
Nonradial oscillations in classical pulsators. Prospects for seismology

Wojciech Dziembowski1,2 and Radosław Smolec1
1 Nicolaus Copernicus Astronomical Center, Warsaw, Poland
2 Warsaw University Observatory, Warsaw, Poland

Excitation of non-radial modes in classical pulsators was predicted nearly 40 years ago (Dziembowski 1977,

Osaki 1977). However, only recently, the prediction has been confirmed with the detections of a secondary

periodicity at Px ∈ (0.60, 0.65)P1O in a significant fraction of RRc stars and 1O Cepheids (eg. Gruberbauer

et al. 2007, Soszyński et al. 2010, Netzel et al. 2015). In the Petersen diagram – Fig. 1 – these variables

form separate sequences. Interestingly, in many stars frequency peaks at 1/2νx are also observed and were

initially interpreted as sub-harmonics – manifestation of period doubling of the additional mode (Moskalik

et al. 2015).

In Dziembowski (2016) we presented a new interpretation, in which the signal at 1/2νx corresponds to p0
modes of moderate degrees, ℓ = 7, 8, 9, while the typically higher signal at νx is its harmonic. We call these

objects, respectively, 1On Cepheids and RRcn stars. In the latter, we do not see the ℓ = 7 signals. Instead,

we do see the ℓ = 8 + 9 combination peaks. The secondary peaks are often broad but particularly those at

1/2νx – see Fig. 2, which may be in part attributed to the excitation of p0 modes with the same ℓ but different

azimuthal degree, m. We see here the chances for measuring the mean rotation rates in stellar envelopes once

suitable data are available.

Data and a new interpretation
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Fig. 1. Petersen diagram for RR Lyr stars and classical Cepheids.
In stars marked with filled symbols, signal at 1/2ν

x
was detected

(from Smolec & Śniegowska 2016).

 0
 1
 2
 3
 4
 5

-0.08 -0.04  0  0.04  0.08
ν − νx

OGLE-SMC-CEP-3944A (mmag)

 0
 1
 2
 3
 4
 5

-0.08 -0.04  0  0.04  0.08
ν − 0.5νx

Fig. 2. Illustration of typical structure of frequency peaks
detected at ν

x
(top) and at 1/2ν

x
(bottom).

We consider pulsation in slowly rotating spherical envelopes. Then the surface distortion caused by the

excitation of the ℓ-degree multiplet is given by:
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where P
j=|m|
ℓ is the Legendre function, normalized in such a way that each of the ǫ-s represents contribu-

tion to the r.m.s. of the distortion. Cℓ is the Ledoux constant and Ω is the rotation frequency. At the level of

linear theory, ǫ-s and the respective phases, α-s, remain arbitrary. The associated bolometric flux variations

are given by:
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where the complex coefficient f is obtained directly from linear non-adiabatic calculations and δRℓ,f is

given by the expression same as (1) but with all the phases shifted by arg(f ). Given f , the variations in

specified pass-band may be found from tabular data on the static plane-parallel atmosphere models. Within

the linear approximation, calculations of stellar magnitude variations seen by the inertial observer yield

Mℓ,1 ≈ bℓ,I
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Above, δRℓ and δFℓ should be evaluated at the observer’s coordinates and bℓ,I is disc averaging factor

weighted with limb-darkening function. Its ℓ dependence is illustrated in Fig. 3. It rapidly drops at low ℓ
values. At higher ℓ, the decline is slower. Asymptotically bℓ,I∼ℓ−1/2 for even ℓ and bℓ,I∼ℓ−3/2 for odd ℓ.
Amplitude of the harmonics. The most obvious and likely dominant effect arises from the non-linearity

of the flux-radius relation. The quadratic effects give rise to spherically symmetric flux variations at the

harmonic frequencies. The resulting magnitude variations are given by:

Mℓ,2 = a2

(

δRℓ

R

)2

, (4)

where the value of a2 may be estimated from observational data and/or nonlinear models of radial pul-

sation. From eq. (1):
(
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∑
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ǫmp ǫmr cos(αmp + αmr − 2ωℓt). (5)

The most important advantages of the signal at harmonic are:

• lack of reduction of the observable amplitude caused by the averaging. In contrast, the peaks at mode

frequency suffer from averaging and are detected preferentially at even ℓ (Fig.1)

• all modes, regardless of m, contribute only to 2ω0, leading to narrower peaks. The mode frequency is

thus more accurately determined from the harmonic.

