Period doubling and Blazhko modulation in BL Herculis-type hydrodynamic models

Radosław Smolec

Nicolaus Copernicus Astronomical Centre

R. Smolec & P. Moskalik, submitted to MNRAS

Discovery of period doubling in BL Herculis stars of the OGLE survey. Observations and theoretical models

Smolec R., Soszyński I., Moskalik P. & OGLE, 2012, MNRAS, 419, 2407.

Fifth Kepler Asteroseismology Workshop, Balatonmaldi, 16.06.2012

Period doubling in BL Her stars

- ▶ predicted to occur by radiative hydromodels of Buchler & Moskalik (1992)
- ► caused by the 3:2 resonance between the fundamental mode and first overtone, $3\omega_0 = 2\omega_1$
- ▶ well reproduced with hydromodels computed with nonlinear convective pulsation code of Smolec & Moskalik (2008)

Modulation of pulsation in BL Her models

- ► strongly decreased eddy-viscosity
- ▶ not observed in any BL Her star
- ▶ Why bother?

Blazhko Effect in RR Lyrae stars

Amplitude and phase modulation on timescales of few to hundreds of pulsation period. Detected in nearly 50 per cent of RRab stars.

Fifth Kepler Asteroseismology Workshop, Balatonmaldi, 16.06.2012

Blazhko Effect in RR Lyrae stars

Period doubling a key to the Blazhko enigma?

- ▶ period doubling caused by 9:2 resonance ($9\omega_0 = 2\omega_9$) in hydromodels (Kolláth, Molnár & Szabó 2011)
- ▶ 9:2 resonance: a cause or an effect? \rightarrow hydromodels

▶ we cannot reproduce the amplitude modulation in hydrodynamic models (only period doubling, Kolláth, Molnár & Szabó 2011), but

► surface mode plays a dynamical role: simulations become particularly sensitive to the mixing length parameters, to the zoning and to the surface boundary condition, hence,

- ▶ it might be difficult to make a trustworthy and robust simulations
- ► Amplitude equations

$$\dot{a} = \left(\gamma_a + q_{aa}a^2 + q_{ab}b^2
ight)a + c_aa^{*8}b^2$$

 $\dot{b} = \left(\gamma_b + q_{bb}b^2 + q_{ba}a^2
ight)b + c_ba^9b^*$

Parametric study by Buchler & Kolláth, ApJ, (2011)

Hydrodynamic BL Her models with modulation of pulsation

Hydrodynamic BL Her models: single periodic pulsation

Hydrodynamic BL Her models: period doubled pulsation

Hydrodynamic BL Her models: quasi-periodic modulation

Amplitude equations

$$\dot{a} = (\gamma_a + q_{aa}a^2 + q_{ab}b^2)a + c_aa^{*2}b^2 \dot{b} = (\gamma_b + q_{bb}b^2 + q_{ba}a^2)b + c_ba^3b^*$$

$$\delta R(t) = Ae^{i\omega_a t} + Be^{i(\Gamma/2)}e^{i(3/2)\omega_a t} + h.o.t.$$

Amplitudes, A(t) and B(t), and radius reconstruction for $\Delta = 0.4$ $\Delta = 0.40$

Fifth Kepler Asteroseismology Workshop, Balatonmaldi, 16.06.2012

Amplitude equations: radius variation

- \blacktriangleright periodic modulation for $\Delta=0.4$ and $\Delta=0.8$
- \blacktriangleright quasi-periodic modulation for $\Delta=0.6$

Is it multiperiodic or chaotic behaviour?

▶ chaotic attractor (tent-like structure akin to Lorentz attractor)

- ▶ chaotic attractor (tent-like structure akin to Lorentz attractor)
- ▶ dynamics of the 3:2 (BL Her) and 9:2 (RR Lyr) resonances is very similar

Amplitude equations: modulation period

- closer to saddle slower the evolution
- modulation period and irregularities depend on the distance to saddle point

Discussion: implications for Blazhko effect in RR Lyrae stars

- radial resonance mechanism works in hydrodynamic models of BL Her stars – higher luminosity siblings of RR Lyr stars
- ▶ dynamics of the 3:2 (BL Her) and 9:2 (RR Lyr) resonances is very similar
- ▶ both periodic and irregular (chaotic) modulation present in the models
- ▶ reasonable modulation periods and amplitudes
- onset of chaotic behaviour at the vicinity of unstable single-mode fixed point (saddle)

Discussion: implications for Blazhko effect in RR Lyrae stars

Challenges:

- period doubling is always very strong, while it is rather weak in Blazhko RR Lyr stars (and in several stars the effect is not detected)
- two modulation periods additional resonance?
- nearly 50 per cent of the RRab stars display Blazhko effect – is one resonance enough?

Amplitude equations: return maps

Fifth Kepler Asteroseismology Workshop, Balatonmaldi, 16.06.2012