dots in Fig. 3
show the magnitudes of 10th ranked galaxy in 500 Mpc bins be-
tween 500 and 7000 Mpc. Although in the course of the cosmic
evolution galaxy luminosities are subject to more complex varia-
tions, we adopt here this relationship as the luminosity evolution
of the general galaxy population. We divide the data into abso-
lute magnitude classes using lines of fixed slope roughly consistent
with the slope of the VJ(10) – distance relationship (see Fig. 3).
The dashed lines in the figure define four luminosity sub-samples.
The samples A–C contain ∼70 000 galaxies each, while the sample
D – around half of this amount. Because the D sample is limited
to redshifts smaller than 0.5, the present analysis of the clustering
evolution concentrates on samples A–C. Although the rate of the lu-
minosity evolution adopted here is linear in the comoving distance,
it is in good agreement with the evolution model (linear in redshift)
adopted by Marulli et al. (2013) in the redshift range of 0.5–1.1.

Moving to larger distances all the galaxy sub-samples become
increasingly incomplete (Fig. 2 for the whole data, and Fig 10 for
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the class A). This effect should not coerce the measurements of the
CF if the magnitude selection at a given distance is uncorrelated with
the local galaxy space density, and this is assumed in the subsequent
calculations.

3 2 D C O R R E L AT I O N F U N C T I O N S

We take the photometric redshifts, zp, as a working estimate of
the comoving distances for all the galaxies. This is a legitimate
assumption for the majority of galaxies. According to Ilbert et al.
(2009), only a (small) fraction of zp differs from zs by more than
0.15 · (1 + zs). Nevertheless, in the present derivation we explicitly
take into account a questionable nature of the individual distance
estimate. This is because even a modest fraction of catastrophic
errors affects the present analysis (see below).

Clearly, the distance estimates based on zp are too coarse to mea-
sure directly the spatial clustering. Nevertheless, the zp data are
valuable in measurements of the galaxy clustering at different dis-
tances using the 2D CF. Let us to consider the expected distribution
of galaxies around the galaxy selected at a distance d = d(zp). The
expected number of galaxies within a solid angle �ω at the angular
distance θ from the selected galaxy, N(θ ), is described by the 2D
CF w(θ | d):

N (θ ) = �ω [no · w(θ | d) + no], (1)

where no is the galaxy surface density expected in the absence of
cosmic clustering. For the perfect data, no is equal to the mean
galaxy surface density. However, the present observational material
reveals numerous defects that interfere with the sky fluctuations. In
effect, the local ‘background’ galaxy density, no, is not constant but
depends on the position of selected galaxy and the separation θ .

For the data spanning a large distance range as in the case of
the COSMOS catalogue, equation (1) is of a limited use because
the excess of neighbours, δN(θ ) = N(θ ) − �ω · no, even at small
separations θ , is tiny as compared to �ω · no. To improve the S/N
ratio, which is of the order of δN (θ )/

√
N (θ ), we divide the whole

galaxy sample into six distance bins between 650 and 6550 Mpc.
The radial depth of each bin is larger than 750 Mpc. Thus, it is also
much larger than the maximum distance at which the CF differs
from 0.

Calculating the surface correlations of galaxies within a selected
bin, we split the whole galaxy population into two classes. Class I
contains galaxies located in the bin of the selected galaxy, while the
class II contains all the galaxies in other bins. The expected average
excess of galaxies, NI(θ ) or the surface density profile, nI(θ ), of
class I galaxies in the vicinity of the galaxy drawn from the same
distance bin is described by the CF wI(θ ):

NI(θ )

�ω
= nI(θ ) = nIo · wI(θ ) + nIo, (2)

where nIo is the class I galaxy surface density expected for the non-
clustered case. It is subject to various observational constraints and
it may vary alike no. We now assume a power law for the wI(θ )
function separately for each bin:

wI(θ ) = wi θ ζi , i = 1, . . . , 6. (3)

In the absence of all the effects involved in the data acquisition
that hamper the genuine sky distribution of galaxies, one could use
directly equations (2) and (3) to determine the amplitude, wi and
slope, ζ i. However, in the real data the ‘average’ galaxy density,
nIo, is not well defined. One way to eliminate effects of the nIo

fluctuations is to use the surface distribution of class II galaxies,

Figure 4. The surface correlation functions for the luminous galaxies (sam-
ple A) in the six distance bins (labelled in the bottom left corner), the
distance/redshifts boundaries are indicated in the top right corner. The
data points, 1σ error bars and the power-law least-squares solutions of
equation (4) are shown.

nIIo. We assume that intruding (non-cosmic) factors that affect the
surface distribution of class I galaxies modify also distribution of
class II galaxies. Although a response of both galaxy population
to various effects may not be identical, we assume that the ratio
ηi = nIo/nIIo is much more immune to observational biases than nIo

and nIIo separately. Thus, dividing equation (2) by nIIo, we get the
numerically tractable equations:

NI(θ )

NII(θ )
= ηi wiθ

ζi + ηi, (4)

where NII(θ ) = �ω · nIIo is the average number of class II galaxies
at the distance θ from the randomly chosen galaxy of class I. As
an estimator of NI(θ ) and NII(θ ) for the given distance bin we use
the total numbers of the class I galaxy pairs and the class I–class II
pairs, respectively, both summed over the entire field.

To assess the power-law parameters of the angular CF, the present
method applies the pair count ratio nIo/nIIo rather than just the pair
counts nIo, This scheme deals simultaneously with two questions.
First, it accounts in a simple way for all the masked out areas. Sec-
ond, if there are some unrecognized systematic effects that perturb
the surface galaxy distribution, they are absorbed by the ηi param-
eter while the pure clustering signal is represented by the power
law.

