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Abstract. We revisit a phenomenological description of turbulent thermal convection along the lines

proposed originally by Gough (1965, 1977a) in which eddies grow solely by extracting energy from the unstably

stratified mean state and are subsequently destroyed by internal shear instability. This work is part of an ongoing

investigation for finding a procedure to calculate the turbulent fluxes of heat and momentum in the presence of

a shearing background flow in stars. In order to test and calibrate the formalism it is preferable first to compare

its predictions with existing results of hopefully more reliable investigations, such as experiments or numerical

simulations. Gough & Houdek (2001) have already indicated how shear in a plane Couette flow influences

both the growth and annihilation rates of the convective eddies, thereby reducing the Nusselt number at fixed

Rayleigh number, in agreement with experiments by Ingersoll (1966) and numerical simulations by Domaradzki

& Metcalfe (1988). Here we compare the functional form of the temperature profile implied by our theory with

that of the numerical simulations, and also the distortion of the shear produced by the Reynolds stress.



Introduction

Convection models based on the mixing-length approach still represent the main method for computing the

turbulent fluxes in stars with convectively unstable regions. In such regions the pulsational stability of the

star is affected not only by the radiative heat flux but also by the modulation of the convective heat flux and

by direct mechanical coupling of the pulsation with the convective motion via the Reynolds stresses. Time-

dependent formulations of the mixing-length approach for radial pulsation have been proposed for example,

by Gough (1965, 1977a) and Unno (1967). In a first step towards a generalization to nonradially pulsating

stars, Gough & Houdek (2001) adopted Gough’s (1977a) formulation, incorporating into it a treatment of

the influence of a shearing background flow. In this generalized framework of the mixing-length formalism,

in which turbulent convective eddies grow according to linearized theory and are subsequently broken up by

internal shear instability, there is a consequent reduction in the mean amplitude of the eddy motion, and a

corresponding reduction in the heat flux. In its simplest form, the generalization of the formalism requires

the explicit introduction of no new parameters. Consequently, the reduction in the heat flux predicted can be

compared with experiment to provide an additional calibration of the formalism.

In this contribution we compare an extended version of Gough & Houdek’s convection model with the results

of Domaradzki & Metcalfe’s (1988) Direct Numerical Simulations (DNS) of Rayleigh-Bénard convection in air

in the presence of a strongly shearing background flow (see Fig. 1). Viscous terms must therefore be retained

in the model equations, which significantly adds to the complexity of the problem.

Turbulent fluxes in the presence of a shear

In Cartesian co-ordinates (x, y, z) dimensionless equations (using d and the thermal diffusion time across d

as units of space and time) describing the dynamics in a statistically stationary flow of a viscous Boussinesq



fluid confined between two horizontal planes separated by d are (e.g. Spiegel & Veronis 1960):

∇ · û = 0, (1a)

[∂t + û · ∇]û = −∇p′ + σRT ′ez + σ∇2û, (1b)

[∂t + û · ∇]T ′ − βû · ez = ∇2T ′. (1c)

where û is the total velocity field, which can be decomposed into a mean flow U = (U1, U2, 0.) and

into the turbulent velocity fluctuations u = (u, v, w), and T ′ and p′ are the Eulerian temperature and

pressure fluctuations, respectively; σ = ν/κ is the Prandtl number (with ν and κ being the kinematic viscosity

and thermal diffusivity, respectively), R is the Rayleigh number, β ≡ −dT/dz − g/cp (T being the mean

temperature, cp the specific heat at constant pressure and g the acceleration due to gravity) is the superadiabatic

lapse rate, and ez is the unit vector in the vertical direction. Radiative transfer is treated in the diffusion

approximation.

In accordance with a local formulation in the Boussinesq approximation, in which β is regarded as constant,

we assume for the rectilinear shearing flow (i.e., plane Couette flow) a constant shear E

E =
dU

dz
= (E1, E2, 0). (2)

The pressure fluctuations in Eq. (1b) can be eliminated by taking the curl and double curl. The resulting

linearized equations can then be expanded into normal modes of the form,

w(x, y, z, t) = W (z)f(x, y)eq(t−t0) , (3a)

T ′(x, y, z, t) = Θ(z)f(x, y)eq(t−t0) , (3b)

ω3(x, y, z, t) = Ω(z)f(x, y)eq(t−t0) , (3c)



where ω3 denotes the vertical component of the fluctuating vorticity, ω = ∇×u, and q is the linear growth rate

with which the convective fluctuations of an eddy, created at the time t0, grow with time, t. For convenience

we adopt a complex notation, writing the planform, for rolls, as f(x) = cos ax + i sin ax, to describe the

horizontal structure of the flow. Here a is a wavenumber in the x direction. The resulting separable equations

for the eigenvalue q and the eigenfunctions W , Θ and Ω are:
[
q + iazE1 − σ(D2 − a2)

]
(D2 − a2)W + a2σRΘ = 0 , (4a)

[
q + iazE1 − σ(D2 − a2)

]
Ω + iaE2W = 0 , (4b)

[
q + iazE1 − (D2 − a2)

]
Θ − βW = 0 , (4c)

in which D ≡ d/dz. For small amplitudes of the shear E, Eqs (4) can be solved with linear perturbation

theory about E = 0. We take it to second order in E. We adopt free-free boundary conditions, which permits

an analytical treatment. The resulting expressions for the eigenfunctions of the fluctuating temperature and

turbulent velocity field are then used to compute the turbulent fluxes in the manner of Gough (1977a). Note,

that in a local formulation for a Boussinesq fluid the shear is assumed to be constant over the vertical extent

of an eddy, as also is the superadiabatic lapse rate β.