Why data on the harmonics are superior
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Fig.3. Disc averaging

factor as a function of

mode degree, ℓ.

The largest sample of 138 1On Cepheids was detected in the Small Magellanic Cloud

(Soszyński et al. 2010) and we focus on their modelling. The observed period ratios are

easily reproduced with metallicities covering the range contemplated for the SMC – Fig. 4.

The models follow two extreme M − L relations derived from evolutionary calculations of

Georgy et al. (2013). The low M /high M models correspond to the lowest/highest mass

allowed at a given luminosity in the center of the IS. The models leave no doubt regarding

assignment of ℓ to the three sequences: ℓ = 7 for the top sequence, ℓ = 8 for the middle

sequence and ℓ = 9 for the bottom sequence. For the SMC we benefit from the precisely

determined distance to the system, which allows us to compare the observed and calculated

reddening free magnitude, WI – Fig. 5.

Considering period ratios, Fig. 4, low-mass models clearly fit the data better; metal abun-

dance hardly matters. The low-mass models fit also better the P − L diagrams, Fig. 5. The

estimated masses and luminosities increase as we move from the bottom, ℓ = 9 sequence

(M≈2.4− 2.7M⊙, logL/L⊙≈2.55− 2.7), to the top, ℓ = 7 sequence (M≈3.3− 4.0M⊙,

logL/L⊙≈3.15− 3.3). Such models correspond to the first crossing of the instability strip.

According to current models, masses are too low for the 2-nd and 3-rd crossing to occur.

We see a conflict with evolutionary models here, as incidence rate of 1On Cepheids is too

high to explain all these object as 1-st crossers.

Non-radial modes in classical Cepheids
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Fig. 4. Petersen diagrams for 138 1On Cepheids from the SMC confronted with

model predictions for ℓ = 7 (blue), 8 (green) and 9 (red) modes. At each degree

two lines delineate the IS boundaries.
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Fig. 5. Location of 138 1On Cepheids from the SMC in the period-luminosity

(top) and color-magnitude (bottom) diagrams confronted with the model predic-

tions. Stars of the top, bottom and middle sequence are plotted with blue, green

and red symbols, respectively.

The RRcn pulsation must be common – 14 out of 15 RRc stars observed from space show

this form of pulsation (eg. Moskalik et al. 2015, Molnár et al. 2015). The largest sample of

RRcn stars, more than 260, was discovered in the ground-based OGLE observations of the

Galactic bulge (Netzel Smolec & Moskalik 2015a,b). Fig. 6 confronts the Petersen diagram

for RRcn stars with pulsation models. The top and the bottom sequences are assigned

with ℓ = 8 and ℓ = 9, respectively. We note that in stars of the top sequence, signal

at 1/2νx is preferentially detected (Fig. 1), in agreement with our interpretation (Fig. 3).

The middle sequence – points marked with the open circles – is interpreted as due to ν8 +
ν9 frequency combination peak (fully confirmed by the observations for stars with three

frequency peaks). At logP1O in the (−0.55,−0.5) range, containing the majority of stars,

the best fits are achieved for M close to 0.55M⊙, Z close to 0.002 and logL/L⊙ close to

1.5. At shorter(longer) periods models of higher(lower) Z and lower(higher) L fit better,

which agrees with the well known trend of the L(Z) relation.

Stars marked with crosses in Fig. 6 simultaneously pulsate in the radial fundamental mode

(RRdn stars). The third pulsation mode puts additional constraint on the models and allow

seismic determination of basic star’s parameters. Modelling of radial modes period ratio is

presented in Fig. 7. Analysis of Figs. 6 and 7 points that RRdn stars must be massive and

metal poor.

Non-radial modes in RR Lyrae stars
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Fig. 6. Petersen diagram for RRcn stars confronted with pulsation models extend-

ing over a range of luminosities and with masses (0.55M⊙, 0.75M⊙) and metallic-

ities (0.005, 0.0004) covering the range expected for RR Lyr stars.
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Fig. 7. Petersen diagram for two radial modes in RRdn stars. Model parameters

are exactly the same as in corresponding panels of Fig. .6.
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