Nonlinear pulsation

Radosław Smolec

Institute of Astronomy, University of Vienna

Nonlinear pulsation - Introduction

Large amplitude pulsation in the classical instability strip

- ► Cepheids, RR Lyrae stars
- ► opacity driven pulsation
- ▶ radial pulsation

Focus on multimode pulsation * new discoveries (*Kepler*, *CoRoT*, ground) * what we see and * ...do we understand it

Christensen-Dalsgaard (1992)

Multiperiodic pulsation: new discoveries

New discoveries: *Kepler*, *CoRoT*

Huge progress in understanding the Blazhko effect – Robert Szabó talk

Guggenberger et al. (2011)

The Impact of Asteroseismology across Stellar Astrophysics, Kavli Institute, 28.10.2011

New discoveries: Kepler, CoRoT

Huge progress in understanding the Blazhko effect – Robert Szabó talk

Period doubling effect

- ▶ detected in 9 stars all showing the Blazhko effect
- ► caused by the 9:2 resonance, $9\omega_0 = 2\omega_9$ (Kolláth et al 2011)
- ▶ solution to the Blazhko puzzle? (Buchler & Kollath 2011)

The Impact of Asteroseismology across Stellar Astrophysics, Kavli Institute, 28.10.2011

The Impact of Asteroseismology across Stellar Astrophysics, Kavli Institute, 28.10.2011

New discoveries: RR Lyrae stars – new pulsation modes

New discoveries: RR Lyrae stars – new pulsation modes

Soszynski et al. (2009), Moskalik et al. (2011, unp.)

New discoveries: RR Lyrae stars with period ratio around 0.6

New discoveries: RR Lyrae stars with period ratio around 0.6

New discoveries: RR Lyrae stars with period ratio around 0.6

4

New discoveries: Cepheids – new pulsation modes

New discoveries: Cepheids – new pulsation modes

0.85 F+10: 120 stars 10+20+3010+20 0.80 10+20: 421 stars Soszyński et al. (2008, 2010) 0.75 F+10 10+30:2 stars F+1O+2O $P_{\rm S}/P_{\rm L}$ Soszyński et al. (2008) 0.70 10+30 F+10+20: 4 stars 0.65 10+20+30: 4 stars Moskalik et al. (2004) 0.60 Soszyński et al. (2008, 2010) modelling: 0.55 Moskalik & Dziembowski (2005) 1.0 -0.5 0.0 0.5 $\log P_{\rm L}$

New discoveries: Cepheids – new pulsation modes

The Impact of Asteroseismology across Stellar Astrophysics, Kavli Institute, 28.10.2011

New discoveries: Cepheids stars with period ratio around 0.6

Dziembowski & Smolec (2009)

- \star Cepheids and RR Lyrs: 10+?
- \star radial modes
 - ▶ ruled out
- * non-radial modes
 Dziembowski (1977), Osaki (1977)
 Mulet-Marquis et al. (2007)
 - ▶ difficult to model
 - unstable modes l > 5

- \star Cepheids and RR Lyrs: 10+?
- \star radial modes
 - ▶ ruled out
- \star non-radial modes

Dziembowski (1977), Osaki (1977) Mulet-Marquis et al. (2007)

- ▶ difficult to model
- unstable modes l > 5
- * hint(?) from Kepler
 - ► period doubling of a secondary mode

► strong variability of a secondary mode

- \star Cepheids and RR Lyrs: 1O+?
- \star radial modes
 - ▶ ruled out
- * non-radial modes
 Dziembowski (1977), Osaki (1977)
 Mulet-Marquis et al. (2007)
 - ► difficult to model
 - unstable modes l > 5
- \star hint(?) from *Kepler*
 - ▶ period doubling of a secondary⁴
 mode
 0
 - ► strong variability of a secondary mode

Moskalik et al. (2011)

- \star Cepheids and RR Lyrs: 1O+?
- \star radial modes
 - ▶ ruled out
- \star non-radial modes
 - Dziembowski (1977), Osaki (1977) Mulet-Marquis et al. (2007)
 - ► difficult to model
 - unstable modes l > 5
- * hint(?) from Kepler
 - ► period doubling of a secondary mode
 - ► strong variability of a secondary mode

Moskalik & Kołaczkowski (2009)

Multiperiodic pulsation: understanding

1D nonlinear pulsation codes:

Radiative models

▶ e.g., Stellingwerf (1975)

1D nonlinear pulsation codes:

Radiative models

▶ e.g., Stellingwerf (1975)

Period doubling in BL Herculis stars predicted 1992 (Buchler & Moska-lik), radiative 1D code first detection 2011 (Smolec, Soszyński, 15.1 15.2

Moskalik et al.)