• The expression for the vertical component of the convective heat flux is

Fc =
k6Φ

2Ĉ
[
Φk2 + E2Î1

]
σR

q̂2
[
(q̂ + 2σ) − E2Î2

]
, (5)

in which Ĉ is a constant, k2 = a2 + (π/	)2 is the total wavenumber, Φ = k2/a2 is an eddy shape

parameter, 	 the mixing length, q̂ = 2q/k2, and Î1 & Î2 are (known) spatial integrals involving the

computed eigenfunctions.



• The expressions for the Reynolds stresses ρw2 and ρuw are

ρw2 =
16q2

Ĉ
[
Φk2 + E2Î1

]
(1

2
+ E2Î3

)
, (6a)

ρuw =
16q2

Ĉ
[
Φk2 + E2Î1

]E2Î4 , (6b)

where Î3 and Î4 are spatial integrals involving the velocity eigenfunctions, and a horizontal bar denotes

horizontal average.

Mean equations

The sum of the radiative and convective fluxes is independent of z. In our dimensionless formulation it is equal

to the Nusselt number (dimensionless heat flux) N of the layer:

N = Fr(z) + Fc(z),

= β + βad + Fc(z),
(7)

where βad = g/cp. This is an equation for the mean temperature T . It is solved simultaneously with the

horizontal mean momentum equation
d

dz
ρwu − σ

d2U

dz2
= 0 , (8)

where U = |U |, N being an eigenvalue. Note that the Reynolds stress ρwu distorts the shear, and consequently

the x-component U of the mean flow is no longer a linear function of z [see Eq. (2)].



Results

Domaradzki & Metcalfe (1988) used Direct Numerical Simulations of Rayleigh-Bénard convection in a shearing

flow (see Fig. 1) in air (σ = 0.71). They assumed a Rayleigh number R = 105, and a dimensionless velocity

difference ΔU = 700 between the upper, horizontally moving, plate and the stationary lower plate. In our

model computations we set the mixing length 	 = α times the distance to the nearest boundary. The values

of α and Ĉ (see Eqs 5 & 6) were chosen to make the modelled N (for different Rayleigh numbers) agree with

the experimental determination by Rossby (1969) for water and mercury. We chose the value 5/3 for the eddy

shape parameter Φ; it maximizes the heat flux at constant 	 (and E = 0).

In Fig. 2 the normalized mean vertical velocity profiles, U/ΔU , are plotted for four values of ΔU : 50, 100,

150 and 200. Flow in the y direction is uninfluenced by the aligned rolls. The corresponding shear profiles,

E = |E|, are illustrated in Fig. 3, and the mean temperature profiles are displayed in Fig. 4. The mean

velocity profiles (Fig. 2) are in reasonable agreement with the DNS data, but for smaller values of ΔU in

our model computations. As expected, the shear (Fig. 3) is large and constant in the radiative boundary

layers, where the velocity and temperature profiles vary linearly with height. The extent of the radiative zones

increases with ΔU .

The modelled temperature profiles are in poorer agreement with the DNS data. Best agreement with the

DNS data for the Nusselt number, N , which is equal to the slope of the temperature profile in the radiative

zones (see Eq. 7), is obtained with ΔU = 150. Fig. 5 illustrates the corresponding heat flux (solid curve)

together with the result obtained without shear (ΔU = 0; dashed curve). As reported before by Gough &

Houdek (2001), the convective heat flux (hence the Nusselt number N) is reduced with increasing shear, in

agreement with the DNS data and the experiments by Ingersoll (1966).



Conclusions
• The heat flux is reduced by the shear, in agreement with simulations and experimental data.

• Agreement of the mean velocity and temperature profiles between model results and DNS data is obtained

only for smaller shear values (ΔU values) in the model calculations.

Two factors may be responsible for the discrepancy in the values of ΔU :

• In order to treat the model equations analytically, we adopted free-free boundary conditions, whereas rigid

boundary conditions were used in the simulations. This may account for up to a factor of about three in

the ΔU differences between the model (ΔU=150) and simulation (ΔU=700) results.

• Nonlocal effects may also contribute to the remaining differences between the model results and DNS data

(e.g. Tooth & Gough 1988). We therefore plan to extend our local model in the manner of Gough (1977b)

to accommodate nonlocal behaviour. Then the convective fluxes of heat and momentum will no longer

vanish in the (locally) stable boundary layers.
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Figure 1:
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Fig. 1. Rayleigh-Bénard convection. We consider a plane-parallel layer of fluid of infinite horizontal extent
confined between rigid perfectly conducting boundaries at fixed temperatures. The boundaries are separated

by a distance d, the lower being hotter than the upper by ΔT . In the presence of a shear, the upper boundary
moves horizontally with constant velocity, ΔU .



Figure 2:
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Figure 2. Mean velocity profiles, U/ΔU , for different ΔU , compared with DNS data.



Figure 3:
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Figure 3. Dimensionless vertical shear profiles, E(z), for different ΔU .



Figure 4:
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Figure 4. Mean temperature profiles, T/ΔT , for different ΔU , compared with DNS data.



Figure 5:
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Figure 5. Radiative and convective fluxes with (ΔU = 150; solid lines) and without (ΔU = 0; thin dashed
lines) shear.


