

(Day 08)

(MegaCam CCD Mosaic, Credit: Canada-France-Hawaii Telescope / 2003)

# Today



(Severe Fringing Pattern in a CCD image, Credit: McLean 2008)

#### 1. CCDs

2. Signal-to-noise

3. Data processing

## Detectors (mostly CCDs)

## **Types of detectors**

- The material interacts with light in a coherent or incoherent way
- Coherent: phase sensitive, response to the electric field strength (far infrared and radio)
- Incoherent: respond to the energy of the photon
  - Photon (quantum) detectors: photons interact with electrons
  - Thermal detectors: photon energy heats up the material (small sensitivity, slow response, broad spectral range)

Table 1.1.1. Classification scheme for types of detector.

| Sensitive parameter  | Detector names                        | Class   |
|----------------------|---------------------------------------|---------|
| Voltage              | Photovoltaic cells                    | Quantum |
|                      | Thermocouples                         | Thermal |
|                      | Pyroelectric detectors                | Thermal |
| Resistance           | Blocked impurity band device (BIB)    | Quantum |
|                      | Bolometer                             | Thermal |
|                      | Photoconductive cell                  | Quantum |
|                      | Phototransistor                       | Quantum |
|                      | Transition edge sensor (TES)          | Thermal |
| Charge               | Charge-coupled device (CCD)           | Quantum |
|                      | Charge injection device (CID)         | Quantum |
| Current              | Superconducting tunnel junction (STJ) | Quantum |
| Electron excitation  | Photographic emulsion                 | Quantum |
| Electron emission    | Photomultiplier                       | Quantum |
|                      | Television                            | Quantum |
|                      | Image intensifier                     | Quantum |
| Chemical composition | Eye                                   | Quantum |
|                      |                                       |         |

#### Semiconductors

- When atoms come together to form a crystal, the outer electrons interact to bind the atoms
- The electrons are shared, the levels split
- With many atoms, a band is formed
- Valence band: inner filled energy levels
- **Conduction band:** higher energy levels where electrons are free to move under the influence of an electric force field
- **Bandgap**: minimum energy needed to promote electrons between valence and conduction band
- Extrinsic (or doped) semiconductors have impurity atoms to produce intermediate energy levels within the gap



| Name                         | Symbol           | Т<br>(К)  | $E_G$ (eV)                         | $\lambda_c$ (µm) |
|------------------------------|------------------|-----------|------------------------------------|------------------|
| Gallium nitride              | GaN              | 295       | 3.45                               | 0.36             |
| Silicon carbide              | SiC              | 295       | 2.86                               | 0.43             |
| Cadmium sulfide              | CdS              | 295       | 2.4                                | 0.5              |
| Cadmium selenide             | CdSe             | 295       | 1.8                                | 0.7              |
| Gallium arsenide             | GaAs             | 295       | 1.35                               | 0.92             |
| Silicon                      | Si               | 295       | 1.12                               | 1.11             |
| Germanium                    | Ge               | 295       | 0.67                               | 1.85             |
| Lead sulfide                 | PbS              | 295       | 0.42                               | 2.95             |
| Indium antimonide            | InSb             | 295<br>77 | 0.18<br>0.23                       | 6.9<br>5.4       |
| Mercury cadmium<br>telluride | $Hg_xCd_{1-x}Te$ | 77        | $0.1 (x = 0.8) \\ 0.5 (x = 0.554)$ | 12.4<br>2.5      |

Table 5.2. Forbidden energy gaps for some common semiconductors.

See: http://www.semiconductorsdirect.com

(McLean 2008)

| Base         | : Impurity | $\lambda_c$ (µm) | Base           | : Impurity | $\lambda_c$ (µm) |
|--------------|------------|------------------|----------------|------------|------------------|
| Silicon (Si) | : In       | 8.0              | Germanium (Ge) | : Au       | 8.27             |
|              | :Ga        | 17.1             |                | : Hg       | 13.8             |
|              | : Bi       | 17.6             |                | : Cd       | 20.7             |
|              | : A1       | 18.1             |                | : Cu       | 30.2             |
|              | :As        | 23.1             |                | : Zn       | 37.6             |
|              | : P        | 27.6             |                | : Ga       | 115              |
|              | : B        | 28.2             |                | : B        | 119.6            |
|              | :Sb        | 28.8             |                | : Sb       | 129              |

Table 5.3. Extrinsic semiconductors, doping material, and long-wavelength cutoff.