0.2

0

0.6

0.4

phase

0.8

1D nonlinear pulsation codes:

Radiative models

▶ e.g., Stellingwerf (1975)

Convective models

Stellingwerf (1982)
 Bono & Stellingwerf (1992)

▶ Kuhfuß (1986)

Feuchtinger (1999) Kolláth et al. (1998) Smolec & Moskalik (2008)

$$\begin{aligned} \frac{dU}{dt} &= -\frac{1}{\rho} \nabla (p + p_{t}) + U_{q} - \nabla \phi \\ \frac{de}{dt} + p \frac{dV}{dt} &= -\frac{1}{\rho} \nabla (F_{r} + F_{c}) - (S - D - D_{r}) \\ \frac{de_{t}}{dt} + p_{t} \frac{dV}{dt} &= -\frac{1}{\rho} \nabla F_{t} + E_{q} + (S - D - D_{r}) \end{aligned}$$

Modelling of double-periodic Cepheid pulsation: controversy

- * inclusion of turbulent convection into the models led to success (Kolláth et al. (1998) Cepheid models, Feuchtinger (1998) one RR Lyrae model)
- * systematic double-periodic model surveys only Florida-Budapest group (Kolláth et al. 2002, Szabó et al. 2004)
- despite computation of many model sequences, we haven't found any doubleperiodic Cepheid model with Warsaw pulsation hydrocodes (Smolec & Moskalik 2008)
 - \rightarrow our codes also use Kuhfuß model!

small difference in the model equations \Rightarrow huge difference for the mode selection problem

Origin: Reynolds averaging

 $\blacktriangleright x = \langle x \rangle + x'$

- continuity, momentum and thermal energy equations decomposed into mean and fluctuating part
- ▶ equation for turbulent energy $e_t = \langle w'^2/2 \rangle$

Approximations and closure relations

 \blacktriangleright e.g. down gradient approximations, $F_{\rm c} \propto \nabla s,\,F_{\rm t} \propto \nabla e_{\rm t}$

$$\begin{aligned} \frac{dU}{dt} &= -\frac{1}{\rho} \nabla (p + p_{\rm t}) + U_q - \nabla \phi \\ \frac{de}{dt} + p \frac{dV}{dt} &= -\frac{1}{\rho} \nabla (F_{\rm r} + F_{\rm c}) - (S - D - D_{\rm r}) \\ \frac{de_{\rm t}}{dt} + p_{\rm t} \frac{dV}{dt} &= -\frac{1}{\rho} \nabla F_{\rm t} + E_q + (S - D - D_{\rm r}) \end{aligned}$$

 $e_{\rm t}$ turbulent energy

- *S* source function
- *D* **turbulent dissipation**
- $D_{\rm r}$ radiative cooling
- $p_{\rm t}$ turbulent pressure
- E_q, U_q eddy-viscous terms
- $F_{\rm c}$ convective flux
- $F_{\rm t}$ turbulent flux

$$\begin{aligned} \alpha \alpha_{\rm s} T p Q e_{\rm t}^{1/2} \boldsymbol{\mathcal{Y}} / H_p \\ (\alpha_{\rm d} / \alpha) (e_{\rm t}^{3/2} / H_p) \\ D_{\rm r} &= 4\sigma \gamma_{\rm r}^2 / \alpha^2 (T^3 V^2 e_{\rm t}) / (c_p \kappa H_p^2) \\ \alpha_{\rm p} \rho e_{\rm t} \end{aligned}$$

$$-(4/3)\alpha\alpha_{\nu}H_{p}e_{t}^{1/2}R\frac{\partial(U/R)}{\partial R}$$
$$\alpha\alpha_{c}\rho Tc_{p}e_{t}^{1/2}\boldsymbol{\mathcal{Y}}$$
$$-\alpha_{t}\alpha\rho H_{p}e_{t}^{1/2}\frac{\partial e_{t}}{\partial R}$$

8 free parameters!

