New Perspectives on Classical Pulsators

Radek Smolec

Nicolaus Copernicus Astronomical Center, Warsaw

- \star Henryka Netzel (CAMK)
- * Marzena Śniegowska (UW)
- * Zdenek Prudil (Heidelberg)
- * Igor Soszyński & OGLE Team (UW)
- * Paweł Moskalik (CAMK)
- * Emese Plachy (Konkoly)
- \star Wojtek Dziembowski (CAMK, UW)
- * Marek Skarka (Konkoly/Brno)

- located within classical instability strip; pulsations driven by the κ mechanism
- textbook examples of simple, radial, typically single-periodic pulsators
- well understood, except some connoisseur topics: excitation of doublemode pulsation or origin of the Blazhko modulation
- * excellent standard candles of crucial importance for cosmology and astrophysics

fig.: Jeffery & Saio (2016)

1

- located within classical instability strip; pulsations driven by the κ mechanism
- textbook examples of simple, radial, typically single-periodic pulsators
- well understood, except some connoisseur topics: excitation of doublemode pulsation or origin of the Blazhko modulation
- * excellent standard candles of crucial importance for cosmology and astrophysics

2

- located within classical instability strip; pulsations driven by the κ mechanism
- textbook examples of simple, radial, typically single-periodic pulsators
- well understood, except some connoisseur topics: excitation of doublemode pulsation or origin of the Blazhko modulation
- * excellent standard candles of crucial importance for cosmology and astrophysics

- located within classical instability strip; pulsations driven by the κ mechanism
- textbook examples of simple, radial, typically single-periodic pulsators
- well understood, except some connoisseur topics: excitation of doublemode pulsation or origin of the Blazhko modulation
- * excellent standard candles of crucial importance for cosmology and astrophysics

2

New perspectives on classical pulsators:

- ► **common** presence of additional, small-amplitude periodicities
- Iow-amplitude modulations might be common in all groups of classical pulsators
- \star these results are not only thanks to space observations, but mostly thanks to photometric sky surveys

Classical pulsators in the OGLE collection

	Cepheids		RR Lyr	
	\mathbf{F}	10	\mathbf{F}	10
Bulge	34	34	27480	11415
LMC	2476	1775	28193	9663
SMC	2753	1793	5105	801

fig.: http://ogle.astrouw.edu.pl/

F+2O, double-mode, radial;
 a few stars with Blazhko effect,
 low-amplitude and non-coherent
 2O signal (e.g. Benkő et al. 2014)

- \star dominant variability: F mode
- \star characteristic light-curve shape
- \star additional variability of shorter period and of low amplitude
- ▶ origin: extreme, longest-period RRd + BL Her

Smolec, Prudil, Skarka, Bąkowska (2016), MNRAS; Smolec et al. (2018), submitted

- \star dominant variability: F mode
- \star characteristic light-curve shape
- \star additional variability of shorter period and of low amplitude
- ▶ origin: extreme, longest-period RRd + BL Her

Smolec, Prudil, Skarka, Bąkowska (2016), MNRAS; Smolec et al. (2018), submitted

* modulation (Blazhko) observed in most cases
* anomalous period ratios

- \star anomalous amplitude ratio (F dominates)
- ▶ origin: **RRd** (**F+10**), resonant?

Prudil, Smolec, Skarka, Netzel (2017), MNRAS

 \star 42 stars, F-mode dominates

- \star secondary variability of shorter period and of relatively large amplitude
- \star Blazhko-like modulation is frequent
- \star characteristic triangular light curve
- \star Fourier parameters in between RRab and RRc
- ▶ origin: unknown, F-mode? RR Lyrae?

$$m = A_0 + \sum_k A_k \sin(k\omega_0 t + \phi_k)$$
$$R_{k1} = \frac{A_k}{A_1}, \quad \varphi_{k1} = \phi_k - k\phi_1$$

 \star 42 stars, F-mode dominates

- \star secondary variability of shorter period and of relatively large amplitude
- \star Blazhko-like modulation is frequent
- \star characteristic triangular light curve
- \star Fourier parameters in between RRab and RRc
- ▶ origin: unknown, F-mode? RR Lyrae?

