Mode selection and amplitude limitation in pulsating stars

Radosław Smolec

Nicolaus Copernicus Astronomical Centre, PAS

Mode selection problem

- \star in many stars simultaneous instability of many pulsation modes is predicted, however lower number of modes is detected
 - ▶ which of the unstable pulsation modes are selected and why?
 - ▶ what is the amplitude limitation mechanism?
- \star these are essentially non-linear problems!

Observational mode selection

disc averaging factor vs. ℓ for bolometric light and different pass-bands

Dziembowski (1977)

 geometrical cancellation (+limb darkening effect)

figure: Daszyńska-Daszkiewicz et al. (2002)

Tools for studying mode selection

- \star linear non-adiabatic analysis
 - ▶ driving mechanism, instability ranges
 - ▶ linear growth rates, trapped modes
- \star non-linear tools: non-linear pulsation codes (hydrodynamics)
 - ▶ so far only 1D for radial pulsators
- \star non-linear tools: amplitude equations
 - ▶ both radial and non-radial pulsation
 - unknown saturation/coupling coefficients

Linear growth rate

$$\gamma = \frac{\int dW}{2\sigma I} \,,$$

where

$$dW = \Im\left[\delta P\left(\frac{\delta\rho}{\rho}\right)^*\right], \quad I = \int_M |\boldsymbol{\xi}|^2 dm,$$

are local contribution to the work integral (dW) and mode inertia (I).

$$\eta = \frac{\int dW}{\int |dW|},$$

with $\eta \in (-1:1)$

POLISH ACADEMY OF SCIENCES NICOLAUS COPERNICUS ASTRONOMICAL CENTER

Nonlinear pulsation codes

- * 1D, direct time integration codes with simple 1-equation model for turbulent convection (Stellingwerf 1982, Kuhfuß 1986)
- * several codes (e.g., Italian, Florida-Budapest, Warsaw, Vienna)

Nonlinear pulsation codes

- * 1D, direct time integration codes with simple 1-equation model for turbulent convection (Stellingwerf 1982, Kuhfuß 1986)
- * several codes (e.g., Italian, Florida-Budapest, Warsaw, Vienna)

Amplitude equations

▶ assumption: $\gamma/\sigma \ll 1$ (e.g., Buchler & Goupil 1984, Dziembowski 1982)

 \star non-resonant mode coupling:

$$\frac{dA_i}{dt} = \tilde{\gamma}_i A_i \,, \quad \tilde{\gamma}_i = \gamma_i \left(1 + \sum_j \alpha_{ij} A_j^2 \right)$$

* resonant mode coupling $\sigma_a = \sigma_b + \sigma_c + \Delta \sigma$ (exact form depends on resonance considered)

$$\frac{dA_a}{d\tau} = \gamma_a A_a - i\frac{C}{2}A_b A_c e^{-i\Delta\sigma\tau}$$
$$\frac{dA_{b,c}}{d\tau} = \gamma_{b,c}A_{b,c} - i\frac{C}{2}A_a A_{c,b}^* e^{i\Delta\sigma\tau}$$

weak point: saturation/coupling coefficients are hard to compute even for the simplified cases

Amplitude equations coupled with nonlinear pulsation codes

* saturation/coupling coefficients obtained through fitting the hydrodynamic trajectories

► detailed mapping of mode selection in Cepheids/RR Lyrae stars (e.g., Szabó et al. 2004, Smolec & Moskalik 2008)

▶ mode selection problem in β Cephei variables (Smolec & Moskalik 2007)

Hydrodynamics + Amplitude Equations:

Mode selection in self-excited pulsators

 $\begin{array}{l} \text{Cepheids \& RR Lyr} \rightarrow \\ \rightarrow \beta \text{ Cephei} \rightarrow \\ \rightarrow \text{WDs} \rightarrow \\ \rightarrow \delta \text{ Scuti} \end{array}$

figure: J. C.-D./Stellar Oscillations

Cepheids and RR Lyrae stars

- large amplitude mostly singleperiodic radial pulsators (F and 10)
- multi-periodic pulsation is rare (DM, TM)
- non-radial pulsators are even more scarce

 instability is saturated (Christy 1964, Stellingwerf 1975, and others)