(McLean 2008)

## **Charge-coupled devices**

- Invented by Willard Boyle & George Smith in 1969 (for use as computer memory) at the Bell telephone laboratories
- They were jointly awarded half of the Nobel prize of Physics in 2009 for this discovery
- Dominate optical astronomy since 1980s
  - → Linear response
  - → Large dynamic range
  - → High quantum efficiency
  - → Two-dimensional arrays



#### **Quantum efficiency**

• Quantum efficiency: ratio between the number of detected photons and the number of incident photons



WAVELENGTH OF RADIATION (µm)

#### Linearity



# **Charge storage**

- Semiconductor material (Si) covered with an insulating layer (SiO<sub>2</sub>)
- Metal electrode on the top
- Voltage applied to create a depletion region
- Photon crosses the insulating layer, releases electron in the Si
- Electron attracted to the electrode (stop at the insulating layer)
- And so on





# **Reading out the signal**

- Rows are moved to a separated region (the output or serial register)
- From where each pixel is sent to the place where the signal is measured (output amplifier)
- Main CCD area: parallel register
- Reading is done pixel by pixel
- Can take 30-60s



# **Reading out the signal**

- Rows are moved to a separated region (the output or serial register)
- From where each pixel is sent to the place where the signal is measured (output amplifier)
- Main CCD area: parallel register
- Reading is done pixel by pixel
- Can take 30-60s
- Efficiency > 99.999%
- Some CCDs have more than 1 output register



Full-Frame CCD Architecture

#### **Clocking a three-phased CCD**



(Howell 2006)

## Readout speed, gain and binning

- Some properties might be adjustable:
- **Readout speed:** faster readout increase the readout noise
- Gain: conversion between electrons and electronic units (ADU)
  - Bright objects in low gain (more electrons into one ADU)
  - Faint objects in high gain (fewer electrons, signal far from saturation)
  - Digitization noise: conversion is rounded to integer. High gain produce more ADUs, reducing rounding problems
- **On-chip binning:** reduce resolution, increase S/N before adding readout noise



#### **Readout noise and clocking frequency**



(Credit: e2v; CCD42-90 Scientific CCD Back-illuminated, 2048 x 4612 Pixels)

## Thinned, back-illuminated CCDs

- The electrodes can absorb radiation, particularly in the blue
- Solution: illuminate from the back!
- CCDs used to be thick (~300 μm) (depletion region ~10 μm)
- Too large region for the electrons to travel
- Solution: thin the CCD to ~15  $\mu m$
- Great sensitivity in the blue, but fragile and prone to bending
- Also prone to fringing (soon)



(Garnir & Lefèbvre 2005)

#### Thinned, back-illuminated CCDs



(Lena et al. 2012)

• With a thin layer of antireflection coating on the backside (see Lesser 1994)

#### Surface channel, Buried channel

- When electrons are stored and transferred at the surface of the Si layer: surface channel CCD
- But the surface layer and edges of electrodes are irregular
- Charges might get trapped
- Add n-type layer on top of a p-type layer (n-type usually Si doped with phosphorus, where P has valence electrons than Si, donating them to the conduction band)
- The material electrons repel the photoelectrons
- The photoelectrons accumulate in a "buried channel"



#### **Frame transfer CCD**

- One type of solution for not loosing exposure time with read out
- · Large CCD divided into two equal parts
- One is exposed, the other hidden under a mask
- After exposure, the charges are quickly moved to the hidden area
- The exposed area is quickly ready for a new observation
- The transfer area can then be slowly read-out in the usual way



#### **Saturation and Blooming**

- There is a limit of the charges that a pixel can hold (saturation level)
- Buried channel CCDs saturate earlier than surface channel ones
- But if new photons arrive creating new electrons, the pixel might "bloom" and bleed charges up and down the column
- This can be a problem if there is a bright object in the field you are observing
- Anti-blooming gates can be added to the CCD, so the charges are drained instead of bleeding
- Some pixel area is lost, gaps appear in the spatial coverage, and the pixel well is lower