The parameters wi, ζ i and ηi for each distance bin i are ob-
tained as the iterative least-squares solution of equation (4). Two
first parameters, wi and ζ i, define the 2D CFs. The results for the
luminosity sample A are shown in Fig. 4. To ease the comparisons
of the correlation parameters in the different bins, and to indicate
what linear distances are involved in the calculations of the space
CF (see below), we plot the data as a function of the transverse
comoving distance, p, rather than the angular separation, with p =
θ · Ri, where Ri denotes the distance to the centre of the ith bin. In
all the distance bins, except for the nearest one, the galaxy pairs are
counted in 19 separation zones in the range of 0.1 < p < 22.6 Mpc.
In the nearest distance bin (650–1400 Mpc) the range of separations
is reduced to 0.1 < p < 10.0 Mpc due to the small angular size of
the COSMOS field.

The parameters wi depend on the actual 3D clustering amplitude
and on the surface density of galaxies in the consecutive distance
bins. To assess the spatial clustering, one requires the information
on the spatial density of galaxies in the each bin, and this question is
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Galaxy clustering using photometric redshifts 1017

Figure 5. The 2D correlation function slopes: full points – luminosity class
A, open circles – class B, triangles – class C.

discussed below. The CF slopes, ζ i, are not greatly affected by the
bin limits. In Fig. 5, variations of the correlations slopes as a function
of distance are shown for galaxies in three luminosity samples.
The error bars indicate 68 per cent confidence levels assuming one
interesting parameter (Avni 1976). Large ζ i uncertainties in the
samples B and C make any definite account on the slope variations
problematic. Nevertheless, two conclusions seem to be relatively
well established. First, no obvious trend of slope changes with the
distance is present in any of the galaxy luminosity samples. Second,
the slope for the most luminous galaxies (sample A) is generally
steeper than that for the remaining ones. The detailed interpretation
of the present results on CF slope is discussed jointly with the
amplitude of the spatial CF in Section 5.

4 3 D C O R R E L AT I O N F U N C T I O N S

We use the photometric redshifts solely to define wide distance
bins, and not to examine individual galaxy pairs in 3D. The ex-
cess number of close pairs relative to that expected for the random
distribution is clearly visible in each bin. The fine 2D correlation
signal shows that the statistical characteristics of photometric red-
shifts are sufficient to determine the evolution of the CF slope over
a wide range of cosmological epochs. To assess the amplitude of
the space correlations at successive distances, one should deproject
the corresponding surface CFs.

The space CF gives the number of excess galaxy pairs relative
to the local average galaxy density. In the present investigation, the
galaxy density varies between bins and also within each individual
bin. However, these variations do not constrain the CF estimates.
The galaxy excess given by the 2D CF is equal to the integral of the
space 3D properly weighted by the space density of galaxies popu-
lating the selected distance bin. Below the deprojection procedure
is described in detail.

A power law provides not only satisfactory approximation to
the 2D CF, but also allows for a straightforward assessment of the
spatial correlation parameters. Under the standard assumption of
clustering isotropy and small angles approximation, the spatial CF
is a power law with a slope γ = ζ − 1. To retrieve the normalization
of the spatial correlations from the 2D function, one needs the
information on the radial distribution of the average galaxy density
in the sample. In the present analysis, the galaxy concentration

varies systematically with the radial distance. We now derive the
formulae relating the 3D CF to the 2D function and the varying
galaxy density.

The 3D CF measures the local average excess of galaxies relative
to the average density of galaxies. Let �NV(r) is the average excess
of galaxies, i.e. the number of galaxies above the average within a
volume �V at a distance r from the randomly chosen galaxy. The
CF ξ (r) is proportional to the number of excess objects:

�NV (r) = �V ρ ξ (r) , (5)

where ρ denotes the average galaxy density. In the present data, the
average galaxy density is strongly varying function of the distance
R within each bin, ρ = ρ(R). Using the power-law model for ξ :

ξ (r) =
(

r

ro

)γ

, (6)

where ro is the correlation length, one can integrate the galaxy excess
(equation 5) along the line of sight at fixed transverse separation p:

�NA(p) = �A G(γ ) r−γ
o ρ(R) p ζ , (7)

where �A is the surface area of volume �V projected in
the sky plane, and G(γ ) = �( 1

2 ) �(− γ

2 − 1
2 )/�(− γ

2 ) (Totsuji &
Kihara 1969). In the actual calculations, the maximum radial sepa-
ration of galaxy pairs is limited by the bin boundaries, what reduces
the G(γ ) factor. The amplitude of this effect depends on the radial
distribution of the galaxy density (see Section 4.3). In the present
case, the radial depth of the distance bin is non-negligible in com-
parison to the distance R itself. The counts of galaxy pairs are in
fact performed within the fixed angular separation θ rather than the
p. Substituting p = θ · R and �A = �ω · R2 into equation (7) we
get:

�Nω(θ ) = �ω G(γ ) r−γ
o ρ(R) θ ζ R γ+3 , (8)

where the subscript ω indicates that counts are collected within the
solid angle �ω. Notice that here p and θ are related to the varying
distance R rather than to the bin centre Ri. The excess �Nω(θ )
averaged over all the galaxies found in the selected distance bin is
given by

�Nω i(θ ) = �ω G(γi) r
−γi
o i θ ζi

∫
dR R γi+5ρ2

i (R)∫
dR R2ρi(R)

. (9)

The index i specifies that only galaxies assigned to the ith distance
bin are used to count the galaxy pairs, and ρ i(R) is the average
density of these galaxies at the distance R. The galaxy excess at the
left-hand side of equation (9) is equal to that in equations (2) and
(3) using the 2D correlations:

�Nω i(θ ) = �ω nIo wi θ ζi . (10)

Here, nIo denotes the observed average surface density of galaxies
of the ith distance bin. The average radial density distribution, ρ i(R),
in equation (9) is the actual distribution that might not be adequately
described by the photometric redshift distribution. The question of
statistical reconstruction of the spectroscopic redshift distribution
based on the photometric redshifts is discussed in the next section.

