
  

Detectors and Data
(Day 08)

(MegaCam CCD Mosaic, Credit: Canada-France-Hawaii Telescope / 2003)



  

Today

1.CCDs

2.Signal-to-noise

3.Data processing

(Severe Fringing Pattern in a CCD image, 
Credit: McLean 2008)



  

Detectors
(mostly CCDs)



  

Types of detectors

(Credit: ESO)

● The material interacts with light in a 
coherent or incoherent way

● Coherent: phase sensitive, 
response to the electric field 
strength (far infrared and radio)

● Incoherent: respond to the energy 
of the photon

➔ Photon (quantum) detectors: 
photons interact with electrons

➔ Thermal detectors: photon 
energy heats up the material 
(small sensitivity, slow response, 
broad spectral range)

(Kitchin 2003)



  

Semiconductors

(Credit: ESO)

● When atoms come together to form a crystal, 
the outer electrons interact to bind the atoms

● The electrons are shared, the levels split

● With many atoms, a band is formed

● Valence band: inner filled energy levels

● Conduction band: higher energy levels 
where electrons are free to move under the 
influence of an electric force field

● Bandgap: minimum energy needed to 
promote electrons between valence and 
conduction band

● Extrinsic (or doped) semiconductors have 
impurity atoms to produce intermediate 
energy levels within the  gap

(McLean 2008)



  

(Credit: ESO)

(McLean 2008)



  

(Credit: ESO)

(McLean 2008)



  

Charge-coupled devices

(Credit: ESO)

● Invented by Willard Boyle & George Smith in 
1969 (for use as computer memory) at the 
Bell telephone laboratories

● They were jointly awarded half of the Nobel 
prize of Physics in 2009 for this discovery

● Dominate optical astronomy since 1980s

➔ Linear response

➔ Large dynamic range

➔ High quantum efficiency

➔ Two-dimensional arrays

(McLean 2008)



  

Quantum efficiency

(Credit: ESO)

● Quantum efficiency: ratio between 
the number of detected photons and 
the number of incident photons



  

Linearity

(Credit: ESO)



  

Charge storage

(Credit: ESO)

(McLean 2008)

● Semiconductor material 
(Si) covered with an 
insulating layer (SiO

2
)

● Metal electrode on the 
top

● Voltage applied to create 
a depletion region

● Photon crosses the 
insulating layer, releases 
electron in the Si

● Electron attracted to the 
electrode (stop at the 
insulating layer)

● And so on



  

(Credit: ESO)

(Kitchin 2003)



  

Reading out the signal

● Rows are moved to a separated 
region (the output or serial 
register)

● From where each pixel is sent 
to the place where the signal is 
measured (output amplifier) 

● Main CCD area: parallel 
register

● Reading is done pixel by pixel

● Can take 30-60s

(Howell 2006)



  

Reading out the signal

● Rows are moved to a separated 
region (the output or serial 
register)

● From where each pixel is sent 
to the place where the signal is 
measured (output amplifier) 

● Main CCD area: parallel 
register

● Reading is done pixel by pixel

● Can take 30-60s

● Efficiency > 99.999%

● Some CCDs have more than 1 
output register

(Credit: Hamatsu)



  

Clocking a three-phased CCD

(Howell 2006)



  

Readout speed, gain and binning

(Credit: ESO)

● Some properties might be adjustable:

● Readout speed: faster readout increase the 
readout noise

● Gain: conversion between electrons and 
electronic units (ADU)

➔ Bright objects in low gain (more electrons 
into one ADU)

➔ Faint objects in high gain (fewer electrons, 
signal far from saturation)

➔ Digitization noise: conversion is rounded to 
integer. High gain produce more ADUs, 
reducing rounding problems

● On-chip binning: reduce resolution, 
increase S/N before adding readout noise (McLean 2008)



  

Readout noise and clocking frequency

(Credit: ESO)

(Credit: e2v; CCD42-90 Scientific CCD Back-illuminated, 2048 x 4612 Pixels)

https://www.teledyne-e2v.com/shared/content/resources/untitled%20folder/CCD42-90.pdf


  

Thinned, back-illuminated CCDs

(Credit: ESO)

● The electrodes can absorb 
radiation, particularly in the blue

● Solution: illuminate from the 
back!