#### **Dark and operation temperature**

- **Dark current**: just because of the thermal properties, electrons can be promoted to the conduction band, creating spurious signal
- When the observation is readout, dark is just part of the signal (can not be separated)
- At room temperatures, it can reach 100 000 electrons/px/hour (comparable ~150 000 electrons storage capacity)
- Can be reduced by cooling down the CCD
- Using liquid nitrogen (77-220 K)
- For a cooled CCD, typical values of dark can range from <1 to 3-4 electrons/px/hour



## **Orthogonal Transfer CCDs**

- Has the ability to move charges in both directions
- Four electrodes define a pixel
- Two triangular in the centre, and two rectangular
- The rectangular ones act to separate the pixels
- Operation mode is more complex
- Used to help following the centroid of an image, allowing quick readout when it moves in the field



(Howell 2006)



# The Signal

- When using a CCD for our observations, we are counting photons
- Signal: The number of photons detected in a given time interval

(Or better, electrons, inside each pixel)

- If the events happen with a constant mean rate,
- And the events in one interval of time are independent from those in another interval of time
- Then the signal (S) is expected to follow a discrete Poisson distribution
- The noise (standard deviation) is N = sqrt(S)



(Credit: McLean 2008)

#### **The Noise**

- The "counting noise" is not the only source of noise
- The following noise sources are normally also taken into account:
- There is background signal with its own "background noise"

(the background signal can be corrected)

- There is the read-out noise from the CCD (~2-5 electrons rms)
- The dark current noise
- And other sources, depending on what you are doing



(Credit: Bely 2003)

## The Signal to Noise ratio

- Compares the signal to the fluctuation, in units of standard deviation
- S/N or SNR
- The S/N is interpreted from a Gaussian point of view
- S/N = 1: 68% chance the signal is real, 1 chance in 3 that it is not real
- S/N = 3: 99.7% of real, 3 in 1000 its not real (3 sigma detection)
- But are we ever sure the noise is well characterized?
- S/N = 5: less than 1 in 10<sup>5</sup> chance the signal is not real



#### If S/N = 5 is so great, do we ever need higher?

- Yes!
- It all comes down to what is it you are trying to measure

## S/N and Equivalent Widths

- For example, if measuring the "area" (equivalent width) of an absorption line
- Cayrel (1988) formula gives:

 $\sigma_{_{EW}} \sim$  1.6 \* sqrt(FWHM \* dw) / SNR

(FWHM is the size of the resolution element; dw is the size of the pixel in the detector; SNR is measured at the continuum)

- For R = 50000 at 5000 A, FWHM = 0.1 A. For dw = 0.033 A (sampling of 3 px) and SNR = 100, the error is 1mA.
- So the 5-sigma detection happens for a weak line of ~ 5 mA.



#### S/N and magnitudes

## 3.1 Conversion from S/N to uncertainties on the magnitude scale

Usually errors in astronomy are expressed on the logrithmic magnitude scale. To go from S/N to magnitudes errors consider:

$$m \pm \sigma(m) = C_0 - 2.5 \log(S \pm N)$$

 $= C_0 - 2.5 \log[S(1 \pm \frac{N}{S})]$ 

$$= C_0 - 2.5\log(S) - 2.5\log(1 + \frac{N}{S})$$

 $\sigma(m) = \pm 2.5 \log(1 + \frac{1}{S/N})$ 

Note, that magnitude errors are often taken to be fractional errors and measurements like  $V = 31.9 \pm 0.1$  are claimed to be 10% photometric accuracy. This is close to but not quite correct:

$$\begin{aligned} \sigma(m) &= \pm 2.5 \log(1 + \frac{N}{S}) \\ \sigma(m) &= \pm \frac{2.5}{2.3} \left[ \frac{N}{S} - \frac{1}{2} (\frac{N}{S})^2 + \frac{1}{3} (\frac{N}{S})^3 - \ldots \right] \\ \sigma(m) &\approx \pm 1.0875 (\frac{N}{S}) \end{aligned}$$
(Credit: Mike Bolte)

#### The S/N equation

$$\frac{S}{N} = \frac{N_*}{\sqrt{N_* + n_{\rm pix}(N_S + N_D + N_R^2)}},$$

- N<sub>\*</sub> = Total number of photo-electrons collected from the source within n<sub>pix</sub>
- N<sub>s</sub> = Total number of photo-electrons collected from the sky (background) per pixel
- N<sub>D</sub> = Total number of dark current electrons per pixel
- N<sub>R</sub><sup>2</sup> = Total number of electrons per pixel from the read out (read out noise is usually given as RMS)