We use the term ‘spectroscopic redshift’ to denote the perfect
distance measure based on the Hubble expansion. The actual spec-
troscopic redshifts are neither sufficiently accurate, nor adequately
represent the Hubble flow. In the present consideration, the statisti-
cal relationships between the redshift distributions is used to assess
the average distribution of galaxy spatial density as a function of
cosmological distance. Thus, small deviations between the ‘Hubble
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flow redshifts’ and their spectroscopic counterparts are of no impor-
tance. One should note also that the photometric redshifts are used
in the present calculations exclusively to define distance bins and
not to compute galaxy separations in the radial direction. Thus, the
construction of the 3D CF is not affected by the ‘redshift distortions’
that modify the separations between objects.

A question of the radial distribution of the average galaxy
density, ρ(R), deserves more comment. The transverse extension
of the COSMOS field at distances 4000–6000 Mpc amounts to
100–150 Mpc (in comoving units), and even at large distances the
survey area is smaller than typical LSSs. However, both the trans-
verse survey size as well as the radial extension of the distance bins
are distinctly larger than the galaxy pair separations used in the CF
estimates (nearly all the correlation signal is limited to projected
separations below 10 Mpc). Since the average density ρ(R) and
the CF are determined using the same observational material, the
small-scale fluctuations defined by the CF are measured ‘on top’ of
the LSS potentially present in the data. From that point, it would be
desirable to compare our results with the deep CF assessments in
other fields.

4.1 Modelling the photometric redshifts inaccuracies
and failures

To determine the statistical distribution of spectroscopic redshifts,
one needs to construct the probability distributions of zp − zs dif-
ferences. Let p(zs | zp) denote the probability that a galaxy with the
assigned photometric redshift zp has the spectroscopic redshift zs.
The expected distribution of zs is then a convolution of the photo-
metric redshifts with the p(zs | zp) probability:

n(zs) =
∫

dzp p(zs | zp) n(zp), (11)

where n(zp) is the observed distribution of the photometric redshifts.
Since the distribution p(zs | zp) depends strongly on the galaxy mag-
nitude, it is modelled separately in the consecutive magnitude bands.
A thorough discussions of the zs − zp deviations (e.g. Ilbert et al.
2009; Dahlen et al. 2013) show that zp errors are efficiently ex-
pressed using the parameter x = (zp − zs)/(1 + zs). It was found
that a single Gaussian function adequately reproduces the probabil-
ity distribution p(x) for the small absolute values of x, i.e. for the
‘successful’ zp estimates. But the p(x) has broad wings, inconsis-
tent with the narrow central Gaussian peak, and for still larger x the
probability distribution has small but quasi-constant amplitude.

The objective of our calculations is to assess the zs distribution
using the zp data. It is natural to use in equation (11) somewhat
different parametrization of the zs − zp differences, viz. y = (zs −
zp)/(1 + zp). Since even at the fainter magnitudes the photometric
redshifts provide statistically robust estimate of galaxy distances,
the probability distributions p(y) and p(x) have similar construc-
tion. Consequently, function p(y) also exhibits narrow central peak,
relatively wider wings and weak constant signal. To match these
characteristics, we fit the analytic function that is a sum of three
components: (a) the Gaussian – emulating the narrow peak near
y ≈ 0, (b) the resonance curve – to reproduce the contribution
of larger zp deviations and (c) the flat signal – reproducing the
catastrophic errors. In total, six parameters of the p(y) distribution
were determined. We applied the maximum likelihood (ML) esti-
mation method. The detailed description of the fitted function and
the whole procedure as well as the numerical results are presented
in Appendix A.

Figure 6. The distribution of zs − zp differences in three magnitude bands
indicated in the upper right corners. Black line histogram – the observed
distribution, the shaded area – the ML fit. The ordinate axis shows the
number of galaxies with known spectroscopic redshifts.

Figure 7. Same as Fig. 6 for magnitude bands 22 − 23 and 23 − 25.

The spectroscopic redshifts come mostly from zCOSMOS Data
Release (Lilly et al. 2007). We searched also the NED Database, and
several redshifts have been extracted from Onodera et al. (2012),
Bezanson et al. (2013) and van de Sande et al. (2013). The fits are
shown in Figs 6 and 7, where the ordinate axis gives the number of
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Galaxy clustering using photometric redshifts 1019

Figure 8. Power-law parameters: γ – slope, and ro – normalization, of the
spatial correlation function of class A galaxies versus look back time. Full
dots show simultaneous fittings of γ and ro; crosses in the lower panel are the
ro best estimates assuming the slope fixed at the average value γ = −1.92.

objects rather than the probability. The galaxy sample was divided
in 5 mag bins. In agreement with the Ilbert et al. (2009) discussion,
the fits for galaxies brighter than 23 mag are strongly peaked at
y = 0, while the fainter objects exhibit substantially larger scat-
ter. Nevertheless, despite a non-negligible number of ‘catastrophic’
zp − zs discrepancies below 23 mag, the central concentration is
still dominant. It allows us to use effectively equation (11). How-
ever, a relatively small number of the spectroscopic redshifts in the
23–25 mag bin generates the easily visible noise and broadens the
uncertainty limits of the fitted parameters. This question is discussed
in detail below.