POLISH ACADEMY OF SCIENCES NICOLAUS COPERNICUS ASTRONOMICAL CENTER

Double-periodic pulsators

• what if $\gamma_F > 0$ and $\gamma_{1O} > 0$?

$$\blacktriangleright M, L = \text{const}, T_{\text{eff}} = 6300 \,\text{K}$$

Smolec & Moskalik (2008)

$\blacktriangleright M, L = \text{const}, T_{\text{eff}} = 6275 \,\text{K}$

Smolec & Moskalik (2008)

$\blacktriangleright M, L = \text{const}, T_{\text{eff}} = 6250 \,\text{K}$

Smolec & Moskalik (2008)

 $\blacktriangleright M, L = \text{const}, T_{\text{eff}} = 6225 \,\text{K}$

Smolec & Moskalik (2008)

$\blacktriangleright M, L = \text{const}, T_{\text{eff}} = 6200 \,\text{K}$

Smolec & Moskalik (2008)

$$\blacktriangleright M, L = \text{const}, T_{\text{eff}} = 6175 \,\text{K}$$

Smolec & Moskalik (2008)

Smolec & Moskalik (2008)

$\blacktriangleright M, L = \text{const}, T_{\text{eff}} = 6125 \,\text{K}$

Smolec & Moskalik (2008)

$$\blacktriangleright M, L = \text{const}, T_{\text{eff}} = 6100 \,\text{K}$$

Smolec & Moskalik (2008)

$\blacktriangleright M, L = \text{const}, T_{\text{eff}} = 6075 \,\text{K}$

Smolec & Moskalik (2008)

 $\blacktriangleright M, L = \text{const}, T_{\text{eff}} = 6050 \,\text{K}$

Mode selection along sequence of Cepheid models

Smolec & Moskalik (2008)

Amplitudes and stability of the fixed points:

Amplitudes and stability of the fixed points:

Amplitudes and stability of the fixed points:

Cepheids and RR Lyrae stars – more puzzles

▶ triple mode Cepheids

▶ mysterious 10/X stars

Cepheids and RR Lyrae stars – more puzzles

▶ triple mode Cepheids

- ▶ mysterious 10/X stars
- ▶ F+1O at ~10 days (Poleski 2013) \rightarrow resonant DM (Dziembowski & Kovács 1984); modelling in progress data: OGLEIII-CVS

β Cephei stars

- low amplitude, mostly multi-periodic radial and non-radial pulsators
- a large group of single-periodic
 variables is also observed

Single mode saturation amplitudes:

Smolec & Moskalik (2007)

Nonresonant amplitude equations:

$$\frac{dA_i}{dt} = \gamma_i \left(1 - \alpha_{i1}A_1^2 + \ldots - \alpha_{in}A_n^2 \right) A_i$$

Simplifying assumption: $\alpha_{i,j} \equiv \alpha$ Amplitude saturation: $dA_i/dt = 0 \Rightarrow 1 - n\alpha A_i^2 = 0$

Reduction of amplitudes:

 \bullet multi-periodic stars

Smolec & Moskalik (2007)

Reduction of amplitudes:

Smolec & Moskalik (2007)

Reduction of amplitudes:

 \bullet multi-periodic stars

Smolec & Moskalik (2007)

Reduction of amplitudes:

Smolec & Moskalik (2007)

▶ collective saturation is sufficient to explain amplitude limitation

Line-broadening problem:

- \star contributions from hundreds of modes, with different periods add up to form a line profile (*macro-turbulence*)
- \star rms macro-turbulence velocity is roughly V/\sqrt{n}
- \star this is of order of $100\,\rm km/s$ in our models for many β Cephei stars observed line broadening is smaller
- * inclusion of g-modes into saturation process may solve the problem (photospheric variations of the g-modes should be smaller than those of p-modes (calculations by WD)