(Credit: Astrobites)

•  $n_{pix}$  = number of pixels

## The S/N equation, expanded

- The equation in the previous slide applies for a typical well behaved CCD, for a well sampled not faint source
- More complicated expressions might be needed:

$$\frac{\mathbf{S}}{\mathbf{N}} = \frac{N_*}{\sqrt{N_* + n_{\text{pix}} \left(1 + \frac{n_{\text{pix}}}{n_B}\right) \left(N_S + N_D + N_R^2 + G^2 \sigma_f^2\right)}}.$$

- $(1 + n_{pix}/n_B)$  is to take into account errors introduced in the estimation of the background (Merline & Howell 1995)
- $n_{_{\rm B}}$  = the number of pixels used to estimate the background
- Last term = error introduced by the digitization noise within the A/D converter (Merline & Howell 1995)



(Credit: Eversberg & Vollman 2015)

## **Limiting cases**

$$\frac{\mathrm{S}}{\mathrm{N}} = \frac{N_*}{\sqrt{N_* + n_{\mathrm{pix}}(N_S + N_D + N_R^2)}},$$

• Bright source:  $N_* >> npix(N_s + N_p + N_R^2)$ 

$$rac{S}{N} = rac{N_*}{\sqrt{N_*}} = \sqrt{N_*}, \quad ext{ or } \quad S/N \simeq \sqrt{R_* \times t} \propto t^{rac{1}{2}}$$
 (t = exposure time, R<sub>\*</sub> = photon rate)

• Background limited:

$$S/N \simeq \frac{R_* \times t}{\sqrt{n_{\rm pix} \times R_{\rm sky} \times t}} \propto t^{\frac{1}{2}}$$

(When the target is weak and background dominates the noise. And only if thermal emission and detector noise have been minimized)

• One needs either a larger telescope, improved image quality (adaptive optics), or avoid strong background (e.g., strong airglow lines)

## **Limiting cases**

• Detector noise limited:

$$S/N = \frac{S t}{\sqrt{I_d n_{\text{pix}} t + R_n^2 n_{\text{pix}}}} \,.$$

(S = photon rate from the source;  $I_d$  from the dark current,  $R_n$  is the read out noise)

- Source and background signals are faint
- Noise of the detector dominates
- Can be the case in high-resolution spectroscopy (for higher resolutions, less photons arrive at a given pixel)
- S/N increases linearly with time, until the signal is large enough that its fluctuations are larger than  $\rm R_n$
- Integration times should be as long as possible

## Adding, subtracting, dividing images

- Two images of S/N = 100 do not make one image of S/N = 200! (S/N' ~ 141)
- If adding two images (or subtracting, e.g. subtracting a background frame)

$$\Rightarrow \qquad \sigma_z^2 = \sigma_x^2 + \sigma_y^2 \qquad (\text{Error in a sum or difference})$$

(so we want the error in the background frame to be as small as possible)

• If dividing two images (e.g., flat field as we will see soon)

$$\Rightarrow \qquad \left(\frac{\sigma_z}{z}\right)^2 = \left(\frac{\sigma_x}{x}\right)^2 + \left(\frac{\sigma_y}{y}\right)^2 \qquad \text{(Error in a product or quotient)}$$

(so we want the signal in the dividing image to be as high as possible)

#### **Exposure Time Calculator**

- Each instrument at the VLT has its own exposure time calculator
- This tool will help you to estimate the exposure time you need to reach your desired S/N

- Here a link to the UVES ETC:
- https://www.eso.org/observing/etc/bin/gen/form?INS.NAME=UVES+INS.MODE=spectro



#### **Data reduction**



#### **Bias and overscan**

- The empty, non-exposed CCD produces a reading for each pixel
- It would be a fluctuation around zero, but storing negative numbers need one bit (decreasing the storage space)
- To avoid that, set up with a positive offset
- This is the bias level
- Several bias frames (zero exposure) to reduce the readout noise, and preserve coherent noise and pixel-to-pixel variation
- The mean bias is subtracted from all images
- Or the overscan can be used for a typical "pedestal" level (pseudo-columns generated by the electronics)



(McLean 2008 - Clean bias showing no structure)

#### **Dark frames**

• CCD is not exposed, but integration time is equal to that of the science image

(not always the dark is linear)

