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Abstract. We revisit a phenomenological description of turbulent thermal convection along the lines proposed

originally by Gough (1965, 1977) in which eddies grow solely by extracting potential energy from the unstably

stratified mean state and are subsequently destroyed by internal shear instability. This work is part of an ongoing

investigation for finding a procedure to calculate the turbulent fluxes of heat and momentum in the presence of

a shearing background flow in stars. In order to test and calibrate the formalism it is prudent first to compare

its predictions with existing results from what we hope are more reliable investigations, such as experiments or

numerical simulations. Here we compare the functional forms of the mean temperature profile and the distortion

of an imposed horizontal shearing flow that is induced by the Reynolds stress implied by our theory with that

of direct numerical simulations of Rayleigh-Bénard convection in air. In this contribution we present our latest

results from a nonlocal generalization of our earlier local model (Smolec, Houdek & Gough 2011).



Introduction

Convection models based on the mixing-length approach still represent the main method for computing the

turbulent fluxes in stars with convectively unstable regions. In such regions the pulsational stability of the star is

affected not only by the radiative heat flux but also by the modulation of the convective heat flux and by direct

mechanical coupling of the pulsation with the convective motion via the Reynolds stresses. Time-dependent

formulations of the mixing-length approach for radial pulsation have been proposed by, for example, Gough

(1965, 1977a) and Unno (1967). In a first step towards a generalization to nonradially pulsating stars, Gough &

Houdek (2001) and Smolec, Houdek & Gough (2011) adopted Gough’s (1977a) formulation, incorporating into

it a treatment of the influence of a shearing background flow. In this generalized framework of the mixing-length

formalism, in which turbulent convective eddies grow according to linearized theory and are subsequently broken

up by internal shear instability, there is a consequent reduction in the mean amplitude of the eddy motion, and a

corresponding reduction in the heat flux.

In this contribution we compare an extended, nonlocal version of Gough & Houdek’s convection model with the

results of Domaradzki & Metcalfe’s (1988) Direct Numerical Simulations (DNS) of Rayleigh-Bénard convection

in air in the presence of a strongly shearing background flow (see Fig. 1). Viscous terms, normally omitted in

models of stellar convection, must therefore be retained in the model equations, which significantly adds to the

complexity of the problem.

Turbulent fluxes in the presence of a shear

In Cartesian co-ordinates (x, y, z) dimensionless equations (using d and the thermal diffusion time across d as

units of space and time) describing the dynamics in a statistically stationary flow of a viscous Boussinesq liquid



confined between two horizontal planes separated by d are (e.g. Chandrasekhar 1961):

∇ · û = 0 , (1a)

[∂t + û · ∇]û = −∇p′ + σRT ′ez + σ∇2û , (1b)

[∂t + û · ∇]T ′ − βû · ez = ∇2T ′ , (1c)

where û is the total velocity field, which can be decomposed into a mean flow U = (U1, U2, 0.) and into

the turbulent velocity fluctuations u = (u, v, w), and T ′ and p′ are the Eulerian temperature and pressure

fluctuations, respectively; σ = ν/κ is the Prandtl number (with ν and κ being the kinematic viscosity and thermal

diffusivity, respectively), R is the Rayleigh number, β ≡ −dT/dz (T being the horizontal-mean temperature) is

the mean temperature gradient, and ez is the unit vector in the vertical direction. Radiative transfer is treated in

the diffusion approximation. In accordance with a local formulation, β and the shearE = (dU/dz) = (E1, E2, 0)

are at first regarded as being constant over the vertical extent of an eddy.