White dwarfs

POLISH ACADEMY OF SCIENCES NICOLAUS COPERNICUS ASTRONOMICAL CENTER

IAU Symposium 301: Precision Asteroseismology, Wrocław, 22.08.2013

figure: J. C.-D./Stellar Oscillations

White dwarfs – mode trapping

- cause: resonance between the wavelength of the oscillation and the thickness of the composition layers
- ▶ minima in the kinetic energy of the mode, $E_{kin} = (\omega^2/2)I$

White dwarfs – mode trapping

PG 1159-035 – data from Costa et al. 2008

White dwarfs – mode trapping

PG 1159-035 – data from Costa et al. 2008

- ▶ the trapped modes are not the highest amplitude ones
- \blacktriangleright out of five $\ell=1$ trapped modes only 2 present in all data sets
- ▶ amplitudes of pulsation modes vary
- ▶ models for ZZ Ceti stars with diffusive stratification (e.g. Corsico et al. 2002, Althaus et al. 2010) show much less pronounced minima in E_{kin}

White dwarfs – pure ZZ Ceti instability strip

- result of systematic study aimed at defining the empirical IS for ZZ Ceti stars (Gianninas, Bergeron, Fontaine 2007)
- also a talk by Barbara
 Castanheira today

figure: Van Grootel et al. (2012) adapted from Fontaine & Brassard (2008)

δ Scuti stars

IAU Symposium 301: Precision Asteroseismology, Wrocław, 22.08.2013

figure: J. C.-D./Stellar Oscillations

δ Scuti stars

- \star low amplitude multi-mode pulsators
- \star high amplitude δ Sct stars (HADS), one-two modes
- ▶ only 30-50 percent of stars in the IS pulsate (Breger 1979, 2000)
- ► saturation of the instability excluded - Stellingwerf's (1980) catastrophe ($\Delta M_{\rm bol} = 2.7 \, {\rm mag}$)

figure: Chang et al. (2013)

- * Dziembowski (1982): resonant mode interaction may be an effective amplitude limiting mechanism
- ► coupling of the unstable p-mode ($\gamma_a > 0$) to a pair of high degree, linearly damped ($\gamma_b, \gamma_c < 0$) g-modes; $\sigma_a = \sigma_b + \sigma_c + \Delta \sigma$
- ► the parametric excitation starts when critical amplitude of the p-mode is exceeded (*ν* – quadratic coupling coefficient):

$$Q_a > Q_{a,c} = \sqrt{\frac{4\gamma_b\gamma_c}{\nu^2} \left[1 + \left(\frac{\Delta\sigma}{\gamma_b + \gamma_c}\right)^2\right]}$$

Steady state solution is possible:

$$Q_a = \sqrt{\frac{4\gamma_b\gamma_c}{\nu^2}(1+q^2)}, \quad Q_{b,c} = Q_a\sqrt{-\frac{I_a\gamma_a\sigma_a}{I_{b,c}\gamma_{b,c}\sigma_{b,c}}},$$

and is stable if

$$\gamma = \gamma_a + \gamma_b + \gamma_c < 0 \,,$$

$$\begin{split} &4\gamma^3(1+q^2)-(1+3q^2)\left[4\gamma_a\gamma_b\gamma_c(1+3q^2)+2\gamma^3(1+q^2)-8q^2\gamma(\gamma_a\gamma_b+\gamma_a\gamma_c+\gamma_b\gamma_c)\right]>0\,,\\ &\text{where }q=\Delta\sigma/\gamma. \end{split}$$

 \star Dziembowski & Królikowska (1985) – application to δ Sct stars

 \star low order p-modes can couple to

▶ global g-modes ($\gamma_a \ll -\gamma_{b,c}$)

- \star high order p-modes couple to
 - ▶ *inner* g-modes (large n and ℓ)

$$\gamma_a > -(\gamma_b + \gamma_c)$$

- ▶ outer g-modes (n = 1, 2)
- $\gamma_a \ll -\gamma_{b,c}, \nu \gg 1$
- ► strong coupling arises only if the radial orders of the gravity modes are close $\Rightarrow \sigma_b \approx \sigma_c \approx \sigma_a/2$
- \blacktriangleright many g-mode pairs may be excited through the parametric resonance \rightarrow probability distribution for p-mode amplitude at onset of the instability