- For collecting the dark current signal
- For many modern CCDs, dark is very low and usually ignored
- Dark images also contain the bias (so one can consider skipping bias correction)
- Averaging together multiple dark frames is the best to reduce noise (but not always practical)
- Dark current is more significant for infrared arrays



(Howell 2006 - Dark frame showing non uniform level)

# **Flat fielding**

- Pixel-to-pixel variations in quantum efficiency exist (to a few percent)
- If not corrected, it leaves additional noise on the images
- Flat field frame is a frame with very high S/N obtained uniformly illuminating the CCD
- Also help to correct non-uniform illumination of the detector itself
- Frames are needed for each filter, wavelength region, or instrumental setup used for science
- Several frames should be averaged together to reduce noise

Final Reduced Object Frame =  $\frac{\text{Raw Object Frame} - \text{Bias Frame}}{\text{Flat Field Frame}}$ 



(Howell 2006 – Flat field frame with dust affecting the illumination)

#### **Flat field variations**

- Flat-fielding: tricky and hardly ever done perfectly
- Ideally, uniform illumination of every pixel with a source of same spectral response of the object
- **Dome flat:** illuminate a screen inside the dome
- Twilight flat: image dawn or dusk sky
- Sky flat: image a dark night area
- Lamp (projector) flat: a high intensity lamp illuminates the slit (for spectroscopy)
- Concerns: 1) Uniform illumination to 0.1% is hard;
   2) Pixel-to-pixel variations are λ dependent (twilight and lamps have their own spectral distribution); 3) Sky flats can take a long time to integrate (and we'd like several)



(Credit: Terry White)

# Fringes

- Fringes caused by interference of light reflected within the CCD
- May occur: in the red part of the optical spectrum; when using narrow-band filters; observing strong narrow emission lines
- And it might be quite variable
- Fringing from nigh sky emission lines will not appear in dome or twilight flats
- Sky fringe frame can help (but is time consuming)
- Neon lamp, with emission lines, flat fields (see Howell 2012)
- New CCDs with anti-reflection coating have reduced the problem



(Howell 2006; GMOS, z' filter, @8800 A)

## **Bad pixels**

- Older CCDs could be prone to several cosmetic defects
- Dead pixels, hot pixels, blocked columns
- Bad pixel map used for interpolation
- Dithering during observations to filter out the problems during reduction



## Sky background and cosmic rays

- For photometry, you can estimate the sky background in the image and remove from the object
- For spectroscopy, the long slit also takes a sky background spectrum
- Fibers can also be allocated to the sky
- Cosmic-rays can hit the CCD and leave behind huge numbers of electrons
- Its recommended to take at least three images to be able to identify cosmic ray hits
- There are cleaning algorithms that make a very good job of removing hits



## **Additional calibrations**

- For spectroscopy:
  - wavelength calibration (e.g. ThAr lamps);
  - → radial velocity standards;
  - radial velocity calibration lamps;
  - → telluric standards;
  - → flux standards
- For photometry:
  - → flux standards
- Always check the instrument manual to know about the calibration needs and possibilities



(Credit: ESO)

#### **Data formats**

- FITS (Flexile Image Transport System)
- FITS is the widely used (old and ackward) standard
- Can be made of several extensions, each with a header and data
- Data can be binary tables or images
- Several limitations on sizes and rules for format (see Pence et al. 2010)
- Alternatives: "HDF" (hierarchical data format)