● CCDs used to be thick (~300 μm)

(depletion region ~10 μm)

● Too large region for the electrons to 
travel

● Solution: thin the CCD to ~15 μm 

● Great sensitivity in the blue, but 
fragile and prone to bending

● Also prone to fringing (soon)
(Garnir & Lefèbvre 2005)



  

Thinned, back-illuminated CCDs

(Credit: ESO)

(Lena et al. 2012)

● With a thin layer of antireflection coating on the backside (see Lesser 1994)



  

Surface channel, Buried channel

(Credit: ESO)

● When electrons are stored and 
transferred at the surface of the Si 
layer: surface channel CCD

● But the surface layer and edges of 
electrodes are irregular

● Charges might get trapped

● Add n-type layer on top of a p-type 
layer (n-type usually Si doped with 
phosphorus, where P has valence 
electrons than Si, donating them to 
the conduction band)

● The material electrons repel the 
photoelectrons

● The photoelectrons accumulate in a 
“buried channel”

(McLean 2008)



  

Frame transfer CCD

(Credit: ESO)

● One type of solution for not loosing exposure 
time with read out

● Large CCD divided into two equal parts

● One is exposed, the other hidden under a 
mask

● After exposure, the charges are quickly 
moved to the hidden area

● The exposed area is quickly ready for a new 
observation

● The transfer area can then be slowly read-out 
in the usual way

(Credit: Hamatsu)



  

Saturation and Blooming

(Credit: ESO)

● There is a limit of the charges that a pixel can 
hold (saturation level)

● Buried channel CCDs saturate earlier than 
surface channel ones

● But if new photons arrive creating new 
electrons, the pixel might “bloom” and bleed 
charges up and down the column

● This can be a problem if there is a bright 
object in the field you are observing

● Anti-blooming gates can be added to the 
CCD, so the charges are drained instead of 
bleeding

● Some pixel area is lost, gaps appear in the 
spatial coverage, and the pixel well is lower

(Howell 2006)



  

Dark and operation temperature

(Credit: ESO)

● Dark current: just because of the thermal 
properties, electrons can be promoted to the 
conduction band, creating spurious signal

● When the observation is readout, dark is just 
part of the signal (can not be separated)

● At room temperatures, it can reach 100 000 
electrons/px/hour (comparable ~150 000 
electrons storage capacity)

● Can be reduced by cooling down the CCD

● Using liquid nitrogen (77-220 K)

● For a cooled CCD, typical values of dark can 
range from <1 to 3-4 electrons/px/hour

(McLean 2008)



  

Orthogonal Transfer CCDs

(Credit: ESO)

● Has the ability to move 
charges in both directions

● Four electrodes define a pixel

● Two triangular in the centre, 
and two rectangular

● The rectangular ones act to 
separate the pixels

● Operation mode is more 
complex

● Used to help following the 
centroid of an image, allowing 
quick readout when it moves 
in the field

(Howell 2006)
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Questions?

(Credit: Shutterstock)



  

The Signal
● When using a CCD for our observations, 

we are counting photons

● Signal: The number of photons detected 
in a given time interval

(Or better, electrons, inside each pixel)

● If the events happen with a constant 
mean rate, 

● And the events in one interval of time 
are independent from those in another 
interval of time

● Then the signal (S) is expected to follow 
a discrete Poisson distribution

● The noise (standard deviation) is N = 
sqrt(S)

(Credit: McLean 2008)



  

The Noise
● The “counting noise” is not the only 

source of noise

● The following noise sources are normally 
also taken into account:

● There is background signal with its own 
“background noise”

(the background signal can be 
corrected)

● There is the read-out noise from the 
CCD (~2-5 electrons rms)

● The dark current noise

● And other sources, depending on what 
you are doing

(Credit: Bely 2003)



  

The Signal to Noise ratio
● Compares the signal to the fluctuation, in 

units of standard deviation

● S/N or SNR

● The S/N is interpreted from a Gaussian 
point of view

● S/N = 1: 68% chance the signal is real, 1 
chance in 3 that it is not real

● S/N = 3: 99.7% of real, 3 in 1000 its not 
real (3 sigma detection)

● But are we ever sure the noise is well 
characterized?

● S/N = 5: less than 1 in 105 chance the 
signal is not real



  

If S/N = 5 is so great,
do we ever need higher?

● Yes!