- ► the mean value of critical amplitude exceeds 0.01 mag only for the lowest frequency modes (and is always below 0.02 mag)
- ▶ for lower frequency p-modes

▶ there is a large probability that equilibrium is stable with $Q_a \approx Q_c$ and much smaller amplitudes of the *g*-modes

- ► the mean value of critical amplitude exceeds 0.01 mag only for the lowest frequency modes (and is always below 0.02 mag)
- ▶ for lower frequency p-modes

▶ there is a large probability that equilibrium is stable with $Q_a \approx Q_c$ and much smaller amplitudes of the *g*-modes

* Dziembowski, Królikowska & Kosovitchev (1988) studied the effects of rotation, which are

▶ frequency degeneracy in m is lifted ($m_a = m_b + m_c$) and frequency spectrum of g-modes is denser – allows for precise tuning of the resonance

► changes to the growth rates (negligible), coupling coefficient and probability distribution for the coupling coefficient

probability that the parametric instability of the F mode occurs at the amplitude $\Delta R/R$ less than Q

- \blacktriangleright effects of rotation significant starting from $20\,\rm km/s$
- ► at 60 km/s probability that the instability occurs before F mode reaches 0.01 mag reduces from 0.5 to 0.1
- \blacktriangleright explains the difference between HADS and normal δ Sct stars

figures: Dziembowski, Królikowska & Kosovitchev (1988)

▶ for higher frequency p-modes

► coupled to the *inner* g-modes: equilibrium is unstable (unbounded amplitude growth

▶ coupled to the *outer* g-modes: equilibrium is most likely unstable

 \rightarrow excitation of new g-mode pairs is inevitable

δ Scuti stars: parametric resonance – dynamical solutions

figure: Nowakowski (2005)

Polish Academy of Sciences Nicolaus Copernicus Astronomical Center Nowakowski (2005)

 \star interaction with single g-mode pair

($-\gamma_{b,c} < \gamma_a$; *inner* g-modes)

► case of unbounded amplitude growth (no stable equilibrium and no stable limit cycle)

► g-mode damping is low and the pair does not manage to loose enough energy to balance the unstable mode driving

δ Scuti stars: parametric resonance – dynamical solutions

Nowakowski (2005)

- \star interaction with ensemble of g-mode pairs
- static multi-mode solution does not exist
- irregular variability of the pmode amplitude on the timescale
- ^{Ao} given by γ_a^{-1}

figure: Nowakowski (2005)

δ Scuti stars: parametric resonance – dynamical solutions

application to XX Pyx model

acoustic $\ell = 2$ mode together with an ensemble of several hundred inner g-mode pairs

Results

- mode amplitudes are too high as compared with observation even taking into account the rotation
- resonant mode coupling cannot be a dominant amplitude limiting effect in evolved δ Sct stars.
- saturation of the driving mechanism must play a role

figure: Nowakowski (2005)

δ Scuti stars: mode trapping (Dziembowski & Królikowska 1990)

- ► mode trapping significant only for ℓ = 1 frequencies of which are close to the radial mode frequencies
- trapping is significant for evolved models
- for evolved models the parametrically excited g modes are deep interior modes and hence strong interaction with modes trapped in the envelope is less likely
- \star this selection rule (mode trapping) relies only on the linear theory \rightarrow non-linear theory needed

δ Scuti stars from ground – FG Vir

δ Scuti stars from ground – 44 Tau

Lenz et al. (2008): post-MS

Lenz et al. (2010): post-MS contraction

IAU Symposium 301: Precision Asteroseismology, Wrocław, 22.08.2013

δ Scuti stars from ground – intrinsic amplitudes

figures: Lenz et al. (2008b)

δ Scuti stars from space

Excitation and visibility of high-degree modes in stars

L. A. Balona^{1,2} and W. A. Dziembowski^{2,3}

¹South African Astronomical Observatory, PO Box 9, Observatory 7935, Cape, South Africa
 ²Copernicus Astronomical Center, Polish Academy of Sciences, ul. Bartycka 18, 00-716 Warsaw, Poland
 ³Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warsaw, Poland