 $F_{
m c} \propto \mathcal{Y}, S \propto \mathcal{Y}, \mathcal{Y} = oldsymbol{
abla} - oldsymbol{
abla}_{
m a}$

or

Ambiguities: source term (buoyant driving/damping)

 $S \propto e_{
m t}^{1/2} {\cal Y}$ Kuhfuß (1986)

 $S \propto e_{\rm t} {\rm sgn}(\mathcal{Y}) \sqrt{|\mathcal{Y}|}$

Stellingwerf (1982)

no DM solutions

no DM solutions

Smolec & Moskalik (2008,2010)

G. Bono, private comm.

or

Ambiguities: source term (buoyant driving/damping)

 $S \propto e_{
m t}^{1/2} {\cal Y}$ Kuhfuß (1986)

 $S \propto e_{\rm t} {\rm sgn}(\mathcal{Y}) \sqrt{|\mathcal{Y}|}$

TUB (1986)

Stellingwerf (1982)

no DM solutions

no DM solutions

Smolec & Moskalik (2008,2010)

G. Bono, private comm.

 $S \propto e_{
m t}^{1/2} {\cal Y}_+$: negative buoyancy neglected Kolláth et al. (1998)

DM pulsation

e.g., Kolláth et al. (1998, 2002)

Double-periodic Cepheid pulsation: treatment of negative buoyancy

Negative buoyancy included:

 $\log e_t$ $\log e_{t}$ 15 -15 = 10 5 10 0 -5 -10 5 -15 0.1 0.1 0.3 0.3 40 60 80 100 120 140 phase0.5 phase0.5 80 100 120 140 0.7 0.7 40 60 0.9 0.9 $\overline{20}$ $\overline{20}$ zone $\mathcal{Y} < 0$ $\frac{de_{\rm t}}{dt} = \boldsymbol{S} - \boldsymbol{D} + \boldsymbol{E}_{\boldsymbol{q}}$ $\frac{de_{t}}{dt} = -\boldsymbol{D} + \boldsymbol{E}_{\boldsymbol{q}}$

Smolec & Moskalik (2008)

Negative buoyancy neglected:

Double-periodic Cepheid pulsation: treatment of negative buoyancy

Smolec & Moskalik (2008)

Unsolved problem: Modelling of double-periodic Cepheid pulsation

- Amplitude reduction is differential: amplitude of the F-mode is reduced stronger
- \blacktriangleright Result: self saturation exceeds the cross saturation \rightarrow double-mode pulsation emerge
- ▶ but is a result of unpysical assumption

Double periodic pulsators exist – can we improve the 1D formulae to model them?

▶ use 3D models to improve 1D models (e.g., description of overshooting)

2D/3D pulsation hydrocodes:

* several simulations for main-sequence/giant stars, e.g.,

Stein & Nordlund (1989, 1998), Nordlund et al. (2009)

Meakin & Arnett (2007), Arnett, Meakin & Young (2009)

Trampedach et al. (2007, 2010)

▶ 3D models used to improve the MLT (e.g., Arnett, Meakin & Young 2010)

 \star 2D/3D modelling of large amplitude pulsations – a challenging problem

Early work: Deupree (1977)

Gastine & Dintrans (2011)

ANTARES (Muthsam et al. 2010)

SPHERLS (Geroux & Deupree 2011)

ANTARES (Muthsam, et al. 2010):

- \star A Numerical Tool for Astrophysical RESearch
- \star time-dependent compressible hydrodynamics, RHD, 1D–3D
- \star realistic microphysics (OPAL EOS, opacities)
- \star high-resolution simulation of solar granulation (Muthsam et al. 2007)
- \star 2D Cepheid models (5125K, 5500K)

ANTARES (Muthsam, et al. 2010):

(Muthsam, Mundprecht)

• overshooting estimate – up to $1 H_p$

The Impact of Asteroseismology across Stellar Astrophysics, Kavli Institute, 28.10.2011

SPHERLS (Geroux & Deupree 2011):

- \blacktriangleright Stellar Pulsation with a Horizontal Eulerian, Radial Lagrangian Scheme
- ▶ 1D, 2D (working) and 3D code
- ▶ realistic EOS and opacities
- ▶ radiation in the diffusion approximation
- ▶ full amplitude pulsation for few models

SPHERLS (Geroux & Deupree 2011):

The Impact of Asteroseismology across Stellar Astrophysics, Kavli Institute, 28.10.2011

SPHERLS (Geroux & Deupree 2011):

Conclusions:

- ▶ modelling of non-radial pulsation is needed
- ► 3D hydrodynamic simulations

Many thanks to Herbert Muthsam, Eva Mundprecht and Chris Geroux for helpful discussions and figures!