4.2 Correlation length

The spatial density of galaxies assigned to the ith distance class,
ρ i(R), in equation (9) is related to the number of galaxies ni(zs) in
a standard way:

ρi(R) = 1

� R2

dni(zs)

dR
, (12)

where � is the solid angle of the survey. Set of equations (9)–(12)
allows us to determine the spatial density correlation parameter
ro for each distance bin. The galaxies in a given bin are spread
over a range of magnitudes. Therefore, the probability distribution
p(zs | zp) in equation (11) is weighted accordingly to the magnitude
distribution of ni(zp) galaxies. Fig. 8 shows our best estimates of
the CF parameters for class A galaxies. The error bars here are
generated solely by uncertainties in the fitting of the power law
to 2D CFs (Fig. 4). The errors represent 68 per cent uncertainties
assuming one interesting parameter (Avni 1976).

A reasoning that photometric redshifts contain sufficient informa-
tion to derive the amplitude of the space CF has been examined with
positive results in the present investigation. Using extensive simula-
tions, we generated the synthetic galaxy distribution of known space
CF and then effectively determined the CF parameters according

Figure 9. Power-law parameters of the correlation functions in the distance
bins 1–6 (labelled in the bottom left corner); distance/redshift boundaries
are indicated in the top right corner. Full dots – class A, open circles –
class B, triangles – class C. Contours show regions of 68 and 90 per cent
confidence level.

to the prescription presented above. The computational details are
described in Appendix B.

The simultaneous fitting of γ and ro induces strong correlation
of both parameters.2 In Fig. 9, the γ − ro confidence regions are
shown in all the distance bins for galaxies of class A; the data for
the classes B and C are limited to 5 and 4 nearest bins, respectively.
The contours do not incorporate uncertainties introduced by the
estimates of the distribution of the zs − zp differences, or the ML fits
of p(y). To assess the p(y) uncertainties, the mock p(y) distributions
were created using the bootstrap method. The details of the whole
procedure are described in Appendix A.

We limited our analysis to the faintest galaxies because at the
brighter magnitudes the p(y) distributions are based on an extensive
data and the uncertainty of the p(y) fits is negligible. Small number
of spectroscopic redshifts at faint magnitudes results in the poor
quality of the p(y) fit in the 23 < i+ < 25 band. The galaxies in the
23–25 mag dominate in the distance bins 4–6. They constitute 71,
97 and 99.5 per cent of the class A galaxies in the distance bins 4–6,
respectively.

The calculations of ro for the simulated p(y) probability functions
were repeated as for the actual data. We find that the rms scatter
of ro produced by the uncertainties of the ML fitting amounts to
0.16, 0.26 and 0.29 Mpc for bins 4–6. Thus, the errors related to
the ML fits are several times smaller than the uncertainties defined
by the confidence level contours. Assuming that both errors add in

2 To be precise, we fit simultaneously three parameters ηi, wi and ζ i of
equation (4). Two of them are ‘interesting’, viz. wi and ζ i. Observational
correlation between wi and ζ i is transferred into correlation between ro and
γ via equations (9) and (10).
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Figure 10. Thick curves – numbers of class A galaxies in six distance bins
(indicated by labels 1–6) corrected for the zp errors using equation (11).
Thin curves – 1σ uncertainty regions resulting from uncertainties of the
zs − zs fits (see Appendix A for details.); shown only for three most distance
bins where the errors are more pronounced. The upper envelope shows
the summed galaxy numbers. The distance bins partially overlap because
galaxies are assigned to their bins based on the photometric redshift.

squares, the uncertainties involved in the ML fitting do not con-
tribute significantly to the total uncertainties.

4.3 The radial extension of distance bins

In Fig. 10, we plot the radial distribution of the space density of
galaxies luminosity class A calculated using equations (11) and
(12). Although the effects of the photometric redshift errors are
easily visible, the bins are still well defined in the real space. Long
tails of the three most distant bins stretching towards the lower
distances result from the catastrophic zp errors.

It was shown in the previous section that the uncertainties of the
p(y) fits contribute marginally to the total errors of our ro estimates.
This is because the p(y) scatter only weakly affects the n(zp) → n(zs)
transformation. The thin curves for three most distant bins in Fig. 10
show the rms uncertainty range of our n(zs) reconstruction produced
by the stochastic character of the p(y) estimates. It is visible that
statistical uncertainties strongly affect only the low-amplitude tails
of the individual n(zs) distributions.

The composite shape of the ρ i(R) distribution is accounted for in
the calculations of the correlation length ro. One should notice that
the contribution to the ro amplitude of the low-density extensions
(that suffer from large uncertainties) is small as compared to the
‘central’ section of the bin. This is because the integral at the right-
hand side of equation (9) contains the density square.

Relationships between the measured 2D CF and the 3D CF de-
rived using equations (9) and (10) should be corrected for the finite
radial extensions of bins. However, because the bin depths are sub-
stantially larger than the expected maximum separations at which
the CF significantly deviates from zero, the effect is small as com-
pared to statistical uncertainties. It was assessed as follows.