The pressure fluctuations in Eq. (1b) can be eliminated by taking the curl and double curl of Eq. (1b). The

resulting linearized equations can then be expanded into normal modes of the form:

w(x, y, z, t) = W (z)f(x, y)eq(t−t0) , (2a)

T ′(x, y, z, t) = Θ(z)f(x, y)eq(t−t0) , (2b)

ω3(x, y, z, t) = Ω(z)f(x, y)eq(t−t0) , (2c)

where ω3 denotes the vertical component of the fluctuating vorticity, ω = ∇×u, and q is the linear growth rate

with which the convective eddy fluctuations, created at the time t0, grow with time, t. The planform, for rolls,

f(x) = exp(iax), describes the horizontal structure of a component of the convective flow (a is a wavenumber

in the x-direction). The resulting separated equations for the eigenvalue q and the eigenfunctions W , Θ and Ω



are:
[

q + iazE1 − σ(D2 − a2)
]

(D2 − a2)W + a2σRΘ = 0 , (3a)
[

q + iazE1 − σ(D2 − a2)
]

Ω + iaE2W = 0 , (3b)
[

q + iazE1 − (D2 − a2)
]

Θ− βW = 0 , (3c)

in which D ≡ d/dz. For small amplitudes of the shear E = |E|, Eqs (3) can be solved with linear perturbation

theory about E = 0. We take it to second order in E. We adopt free-free boundary conditions, which permits

an analytical treatment. The resulting expressions for the eigenfunctions of the fluctuating temperature and

turbulent velocity field are then used to compute the turbulent fluxes in the manner of Gough (1977a).

• The expression for the vertical component of the convective heat flux is

Fc =
4

ĈΦη2σRℓ4
q̂2
[

(

q̂ + 2σ
)

(

1−
E2

Φk2
Î1

)

− E2
(

2/k4
)

Î2

]

, (4)

in which Ĉ is an uncertain constant which accounts for imperfect fluctuation correlations, k2 = a2 + (π/ℓ)2

is the total wavenumber, Φ = k2/a2 is an eddy shape parameter, ℓ the mixing length, q̂ = 2q/k2, and Î1 &

Î2 are (known) spatial integrals involving the computed eigenfunctions.

• The expression for the Reynolds stresses uw, needed for solving the mean momentum equation, is

uw =
8q2

ĈΦk2
E

(

Î4 −
1

2q̃

)

, (5)

where Î4 is a spatial integral involving the velocity eigenfunctions, and an overbar denotes horizontal average.



The mean equations and the nonlocal formulation

The equations for the mean temperature, T , and velocity, U , across the fluid layer are:

∂T

∂z
= −N + 〈Fc〉 , (6a)

∂U

∂z
=

1

σ
〈uw〉 + S , (6b)

in which 〈Fc〉 and 〈uw〉 are nonlocal expressions for the turbulent fluxes, defined by Eqs (8) below. These

equations express the conservation of the heat and momentum fluxes in terms of N and S: the Nusselt number

N (dimensionless heat flux) and the total stress, S, which are eigenvalues of the system. The convective heat

flux distorts the temperature gradient, and the Reynolds stress uw distorts the shear, and consequently T and

the x-component U of the mean flow are no longer linear functions of z.

In our nonlocal formalism the eddies of vertical extent ℓ, centred at height z0, sample the temperature gradient

over the spatial region (z0−ℓ/2, z0+ℓ/2). Furthermore, the nonlocal expressions 〈Fc〉 and 〈uw〉 are determined

from the contributions of all eddies centred between z0 − ℓ/2 and z0 + ℓ/2, e.g.,

〈Fc〉 =

∫ z0+ℓ/2

z0−ℓ/2

Fc(z)K(z − z0)dz . (7)

The averaging kernel, K, depends on the structure of the eddies. Here we follow Gough (1977b) and approximate

the kernel K by 1/2µ exp(−µ|z− z0|), considered to extend over (−∞; ∞), which leads to the following set of



second-order differential equations:

1

b2
∂2〈β〉

∂z2
= 〈β〉 − β , (8a)

1

a2
∂2〈Fc〉

∂z2
= 〈Fc〉 − Fc , (8b)

1

c2
∂2〈uw〉

∂z2
= 〈uw〉 −

1

2 + γ

[

uw(z − ζ) + γuw(z) + uw(z + ζ)
]

, (8c)

where a, b and c are potentially different values of µ, and γ is a constant of order unity. Unlike the expressions for

〈β〉 and 〈Fc〉, which are dominated by contributions from the central region of an eddy, the expression for 〈uw〉

includes two additional contributions off-centred by the distance ζ, where the horizontal velocity fluctuation, u, is

large. The parameters a, b and c control the degree of nonlocality: (a, b, c) → ∞ reproduces local behaviour.