● It all comes down to what is it you are trying to measure



  

S/N and Equivalent Widths
● For example, if measuring the “area” (equivalent 

width) of an absorption line

● Cayrel (1988) formula gives:

σ
EW

 ~ 1.6 * sqrt(FWHM * dw) / SNR

(FWHM is the size of the resolution element; dw is 
the size of the pixel in the detector; SNR is 
measured at the continuum)

● For R = 50000 at 5000 A, FWHM = 0.1 A. For dw = 
0.033 A (sampling of 3 px) and SNR = 100, the 
error is 1mA. 

● So the 5-sigma detection happens for a weak line 
of ~ 5 mA.

(Credit: Magrini et al. 2021)



  

S/N and magnitudes

(Credit: Mike Bolte)



  

The S/N equation

● N
* 
= Total number of photo-electrons 

collected from the source within n
pix

● N
S
 = Total number of photo-electrons 

collected from the sky (background) per pixel

● N
D
 = Total number of dark current electrons 

per pixel

● N
R

2 = Total number of electrons per pixel 
from the read out (read out noise is usually 
given as RMS)

● n
pix

 = number of pixels
(Credit: Astrobites)



  

The S/N equation, expanded
● The equation in the previous slide applies for a 

typical well behaved CCD, for a well sampled not 
faint source

● More complicated expressions might be needed:

● (1 + n
pix

/n
B
) is to take into account errors introduced 

in the estimation of the background (Merline & 
Howell 1995)

● n
B
 = the number of pixels used to estimate the 

background 

● Last term = error introduced by the digitization noise 
within the A/D converter (Merline & Howell 1995)

(Credit: Eversberg & Vollman 2015)



  

Limiting cases

● Bright source: N
*
 >> npix(N

S
+N

D
+N

R
2)

                                 or                                          (t = exposure time, R
*
 = photon rate)

● Background limited:

(When the target is weak and background dominates the noise. And only if thermal 
emission and detector noise have been minimized)

● One needs either a larger telescope, improved image quality (adaptive optics), or avoid 
 strong background (e.g., strong airglow lines)



  

Limiting cases
● Detector noise limited:

(S = photon rate from the source; I
d
 from the dark current, R

n
 is the read out noise) 

● Source and background signals are faint

● Noise of the detector dominates

● Can be the case in high-resolution spectroscopy (for higher resolutions, less photons 
arrive at a given pixel)

● S/N increases linearly with time, until the signal is large enough that its fluctuations are 
larger than R

n

● Integration times should be as long as possible



  

Adding, subtracting, dividing images
● Two images of S/N = 100 do not make one image of S/N = 200! (S/N’ ~ 141)

● If adding two images (or subtracting, e.g. subtracting a background frame)

(so we want the error in the background frame to be as small as possible)

● If dividing two images (e.g., flat field as we will see soon)

(so we want the signal in the dividing image to be as high as possible)



  

Exposure Time Calculator
● Each instrument at the VLT has its own exposure time calculator

● This tool will help you to estimate the exposure time you need to reach your desired S/N

● Here a link to the UVES ETC:

● https://www.eso.org/observing/etc/bin/gen/form?INS.NAME=UVES+INS.MODE=spectro

https://www.eso.org/observing/etc/bin/gen/form?INS.NAME=UVES+INS.MODE=spectro
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Questions?

(Credit: Shutterstock)



  

Data reduction

(Credit: Durham Data Reduction Course)

https://astro.dur.ac.uk/~knpv27/pg_dr_course/pg_dr_imaging.html


  

Bias and overscan

(Credit: ESO)

● The empty, non-exposed CCD produces a 
reading for each pixel

● It would be a fluctuation around zero, but 
storing negative numbers need one bit 
(decreasing the storage space)

● To avoid that, set up with a positive offset 

● This is the bias level

● Several bias frames (zero exposure) to 
reduce the readout noise, and preserve 
coherent noise and pixel-to-pixel variation

● The mean bias is subtracted from all images

● Or the overscan can be used for a typical 
“pedestal” level (pseudo-columns generated 
by the electronics)

(McLean 2008 – Clean bias showing no structure)



  

Dark frames

(Credit: ESO)

● CCD is not exposed, but integration time is 
equal to that of the science image

(not always the dark is linear)

● For collecting the dark current signal

● For many modern CCDs, dark is very low and 
usually ignored

● Dark images also contain the bias (so one 
can consider skipping bias correction)

● Averaging together multiple dark frames is 
the best to reduce noise (but not always 
practical)