Counting galaxy pairs in the chosen distance bin corresponds
to the double integration along the line of sight of the 3D CF
weighted by the actual radial galaxy space density distribution.
The difference between the results based on equation (7) and the
pair number counts depends on the a priori unknown parameters
of ξ (r). Since this difference is expected to be small in the present
calculation, we expressed the amplitude of the finite bin depth effect
a posteriori, taking the best-fitting ξ (r) parameters as determined
in the previous sub-section. In all the bins, the relative difference

between the analytic value used in equation (7) end the ‘effective’
G-factor is negligible at the small separations, rises to ∼1 per cent
at the transverse separations of 1–3 Mpc, and reaches 5–8 per cent
(depending on the bin number) at ∼20 Mpc. The expected impact
of this ‘integral constraint’ on the CF slope γ would be of the order
of ∼0.02 with the correspondingly small effect for the correlation
length.

5 D I S C U S S I O N A N D C O N C L U S I O N S

The mean absolute magnitude of galaxies in the sample A coincides
roughly with the characteristic magnitude M� in the Schechter lumi-
nosity function. Because of the flux selection, the mean magnitude
difference between the samples A–C varies with the distance. In the
first three distance bins, galaxies in the sample B are fainter than
class A galaxies by ∼1.4 mag, while in the distance bins 4 and 5
this difference drops to 1.3 and 1.2, respectively. The magnitude
separation between sample A and C is more strongly affected by
the selection. It amounts to 2.9 mag in the first two distance bins,
and is reduced to 2.7 and 2.3 in the next two bins, respectively.

A comparison of our CF slope estimates with a number of frag-
mentary measurements present in the literature leads to somewhat
ambiguous conclusions. Marulli et al. (2013) compile a number of
recent results on the CF parameters derived for a wide range of
galaxy luminosities and redshifts. Our results fit well to the gen-
eral distribution of measurements in their fig. 5. In particular, the
slope flattening in the sample B and C as compared to the sample
A seems to be present also in the published results (e.g. Pollo et al.
2006; Coil et al. 2006). One should note, however, that individual
measurements refer frequently to different redshifts and are subject
to large uncertainties. Therefore, questions on the specific relation-
ships between CF parameters still remain open. The VIPERS data
(Marulli et al. 2013) that suffer from the smallest uncertainties, in-
dicate a weak but systematic flattening of the slope with redshift,
while this effect is not indicated by our investigation. Furthermore,
these data show only a marginal CF slope – absolute magnitude
dependence. One should note, however, that the VIPERS galaxies
in the Marulli et al. (2013) data span a relatively narrow magni-
tude range of �M ≈ 1.5, and are confined to redshifts between 0.5
and 1.1.

Despite considerable size of the banana shape confidence regions
in Fig. 9, our estimates of γ and ro provide constraining informa-
tion on the cosmic evolution of the galaxy CF. Although, the relative
positions of the best-fitting parameters in the ro–γ plane of class
A–C galaxies vary from one distance bin to the another, the shape
and orientation of the confidence regions demonstrate some perma-
nent characteristics of the CF over a wide redshift range. It appears
that the correlation length, ro, of class A–C galaxies is quite simi-
lar in most of the distance bins, although not necessarily identical.
Larger discrepancies between class B and A in the distance bin 2
and 5 are of the opposite sign, and seem to be generated by sta-
tistical fluctuation in the data rather than the cosmic signal. The
conclusion in the previous section that the CF slope is steeper for
the most luminous galaxies (class A) is strengthen by the overall
layout of the confidence regions.

Marulli et al. (2013) reach the opposite conclusion. They find
‘a monotonic increase in the clustering length ro’ as a function of
magnitude ‘in all three redshift ranges considered’, i.e. 0.5–0.7,
0.7–0.9 and 0.9–1, 1. Taking into account elongated shapes of the
confidence regions, such interpretation of Fig. 9 is not completely
ruled out; however, it is not favoured by the present results.
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It is instructive to compare our results with the Arnalte-Mur et al.
(2014) investigation, as it also uses photometric redshifts, and cov-
ers a relatively wide redshift range, 0.35 < z < 1.25. Their fig. 7
apparently indicates a rise of the correlation length with galaxy
luminosities, but no obvious dependence of the correlation slope
on the luminosities. Despite these differences, both investigations
support the conclusion that the clustering amplitude increases with
the galaxy luminosities. Our Fig. 9 shows that the present calcu-
lations are not immune to statistical fluctuations. The question of
systematic errors is more ambiguous. It is assumed in the present
method that all the known as well as unrecognized selection ef-
fects that alter the galaxy distribution are accounted for using the
information incorporated in the catalogue itself. In the alternative
methods, the mock catalogues are used as a reference ‘random’
distribution. Such catalogues are designed to model all the instru-
mental/observational constraints that modify the genuine galaxy
clustering. A question which of these two methods is more suitable
for dealing with various observational biases depends on the partic-
ular properties of the observational data. The overall characteristics
of the COSMOS/Subaru catalogue, namely very wide redshift cov-
erage of relatively small surface area with numerous gaps, favour
the method developed in this paper.

Because of the apparently constant slope of the CF for the class
A galaxies, it is reasonable to fix the slope for all the bins at the
average value of γ = −1.92. The best estimates of ro in this case
are shown with crosses in the lower panel of Fig. 8. There is a weak
indication that ro slowly increases with the cosmic time. The dotted
line in the lower panel shows the least-squares linear fit to the ro

versus look back time. The slope of this line differs from 0 at 1.14 σ .
The issue whether the present results are representative for the

general galaxy clustering properties or refer just to the COSMOS
field cannot be answered using this field alone. The question is
legitimate because of some peculiarities in the field were reported
in the literature (e.g. Meneux et al. 2009). We would postpone the
answering to this until the similar analysis is performed on other
deep fields.