For a given velocity difference, ∆U , (see Fig. 1) unique solutions for velocity and temperature profiles are

obtained and compared with the DNS data of Domaradzki & Metcalfe (1988).



Results

Domaradzki & Metcalfe (1988) used Direct Numerical Simulations of Rayleigh-Bénard convection in a shearing

flow (see Fig. 1) in air (σ = 0.71). They adopted R = 105, and a dimensionless velocity difference ∆U = 700

between the upper, horizontally moving, plate and the stationary lower plate. In our model computations we set

the mixing length ℓ to be α times the distance to the nearest boundary. The values of α and Ĉ were chosen

to make the modelled N (for different Rayleigh numbers) agree with the experimental determination by Rossby

(1969) for water and mercury. We chose the value 5/3 for the eddy shape parameter Φ; it maximizes the heat flux

at constant ℓ (with E = 0). The remaining nonlocal parameters a, b and c, as well as the separation parameter

ζ and parameter γ, are obtained from calibrating the model to the DNS data for ∆U = 0.

In Fig. 2 we illustrate the effect of varying the nonlocal parameter, a, on the temperature gradients, β and

〈β〉. Depending on the value of the parameter a, β can become negative in some layers of the model, producing a

temperature inversion (see right panel of Fig. 2). Such inversions have been seen in experiments (e.g. Deardorff

& Willis 1967).

In the left panels of Fig. 3 and Fig. 4 the normalized mean temperature and mean vertical velocity profiles

are plotted for four values of ∆U : 100, 200, 300 and 400. The profiles are in reasonable agreement with the DNS

data, but for rather smaller values of ∆U than the value adopted in the DNS: ∆U = 700. However, different

values of ∆U match the DNS temperature profile (∆U ≈ 300− 400) and velocity profile (∆U ≈ 200− 300).

As reported before by Gough & Houdek (2001) and Smolec, Houdek & Gough (2011), the convective heat

flux (hence the Nusselt number N) is reduced with increasing shear – see right panel of Fig. 3 – in agreement

with the DNS data and the experiments by Ingersoll (1966). The magnitude of the Reynolds stress increases with

shear (Fig. 4).



Conclusions

• The heat flux is reduced by the shear, in agreement with simulations and experimental data.

• Agreement of the functional forms of the mean velocity and temperature profiles between our model re-

sults and the DNS data is obtained only for lesser shear (smaller ∆U) in the model than in the numerical

simulations; and simultaneous agreement with both profiles is not possible with a single value of ∆U .

• There is a need for further numerical simulations to enable us to make comparisons over a much broader

range of Rayleigh and Prandtl numbers.
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Figure 1:
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Figure 1. Rayleigh-Bénard convection. We consider a plane-parallel layer of fluid of infinite horizontal extent

confined between rigid perfectly conducting boundaries at fixed temperatures. The boundaries are separated by a

distance d, the lower being hotter than the upper by ∆T . In the presence of a shear, the upper boundary moves

horizontally with constant velocity, ∆U .



Figure 2:
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Figure 2. Effect of varying the nonlocal parameter a on the temperature gradient (left panel) and on the
corresponding mean temperature profile of the nonlocal solution (right panel) for ∆U = 0.



Figure 3:
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Figure 3. Mean temperature profiles T/∆T (left panel) and nonlocal convective flux 〈Fc〉 (right panel), for
different values of ∆U . The temperature profiles are compared with DNS data (circles).



Figure 4:
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Figure 4. Mean velocity profiles U/∆U (left panel) and nonlocal Reynolds stress 〈uw〉 (right panel), for
different values of ∆U . The velocity profiles are compared with DNS data (full circles).