Accepted 1999 May 21. Received 1999 March 22

ABSTRACT

Observational evidence for excitation of non-radial modes in stars is confronted with the results of linear stability surveys for stellar models. We consider various types of pulsators on the upper main sequence as well as stars in the Cepheid strip. Our stability survey covers the whole range of spherical harmonic degrees, ℓ , where instability is found. There is fair agreement between the theoretical instability strip and the location of ζ Oph stars, but the observed and calculated periods do not agree in some stars. We suggest that either pulsation is not responsible for the ζ Oph phenomenon or else there are serious errors in mode identification in these cases. We do not find instability at long periods for early B-type stars, supporting the idea that pulsation is not responsible for the periodic variations in Be stars. The agreement between the observed and calculated periods of high-degree modes in δ Sct stars is not very satisfactory. This is attributed to problems in mode identification. We discuss unstable modes of high degree in Cepheid models as a possible mechanism for the low-amplitude radial velocities seen in some stars within the instability strip. We find, however, that the observed periods are at least a factor of 2 longer than the calculated periods. Finally, we discuss the possibility of observing modes of high degree photometrically. We suggest that a large number of high-degree modes may become detectable by future space-borne photometric missions. The confusion arising from these modes may greatly reduce the value of such observations for asteroseismology. However, they will be very important in studying the mechanism of mode selection.

Poretti et al.

Polish Academy of Sciences Nicolaus Copernicus Astronomical Center (2009)

δ Scuti stars from space – HD 50844 (by CoRoT)

- \star 1000+ frequencies identified
- \star degrees up to $\ell = 14$ (spectroscopy)
- the star is *unique* in no other *CoRoT* and *Kepler* stars such large number of frequencies are reported
 non-white granulation background noise, (< 100 of the frequencies are pmodes) (Kallinger & Matthews 2010)?

δ Scuti stars – Kepler observations (Balona & Dziembowski 2011)

- \star 1568 δ Sct stars
- \star high radial orders
- \star high- ℓ trapped modes

▶ $\ell > 12$: strongly unstable modes trapped in the envelope

 \blacktriangleright practically no δ Sct stars at the expected region

figure: Balona & Dziembowski (2011)

δ Scuti stars – Kepler observations vs. linear theory

▶ observed freq. range is significantly higher than models predict \rightarrow rotational splitting, mode identification needed

figures: Balona & Dziembowski (2011)

δ Scuti stars from space: instability strip

- more than 50% of stars in IS do not pulsate (also J. Guzik talk on Monday)
- this is not an effect of too high detection limit!

distribution of maximum amplitudes

 \star 6.8% of stars have amplitudes of 0 < A < 100 ppm. If constant stars are included (assuming they pulsate) this increases to 57.6% (cf. to 2.7% in the next bin)

 caution: KIC parameters are not accurate

figure: Balona & Dziembowski (2011)

 \rightarrow spectroscopic program akin to WD program needed

δ Scuti stars from space: mode content

- ► HD 50844 seems unique
- high mode densities only in limited frequency range
- ▶ typical max mode density $5/d^{-1}$
 - ▶ $\ell \le 4$ enough to explain such mode densities

figure: Balona & Dziembowski (2011)

Conclusions

- we do not understand mode selection in any group of the self-excited pulsators
- ▶ linear growth rates are not predictors of mode amplitude
- \star more theoretical work is needed
 - ► development of nonlinear non-radial pulsation codes (talk by F. Kupka, poster by C. Geroux)
 - ▶ studies of AEs for reliable coupling coefficients?

Conclusions

 \star spectroscopic observations are needed

 \blacktriangleright determination of basic stellar parameters ($T_{\rm eff},$ L) (also for non-pulsating stars)

▶ mode identification

 \star *Kepler* data needs to be analysed statistically with scrutiny

- ► artifacts, combination frequencies
- studies of amplitude variation are needed (mode coupling)

► distribution of mode amplitudes – can we infer the information about intrinsic amplitudes?