5.1 The bias

The homogeneous computation scheme applied to the galaxies
spread over a huge redshift range allowed us for a uniform as-
sessment of the clustering evolution as well as the galaxy bias,
b(z):

b(z) = σg(z)/σm(z) , (13)

where σ g(z) denotes the galaxy number rms fluctuations and σ m(z)
the mass rms fluctuations within the same volume. The CF is rig-
orously connected to the galaxy rms fluctuations. In particular, the
rms of the galaxy number in a sphere of radius r is related to the
power-law CF (Peebles & Groth 1976):

σg(r|z) = [Cγ ξ (r|z)]1/2, (14)

where Cγ = 72 · 2γ /[(3 + γ )(4 + γ )(6 + γ )], and the volume size
as well as the redshift dependence of σ and ξ are explicitly indi-
cated. The growth of the matter fluctuations, σ m(r|z), in the linear
regime is completely defined by the cosmological model. In the fol-
lowing, we use the set of equations listed by Meneux et al. (2008):
σ m(r|z) = σ m(r|0)/D(z) , where D(z) = g(z)/[g(0) (1 + z)] and
g(z) = 5

2 �m /[�4/7
m − �� + (1 + �m/2) (1 + ��/70)] is the nor-

malized growth factor (Carroll, Press & Turner 1992). The evolving

Figure 11. The redshift evolution of the linear bias factor. Dots denote the
bias factor calculated for the ro and γ fits of class A galaxies indicated
with dots in Fig. 8. The error bars correspond to 68 per cent uncertainties
drawn in Fig. 9. Crosses show the bias of the class A galaxies assuming the
slope of the correlation function fixed at γ = −1.92 (crosses in Fig. 8). The
bias factor for B and C classes are shown with open circles and triangles,
respectively.

density parameters �m and �� are related to their present epoch
values:

�m ≡ �m(z) = �m,o (1 + z)3

E2(z)
, �� ≡ ��(z) = ��,o

E2(z)
, (15)

where E2(z) = ��,o + �m,o (1 + z)3 is the expansion factor for
the flat cosmological model, for which �� + �m = 1. The present
epoch mass fluctuations amplitude, σ m(0), is commonly normalized
to the mass rms within a sphere of radius r = 8 h−1 Mpc, where
h = Ho/100 km s−1Mpc−1. We use the Komatsu et al. (2011) figure
σ m(0) = 0.82 based on 7 yr WMAP observations. The bias–redshift
relations deduced from the CF measurements are shown in Fig. 11.
Dots and crosses indicate the bias variations of the class A galaxies,
circles – class B, and triangles – class C. Growth of b(z) for the most
luminous (class A) galaxies reported in the literature for low and
moderate redshifts (e.g. Marinoni et al. 2005; Papageorgiou et al.
2012) continues to high redshifts. The data for galaxies class B and
C are limited to low redshifts and apparently the bias amplitude does
not depend on the galaxy luminosities in that area. It is difficult to
assess whether the bias coincidence at low redshift of the class A–C
galaxies contradicts the well documented relationship between the
bias and galaxy luminosities. This is because a sharp rise of the
bias amplitude with galaxy luminosities (e.g. Zehavi et al. 2011) is
mostly constrained to galaxies brighter than M�, while our class A
corresponds roughly to M�, and classes B and C are fainter.

In low and moderate redshifts, the present results are largely con-
sistent with the measurements based on the galaxy samples with
spectroscopic redshifts. The photometric redshifts provide only the
statistical constraints on the galaxy distribution, and cannot be used
to localize precisely individual objects. This inevitably broadens
the uncertainties of our estimates. However, the photometric red-
shifts can be determined in massive scale over much larger vol-
ume of the Universe than it is now feasible for the spectroscopic
surveys. The present calculations are based purely on the observa-
tional data, i.e. in the calculations we do not include mock galaxy
catalogues conceived from the cosmological simulations. This
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additionally increases our final uncertainties. However, our method
is more adequate as long as effects of the cosmic variance on the
galaxy clustering are not fully accounted for.

Our high-redshift measurements of the galaxy linear bias fit well
in the low-redshift limit to the previous studies. To assess more
precisely the evolution trends of the galaxy CF at high redshifts,
we plan to perform analogous investigation on other deep galaxy
photometric redshift surveys.
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A P P E N D I X A : A NA LY T I C FI T S O F T H E zp − zs

D E V I AT I O N S

Distribution of zp − zs differences is represented using the proba-
bility distribution p(y), where y = (zs − zp)/(1 + zp).

Complex nature of the zp − zs deviations requires adequate func-
tional form that accounts for a high fraction of almost perfect zp

measurements as well as casual errors and sporadic failures. Ac-
cordingly, the p(y) distribution is defined as the normalized sum
of three components: the Gaussian function g(y), the resonance
function r(y) and a low-amplitude uniform probability ao:

p(y) = αg · g(y) + αr · r(y) + αo , (A1)

where

g(y) = 1√
2π sg

exp[−(y − μg)2/2s2
g ]

r(y) = 1
π

sr
(y−μr)2+s2

r
,

(A2)

Parameters μg, sg, μr and sr plus relative contributions of the com-
ponents, αg, αr and αo are fitted to the observed distributions of the
y parameter. The ML estimation was applied. Since the quality of
the photometric redshifts deteriorates with increasing magnitude,
the data were divided into 5 mag bands. A small number of mea-
sured spectroscopic redshifts below m = 23 and a high fraction of
zp catastrophic errors potentially could introduce relatively large
uncertainties to the present analysis. The question to what extent
uncertainties related to the fitting procedure affect our estimates of
the space correlation amplitude is addressed as follows.

We generated 200 quasi-random samples of the (zs, zp) pairs
using the bootstrap method. The mock samples were drawn from
the real data. The average amplitudes of parameters fitted to the
simulations and their rms scatter have been calculated. The results
of the entire procedure are listed in Table A1. The first five rows
give the best-fitting parameters to the real data while the bottom
two rays show the results for the simulated 23–25 mag bin.