● Dark current is more significant for infrared 
arrays

(Howell 2006 – Dark frame showing non uniform level)



  

Flat fielding

(Credit: ESO)

● Pixel-to-pixel variations in quantum efficiency 
exist (to a few percent)

● If not corrected, it leaves additional noise on 
the images

● Flat field frame is a frame with very high S/N 
obtained uniformly illuminating the CCD

● Also help to correct non-uniform illumination 
of the detector itself

● Frames are needed for each filter, wavelength 
region, or instrumental setup used for science

● Several frames should be averaged together 
to reduce noise

(Howell 2006 – Flat field frame with dust affecting the
illumination)



  

Flat field variations

(Credit: ESO)

● Flat-fielding: tricky and hardly ever done perfectly

● Ideally, uniform illumination of every pixel with a 
source of same spectral response of the object

● Dome flat: illuminate a screen inside the dome

● Twilight flat: image dawn or dusk sky

● Sky flat: image a dark night area

● Lamp (projector) flat: a high intensity lamp 
illuminates the slit (for spectroscopy)

● Concerns: 1) Uniform illumination to 0.1% is hard; 
2) Pixel-to-pixel variations are λ dependent 
(twilight and lamps have their own spectral 
distribution); 3) Sky flats can take a long time to 
integrate (and we’d like several) (Credit: Terry White)

https://www.cloudynights.com/topic/685287-how-to-build-a-dome-flat-field-system/


  

Fringes

(Credit: ESO)

● Fringes caused by interference of light reflected 
within the CCD

● May occur: in the red part of the optical spectrum; 
when using narrow-band filters; observing strong 
narrow emission lines

● And it might be quite variable

● Fringing from nigh sky emission lines will not 
appear in dome or twilight flats

● Sky fringe frame can help (but is time consuming)

● Neon lamp, with emission lines, flat fields (see 
Howell 2012) 

● New CCDs with anti-reflection coating have 
reduced the problem

(Howell 2006; GMOS, z’ filter, @8800 A )



  

Bad pixels

(Credit: ESO)

● Older CCDs could be prone to 
several cosmetic defects

● Dead pixels, hot pixels, 
blocked columns

● Bad pixel map used for 
interpolation

● Dithering during observations 
to filter out the problems during 
reduction

(McLean 2008)



  

Sky background and cosmic rays

● For photometry, you can estimate the 
sky background in the image and 
remove from the object

● For spectroscopy, the long slit also 
takes a sky background spectrum

● Fibers can also be allocated to the sky

● Cosmic-rays can hit the CCD and leave 
behind huge numbers of electrons

● Its recommended to take at least three 
images to be able to identify cosmic ray 
hits

● There are cleaning algorithms that make 
a very good job of removing hits

(Massey & Hanson 2013)



  

Additional calibrations

● For spectroscopy: 

➔ wavelength calibration (e.g. ThAr 
lamps); 

➔ radial velocity standards; 

➔ radial velocity calibration lamps; 

➔ telluric standards; 

➔ flux standards

● For photometry: 

➔ flux standards

● Always check the instrument manual 
to know about the calibration needs 
and possibilities 

(Credit: ESO)



  

Data formats

● FITS (Flexile Image Transport 
System)

● FITS is the widely used (old and 
ackward) standard

● Can be made of several 
extensions, each with a header and 
data

● Data can be binary tables or 
images

● Several limitations on sizes and 
rules for format (see Pence et al. 
2010)

● Alternatives: "HDF" (hierarchical 
data format)
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Questions?

(Credit: Shutterstock)



  

Photomultipliers

● Once widely used for photometry; 
still used in neutrino and cosmic-
ray detectors (Cherenkov light)

● One aperture (one pixel)

● Each photon detected as a burst

● Photon releases one electron in 
the cathode; accelerated in the 
electric field

● The it strikes a secondary emitter 
where secondary electrons are 
emitted

● Final pulse may contain 106 
electrons for each photon

(Kitchin 2003)



  

Photomultipliers

(Kitchin 2003)



  

Micro channel plate

● Multi-Anode Micro-channel Arrays 
(MAMAs)

● Thin glass plate with tiny holes 
(~10 μm)

● Top has a negative potential and is 
coated with a photoelectron 
emitter substance

● The electrons are accelerated 
downwards

● Collisions with the walls release 
further electrons, multiplying the 
signal 

● The burst can then be detected by 
another method
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