- \star tight period ratios, $P_{\rm 1O}/P_{\rm X}\!\approx\!0.686$
- \star additional variability of long period...
- \star ...too long to be radial fundamental mode
- \star additional variability is of low A and coherent
- \star perfectly normal RRc light curve

 \star origin: ?

Netzel, Smolec, Dziembowski (2015), MNRAS Lett.; Netzel & Smolec (2016), Proc. PAS

- \star tight period ratios, $P_{\rm 1O}/P_{\rm X}\!\approx\!0.686$
- \star additional variability of long period...
- \star ...too long to be radial fundamental mode
- \star additional variability is of low A and coherent
- \star perfectly normal RRc light curve

 \star origin: ?

Netzel, Smolec, Dziembowski (2015), MNRAS Lett.; Netzel & Smolec (2016), Proc. PAS

10+?: > 300 stars

Gruberbauer i in. (2007) Olech & Moskalik (2009) Soszyński i in. (2009) Süveges i in. (2012) Moskalik i in. (2011, -15) Chadid (2012), Szabo i in. (2014) Molnar i in. (2015) Netzel, Smolec & Moskalik (2015a) Smolec i in. (2015, Bl-RRd) Jurcsik i in. (2015) Netzel, Smolec & Moskalik (2015b) Kurtz et al. (2016)

14/15 RRc/RRd observed from space

>260 in OGLE data!

10+?: > 300 stars

Gruberbauer i in. (2007) Olech & Moskalik (2009) Soszyński i in. (2009) Süveges i in. (2012) Moskalik i in. (2011, -15) Chadid (2012), Szabo i in. (2014) Molnar i in. (2015) Netzel, Smolec & Moskalik (2015a) Smolec i in. (2015, Bl-RRd) Jurcsik i in. (2015) Netzel, Smolec & Moskalik (2015b) Kurtz et al. (2016)

14/15 RRc/RRd observed from space

>260 in OGLE data!

754 in OGLE data (6.6%)! Netzel et al., 2018, PPAS Netzel et al., in prep.

Netzel, Smolec & Moskalik (2015a,b), MNRAS

Multi-periodic Cepheids

 \star radial mode inventory (OGLE):

- ► double-mode: F+10, 10+20 (hundreds)
- ▶ double-mode, *unique*: 10+30 (1); 20+30 (1)
- ▶ triple-mode: F+1O+2O (1), 1O+2O+3O (9)
- ▶ quadruple-mode: F+1O+2O+3O (1)

Multi-periodic Cepheids

 \star radial mode inventory (OGLE):

- ► double-mode: F+10, 10+20 (hundreds)
- ▶ double-mode, *unique*: 10+30 (1); 20+30 (1)
- ▶ triple-mode: F+1O+2O (1), 1O+2O+3O (9)
- ▶ quadruple-mode: F+1O+2O+3O (1)

10+?: > 300 stars

Moskalik & Kołaczkowski (2009) Soszyński et al. (2008,-10,-15) Pietrukowicz et al. (2009)

detailed analysis in Smolec & Śniegowska (2016) 138 SMC stars

Multi-periodic Cepheids

- \star three sequences in the Petersen diagram
- \star typical colors, luminosities, light curves
- \star amplitudes are low, $\sim 2-4\%$ of 10 amplitude
- \star signal at $1/2\nu_{\rm x}$ is often detected
- \star signals at $\nu_{\rm x}$ and $1/2\nu_{\rm x}$ are noncoherent
- \star see also Süveges & Anderson, 2018, MNRAS

Smolec & Śniegowska (2016), MNRAS

 \star stars with signals centered at $1/2\nu_x$ are not distributed randomly; signals at $1/2\nu_x...$

- \star stars with signals centered at $1/2\nu_x$ are not distributed randomly; signals at $1/2\nu_x...$
- \star ...correspond to nonrad modes of $\ell=7,8,9,$ but only $\ell=8$ is commonly detected (cancellation)...