Because of the distinctive form of the fitted function the parame-
ters are strongly correlated. Therefore the resultant p(y) distributions
exhibit a moderate variations, despite the high scatter of individ-
ual parameters. Stable character of p(y) distribution generates via
equation (11) well-defined spectroscopic redshift distributions,
n(zs). We assessed the uncertainties of n(zs) from a spread of
the mock distributions. A set of 200 simulated spectroscopic red-
shift data, n(zs), was generated using the simulated p(y) probability
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Table A1. Parameters for the p(y) distributions in 5 mag bins.

Mag bin Ns
a αo αg μg sg αr μr sr

18.0–20.0 407 0.0028 0.3368 − 0.0045 0.0042 0.6604 0.0028 0.0039
20.0–21.0 1050 0.0085 0.5423 − 0.0006 0.0059 0.4492 0.0009 0.0049
21.0–22.0 2521 0.0120 0.1942 0.0037 0.0110 0.7938 0.0004 0.0045
22.0–23.0 3775 0.0239 0.3300 − 0.0008 0.0044 0.6461 0.0039 0.0094
23.0–25.0 89 0.1773 0.1886 − 0.0034 0.0026 0.6341 0.0042 0.0298
Simulations
23.0–25.0 Average 0.2090 0.2482 − 0.0037 0.0036 0.5428 0.0096 0.0256

rms 0.0968 0.1110 0.0015 0.0033 0.1710 0.0132 0.0138

Note.a Number of galaxies with measured spectroscopic redshifts used in the fittings.

functions. The rms scatter of n(z) is indicated in Fig. 10 with thin
curves for three most distant bins.

APPENDIX B: TESTING THE ESTIMATORS O F
C F PA R A M E T E R S

The full procedure of measuring the 3D CF parameters using the
catalogue of photometric redshifts has been tested on the simulated
data. First, we generate a 3D point distribution according to a priori
defined statistical characteristics. Then, the data are processed in
the same way as the COSMOS observations to retrieve the CF
parameters. Finally, the results are confronted with the original
values.

B1 Modelling the space distribution with definite CF

The objective was to construct the model distribution of points char-
acterized by the power-law CF with the slope and normalization
close to those determined for the COSMOS data. This synthetic
material was not devised to imitate other statistical properties of
the real galaxy population. From among a diversity of space dis-
tributions satisfying the selected CF, we took a computationally
manageable position-dependent function. The particular point dis-
tribution was realized by the MC method. The points were drawn
according to the properly defined probability distribution. The algo-
rithm that provided an acceptable approximation for the power-law
CF was constructed as follows.

Two populations of points are distributed within a specified vol-
ume: (a) points concentrated in ‘clusters’,3 and (b) ‘field’ points
distributed randomly, but outside clusters. The cluster centres are
distributed fully randomly. Points within each cluster are distributed
according to the broken power law:

ρ(r) =

⎧⎪⎪⎨
⎪⎪⎩

ρb

(
r1
r2

)α2
(

r
r1

)α1
for r < r1

ρb

(
r
r2

)α2
for r1 ≤ r < r2

ρb for r ≥ r2 ,

(B1)

where ρb is the space density of points outside clusters, r1 and r2

are characteristic cluster radii that delineate two zones of distinct
power indices α1 and α2. The amplitude of the CF depends also on
the number of clusters or equivalently – on the fraction of volume
occupied by clusters. In the subsequent calculations, we adopted
the following parameter values: radii r1 and r2 of 6 and 16 Mpc,
respectively, and the power-law indices α1 = −2.44 and α2 = −1.25
for the central and outer cluster zones. The volume occupied by

3 Here, ‘clusters’ represent clamps of points that generate the required CF,
with no relation to the real galaxy clusters.

Figure B1. Dots – the correlation function of 62 158 points distributed
according to the model described in the text, line – the power-law fit
ξ (r) = (r/rm)γm with rm = 5.89 Mpc and γ m = −1.89.

clusters was selected at κ ≈ 0.40 of the total survey volume. This
set of parameters determines the relative contribution of field and
clustered points to the total number at 0.33 and 0.67, respectively.

The present prescription of the space point distribution yields
the CF emulating the power law over a wide range of separations
extending up to ∼15 Mpc. This is illustrated in Fig. B1, where
∼62 000 points were distributed in a volume of 1.73 × 107 Mpc3

according to equation (B1) with ρb = 2.25 × 10−3 Mpc−3. Fitting
the power law to the CF generated by this set of parameters gives
the slope γ m = −1.9 and the correlation length rm = 5.9 Mpc.

It is important to emphasize that this model distribution gener-
ates the definite CF but has no resemblance to the actual galaxy
space distribution. The objective of the procedure is just to test the
efficiency of the method, i.e. whether the algorithm presented in
Sections 3 and 4 is able to extract the parameters of the CF from
the surface data. One can expect that individual realizations of the
synthetic model limited to the volume of the COSMOS field would
provide the CF parameters scattered around the original values as-
sumed in the simulations. The size of this spread is characteristic to
the model and does not represent uncertainties of the CF parameters
derived from the real data.
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Table B1. Parameter estimation applied to the simulated, synthetic catalogues of photometric redshifts.

