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Type-II Cepheids are low mass, population II stars, pulsating in the fundamen-

tal mode. They are divided into 3 classes. BL Her stars, with 1 d < PF . 4 d
and W Vir stars, with 4 d . PF . 20 d, have fairly regular light curves. Char-

acteristic feature of RV Tau stars, with PF & 20 d is period doubling effect. As

period increases, RV Tau stars display more and more irregular behavior, likely

they follow the period doubling route to deterministic chaos.

Modelling of type-II Cepheids, in particular of the most bright W Vir and

RV Tau stars is scarce. The last model survey was published by Kovács &

Buchler (1988) with purely radiative code. As effective temperature in their

models is lowered, they detect period-doubling transition to chaos, at periods

around 10 days, much too low as compared with observation. Unfortunately,

their models, and models reported here, are limited to low luminosities as dy-

namical instability prevents computation of more luminous models.

The light curves

Type-II Cepheids and their modelling

Type-II Cepheids: light curves
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Typical, I-band light curves of type II Cepheids. Period doubling is clear in the top

two RV Tau-type curves. Data from OGLE catalog (Soszyński et al., 2011).

Type-II Cepheid models: dynamical instability

 25

 30

 35

 40

 45

 50

 55

 0  100  200  300  400  500  600  700  800  900

R
/R

⊙

time (d)

The above Figure shows the variation of the radius of the outermost model shell

during the initial phase of non-linear model integration. The model rapidly ex-

pands; depending on the model the maximum radius excursion can easily reach

100 − 200% of the static radius within just a few pulsation cycles. Then, the

model contracts and finally reaches a stable limit cycle – period doubled for the

presented model (t > 600 d). For the most luminous models, i.e. for L > 600 L⊙

(M = 0.6M⊙) and L > 1000 L⊙ (M = 0.8M⊙) the model breaks down in the

initial phase. This is a physical effect not numerical one. The pulsation of the

models is driven much too strongly. Similar phenomenon was described for red

giant models (see a review by Wood 2007). Physically it may corresponds to mass

loss, which is strong in stars during the AGB phase (e.g. Zijlstra, 2006), and can

be augmented by the pulsations.

We have computed an extensive grid of type-II Cepheid models assuming

[Fe/H]=−1.0, −1.5, −2.0 (M =0.6M⊙, left to right panels in the Figure to the

right) and [Fe/H]=−1.5 (M =0.8M⊙, right-most panels). We used non-linear

convective codes of Smolec & Moskalik (2008) and considered models with

two different levels of eddy-viscous dissipation, which is the most important

amplitude limitation factor. The models assuming αm = 0.25 fairly well repro-

duce the amplitudes of the observed BL Her stars (Smolec et al. 2012). For

larger eddy viscosity parameter, αm = 0.50, the amplitudes are indeed much

lower. The level of eddy-viscous dissipation has large impact on the computed

form of pulsation, in particular on the appearance of period doubling.

An interesting property of the discussed models, well known in convective

models of red giants, is apparently peculiar behaviour of non-linear period. In

case of RR Lyr and classical Cepheid models the non-linear period is typically

longer than the linear one by up to a few per cent. Here we observe much larger

differences, that can reach up to 20%. In addition, the non-linear period can

be significantly shorter than that predicted for the static equilibrium models.

This is because of the significant rearrangement of the mean structure of the

envelope due to large amplitude, non-linear pulsation (see e.g., Wood 2007).

Model grid and model properties

Grey-shaded figure to the right shows the dispersion of maximum radii val-

ues over 1 000 pulsation cycles. In white areas we calculate single-periodic

fundamental mode pulsation. The two grey shaded domains correspond to

more complex pulsation scenarios. In the nearly vertical domain, centered at

Teff≈6100K, and existing only for models with lower eddy viscous dissipation,

period doubling is detected. This domain was revealed by Buchler & Moska-

lik (1992) who traced its origin to the 3:2 resonance between the fundamental

mode and first overtone. They predicted the existence of period doubled BL Her

stars, and indeed, first such star was discovered 20 years later (Soszyński et al.,

2011, Smolec et al., 2012).

The extent of the domain in the top right part of the HR diagram cannot be

calculated because of the dynamical instability preventing computation of the

more luminous models. Majority of the models in this domain display a period

doubled pulsation, in some period-4 pulsation is detected. This domain overlaps

with the model sequences of Kovács & Buchler (1988), in which they detected

deterministic chaos while moving towards lower effective temperatures. We do

not detect such behaviour. When we decrease the effective temperature of the

models, the pulsation amplitude drops, period doubling domain ceases and we

finally reach the red edge. The radiative calculations of Kovács & Buchler lack

the pulsation quenching mechanism at the cool side of the instability strip.

Period doubling effect

Model properties
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Peak-to-peak bolometric light amplitude of the models in limiting cycle pulsations. Over-plotted are lines of constant period and loci of some half-integer resonances. The

amplitudes are lower in models assuming larger eddy-viscous dissipation
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Fractional difference between non-linear period and linear period of the fundamental mode. The non-linear period can differ by as much as 20% from the linear period and

can be both longer (yellow-red) and shorter (blue). The models in the bottom left corner of the plots are of RR Lyr type and switched the pulsation to first overtone.
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Dispersion of maximum radii values computed over 1 000 pulsation cycles (of limit cycle pulsation). Period doubling domains are well visible. In models with increased eddy

viscosity, one of them disappears, the other shrinks.

When eddy viscosity is strongly reduced, to αm = 0.05, the models

display a wealth of dynamical behaviours characteristic to determin-

istic chaos. We have studied such behaviour along a sequence with

L = 136 L⊙, so the models are of BL Her type. Bifurcation diagram

to the right shows the possible values of maximum radii during the

pulsation, versus the model’s effective temperature. Grey bands cor-

respond to deterministic chaos. They are reached through the period

doubling cascades, well visible both from the cool and the hot side of

the computation domain. They are separated by the domains of stable,

periodic, period-k pulsation. We detected many phenomena character-

istic to chaotic systems, eg. intermittency or crises bifurcation. Read

more in Smolec & Moskalik (2014).

Deterministic chaos in hydrodynamic BL Her models

Decreasing eddy viscosity
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Periodic points and chaos. Time series (left) and first return maps, i.e. plots of

Rn+1
max vs. Rn

max (right). We find stable period-2, 3, 5, 7 (top) and 9 cycles, most of

them undergo a period doubling bifurcation. Bottom: Example of chaotic model.

Intermittency, illustrated with

third return maps, i.e. plots of

Rn+3
max vs. Rn

max. Stable period-3

cycle is born through the tangent

bifurcation. Before the bifurca-

tion, intermittent behaviour is ap-

parent, i.e. evolution of the system

is characterized by long phases

of almost periodic (period-3) be-

haviour interrupted with shorter

bursts of chaos.
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