 \star stars with signals centered at $1/2\nu_x$ are not distributed randomly; signals at $1/2\nu_x$... \star ...correspond to nonrad modes of $\ell=7,8,9,$ but only $\ell = 8$ is commonly detected (cancellation)... \star ...other manifest through harmonic, i.e. signal at $\nu_{\rm x}$

0.65

0.64

1=8

1=9

- \star stars with signals centered at $1/2\nu_x$ are not distributed randomly; signals at $1/2\nu_x$...
- * ...correspond to nonrad modes of $\ell = 7, 8, 9$, but only $\ell = 8$ is commonly detected (cancellation)... * ...other manifest through harmonic, i.e. signal at ν_x
- \star very good match with the models

Periodic modulations in classical pulsators

- \star RR Lyr stars
 - ▶ Blazhko effect in RRab stars (up to 50%), RRc and RRd stars
 - ▶ RRc stars: OGLE Galactic bulge sample: Netzel et al. (2018) MNRAS
- \star classical Cepheids
 - ► V473 Lyr unique 2O, modulated star (e.g. Molnar & Szabados, 2014)
 - ► double overtone, 10+20 Cepheids (Moskalik & Kołaczkowski, 2009)
 - ▶ V1154 Cyg, the only Cepheid in the original *Kepler* field (Derekas et al. 2012, 2017)
 - ▶ F-mode Cepheids form the OGLE collection (Smolec, 2017)
- \star type-II Cepheids

► BL Her, W Vir and RV Tau form the OGLE collection (Smolec et al., 2018, submitted to MNRAS)

▶ in the majority of cases, modulation detected thanks to analysis of frequency spectra only

- ▶ in the majority of cases, modulation detected thanks to analysis of frequency spectra only
- ▶ in a few cases modulation is well visible directly in the light curve

* 29 stars in SMC, 22 in LMC (~ 1%) 10⁴ * in SMC for $12 d < P_F < 16 d$ the effect is very frequent (~ 40%) 10²

- \star 29 stars in SMC, 22 in LMC (\sim 1%)
- * in SMC for $12 d < P_F < 16 d$ the effect is very frequent (~ 40%)
- \star typical light curves
- \star typical brightnesses
- \star no modulation in SMC for $P_{\rm F} < 3.6\,{\rm d}$ (the effect is real)
- \star typical modulation period is $10 \times P_{\rm F}$

- \star 29 stars in SMC, 22 in LMC (\sim 1%)
- * in SMC for $12 d < P_{\rm F} < 16 d$ the effect is very frequent (~ 40%)
- \star typical light curves
- \star typical brightnesses
- \star no modulation in SMC for $P_{\rm F} < 3.6\,{\rm d}$ (the effect is real)
- \star typical modulation period is $10 \times P_{\rm F}$
- \star mean brightness modulation typically below
 - $0.01\,\mathrm{mag}$
- \star relative modulation amplitude ${<}6\,\%$

Modulation in type II Cepheids

- * low-amplitude modulations detected based on analysis of the frequency spectra
- * modulation in 16 BL Her (4%), 9 W Vir
 (2.5%) and in 7 RV Tau stars (5%)
- \star mean brightness modulation is common

Modulation in type II Cepheids: BL Her stars

Modulation in type II Cepheids: W Vir stars

Modulation in type II Cepheids: RV Tau stars

- \star a family of modulation peaks close to harmonics of $f_0/4$
- \star the highest modulation peak at a frequency slightly larger than $5f_0/4$

A

Modulation in type II Cepheids: RV Tau stars

- \star a family of modulation peaks close to harmonics of $f_0/4$
- * the highest modulation peak at a frequency slightly larger than $5f_0/4$
- \star in all seven stars

Modulation in type II Cepheids: RV Tau stars

- ▶ modulation is most likely
- period-4 and non-radial modes are less likely

- \star a family of modulation peaks close to harmonics of $f_0/4$
- \star the highest modulation peak at a frequency slightly larger than $5f_0/4$
- \star in all seven stars

New perspectives on classical pulsators

- ▶ no longer purely radial
- ▶ non-radial pulsation might be common, at least in 10 stars
- low-amplitude additional periodicities are frequent in all groups of classical pulsators
- low-amplitude periodic modulations are frequent in all groups of classical pulsators
- ▶ most of the above phenomena lack satisfactory theoretical explanation