Distance No mask BS BS + F0.025 BS + F0.05 BS + F0.10 rms
bin γ ro γ ro γ ro γ ro γ ro γ ro

1 −1.87 6.6 −1.87 6.5 −1.89 6.3 −1.84 6.8 −1.88 6.4 0.22 2.2
2 −1.87 6.1 −1.86 6.3 −1.87 6.1 −1.87 6.2 −1.87 6.2 0.10 1.1
3 −1.88 6.1 −1.87 6.1 −1.88 6.1 −1.88 6.1 −1.87 6.1 0.11 0.9
4 −1.86 6.3 −1.86 6.3 −1.87 6.3 −1.88 6.2 −1.86 6.3 0.09 0.9
5 −1.87 6.0 −1.90 5.8 −1.88 5.9 −1.89 5.9 −1.90 5.9 0.15 1.1
6 −1.88 6.2 −1.91 6.1 −1.90 6.1 −1.90 6.1 −1.89 6.2 0.21 1.6

Notes. The simulated data points were drawn according to the underlying probability distribution that generates the power-law
CF with γ = −1.89 and ro = 5.9 Mpc. BS – bright star mask, F0.025, F0.05, and F0.10 – filters; see text for details.

B2 Extracting the PL parameters from the model data
distributed in the COSMOS field

We now adjust our model to the global constraints that shape the
COSMOS data. The objective is to reproduce some basic statistical
characteristics (such as the total number of objects and a form of
the radial distribution) of the most luminous galaxies, denoted as
class A.

First, the points are distributed in a pyramid volume of the solid
angle of 1.42 × 1.38 deg2, what corresponds to the size of the
COSMOS/Subaru field. To emulate a decreasing space density of
galaxies at large distances, the probability of qualifying a point for
further processing was adequately reduced. In effect, the final set
of ‘objects’ contained ∼76 000 points. We declare that the present
method is essentially insensitive to the numerous empty regions
distributed over the field as well as to the smooth, large angular
scale inhomogeneities of the survey. Although variations of the
limiting magnitudes have been investigated (Taniguchi et al. 2007),
and the final catalogue is free from substantial inhomogeneities,
one should allow for some residual instrumental fluctuations that
simulate the clustering signal. To check that, we ran the tests with a
superimposed mask that imitates holes in the actual catalogue due to
the bright stars. The ‘Swiss cheese’ mask contains above 125 circles
representing the most prominent blank fields. Additionally, we test
the effects of potential angular inhomegeneities of the survey. This
is achieved by applying the ‘fluctuation filter’, Fa. We superimpose
a filter that introduces fluctuations of the point surface density with
a characteristic wavelength λ = 40 arcmin in both directions (RA
and Dec.):

n(x, y) = n [1 + a sin(kx) sin(ky)], (B2)

where n(x, y) and n are the local and the mean point densities,
respectively, a is the fluctuation amplitude, and k = 2π/40 arcmin.
Three amplitudes a were applied: 0.025, 0.05 and 0.10

‘Spectroscopic redshifts’ were assigned to all the objects as-
suming the cosmological model adopted in the paper. To attach a
‘photometric redshift’ to each object, we apply a method identi-
cal to that described in Appendix A. Using the ML method, we
find the best-fitting parameters of the p(x) probability distribution,
where x = (zp − zs)/(1 + zs). Since the overall shape of p(x) and
p(y) is similar, the functional form of both distribution is the same.
The COSMOS p(x) distributions depend on the apparent magnitude
of objects. To mimic this effect, each object in our catalogue was
labelled with the ‘apparent magnitude’ drawn from the magnitude
distribution of the real data.

The final simulated catalogue contained the list of points iden-
tified just by their angular coordinates and photometric redshifts.
Such ‘observational material’ was analysed using the method and
formulae in Sections 3 and 4. Calculations were performed for 25

Figure B2. Estimates of the power-law parameters of the correlation func-
tions for 25 sets of simulated data with the ‘bright star’ mask and ‘fluctuation
filter’ F0.05. The input CF parameters are indicated by large full dots; pa-
rameters extracted using the present method are shown with small dots. See
text for details.

sets of simulated catalogues, using various combinations of the
bright star mask (BS) and fluctuation filters (F0.025, F0.05 and F0.10).
The quantitative comparison of the CF parameter estimates, γ and
ro, with their model amplitudes of −1.89 and 5.89 Mpc is summa-
rized in Table B1. In columns 2–11, the average amplitudes for γ

and ro of 25 data sets are shown. In the last two columns, the rms
scatter averaged over all the mask + filter settings is given.

We note that, in fact, the mask and filters do not introduce any
systematic corrections to our estimates of the CF parameters. One
could expect a moderate raise of uncertainties because both mod-
ifications add an additional noise to the data. However, the effect
is small and the total scatter is dominated by the stochastic na-
ture of the simulated catalogues. In Fig. B2, the distributions of 25
runs with the BS mask and the fluctuation filter F0.05 are shown in
the ro–γ plane. It appears that the distributions of both parameters
are roughly centred on their original amplitudes. Although, some
bias towards flatter slopes and larger correlation length is visible in
distance bins that contain lower number of objects.
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One should notice that the extent of the scatter plots in Fig. B2
results from the statistical character of the investigated matter. That
includes also particular distribution of clusters in the simulated
catalogues. Therefore, the parameter dispersion derived for the syn-
thetic catalogues is a sum of two components. First, it is generated
by the noise associated with the drawing of points according to the
specific underlying probability distribution. Second, it results from
the different realizations of probability distribution itself. Thus, the
scatter plots in Fig. B2 do not represent the uncertainties of param-
eters estimated from the real data.

A good agreement between the input parameters and their esti-
mates indicates that the procedures introduced in the paper can be
used to derive the space characteristics of the CF using photometric
redshifts. Possible systematic deviations, if any, are substantially
smaller than large statistical uncertainties.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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