| File Edit   | Tools Help          |        |                  |        |       |      |       |        |   |      |
|-------------|---------------------|--------|------------------|--------|-------|------|-------|--------|---|------|
| Index       | Extension           | Туре   | Dimension        |        | ١     | View |       |        |   |      |
| <b>0</b>    | Primary             | lmage  | 72800            | Header | Pl    | ot   | Г     | able   |   |      |
| <b>1</b>    | final_ivar          | Image  | 72800            | Header | Pl    | ot   | 1     | able   |   |      |
| 2           | normalised_spectrum | Image  | 72800            | Header | Ple   | ot   | 1     | able   |   |      |
| <b>3</b>    | normalised_ivar     | Image  | 72800            | Header | Ple   | ot   | 1     | able   |   |      |
| <b>4</b>    | subtracted_sky      | Image  | 72800            | Header | Plot  |      | Plot  |        | 1 | able |
| <b>5</b>    | continuum           | Image  | 72800            | Header | Ple   | ot   | 1     | able   |   |      |
| 6           | Fibinfo             | Binary | 30 cols X 1 rows | Header | Hist  | Plot | All   | Select |   |      |
| <b>7</b>    | input_spectra       | Image  | 72800 × 4        | Header | lma   | age  |       | able   |   |      |
| 8           | input_ivar          | Image  | 72800 × 4        | Header | Image |      | Table |        |   |      |
| <b>=</b> 9  | Inputinfo           | Binary | 28 cols X 4 rows | Header | Hist  | Plot | All   | Select |   |      |
| <b>=</b> 10 | CCF                 | Image  | 4000             | Header | Ple   | ot   |       | able   |   |      |
| <b>=</b> 11 | SINGLEORDER1        | Image  | 6700             | Header | Ple   | ot   | 1     | able   |   |      |
| <b>=</b> 12 | SINGLEORDER2        | Image  | 6700             | Header | Ple   | ot   | 1     | able   |   |      |
| <b>=</b> 13 | SINGLEORDER3        | Image  | 6700             | Header | Ple   | ot   | 1     | able   |   |      |
| <b>=</b> 14 | SINGLEORDER4        | Image  | 6700             | Header | Ple   | ot   | 1     | able   |   |      |
| <b>=</b> 15 | SINGLEORDER5        | Image  | 6700             | Header | Pl    | ot   | 1     | able   |   |      |
| <b>1</b> 6  | SINGLEORDER6        | Image  | 6700             | Header | Pl    | ot   | 1     | able   |   |      |
| <b>1</b> 7  | SINGLEORDER7        | Image  | 6700             | Header | Pl    | ot   | 1     | able   |   |      |
| <b>=</b> 18 | SINGLEORDER8        | Image  | 6700             | Header | Pl    | ot   | 1     | able   |   |      |
| <b>=</b> 19 | SINGLEORDER9        | Image  | 6700             | Header | Pl    | ot   |       | able   |   |      |



## **Photomultipliers**

- Once widely used for photometry; still used in neutrino and cosmicray detectors (Cherenkov light)
- One aperture (one pixel)
- Each photon detected as a burst
- Photon releases one electron in the cathode; accelerated in the electric field
- The it strikes a secondary emitter where secondary electrons are emitted
- Final pulse may contain 10<sup>6</sup> electrons for each photon



(Kitchin 2003)

| Substance                                    | Long wavelength cut-off point (nm) |  |  |  |
|----------------------------------------------|------------------------------------|--|--|--|
| Sodium chloride (NaCl)                       | 150                                |  |  |  |
| Potassium bromide (KBr)                      | 155                                |  |  |  |
| Rubidium iodide (RbI)                        | 185                                |  |  |  |
| Cuprous chloride (CuCl)                      | 190                                |  |  |  |
| Caesium iodide (CsI)                         | 200                                |  |  |  |
| Copper/beryllium (Cu/Be)                     | 200                                |  |  |  |
| Copper iodide (CuI)                          | 210                                |  |  |  |
| Rubidium telluride (RbTe <sub>2</sub> )      | 300                                |  |  |  |
| Caesium telluride (Cs <sub>2</sub> Te)       | 350                                |  |  |  |
| Caesium antimonide (Cs <sub>2.9</sub> Sb)    | 600-700                            |  |  |  |
| Bi-alkali ((K <sub>2</sub> Cs)Sb)            | 670                                |  |  |  |
| Tri-alkali ((Cs) Na <sub>2</sub> KSb)        | 850                                |  |  |  |
| Gallium arsenide (GaAs (Cs))                 | 1000                               |  |  |  |
| Silver/oxygen/caesium (Ag/Cs <sub>2</sub> O) | 1000-1100                          |  |  |  |

Table 1.1.3. Photoelectron emitting substances.

Secondary electron emitting substances Beryllium oxide (BeO (Cs)) Caesium antimonide (Cs<sub>3</sub>Sb) Gallium phosphide (GaP (Cs)) Magnesium oxide (MgO (Cs)) Potassium chloride (KCl) Silver/magnesium (Ag/Mg)

(Kitchin 2003)

## **Micro channel plate**

- Multi-Anode Micro-channel Arrays
   (MAMAs)
- Thin glass plate with tiny holes (~10 μm)
- Top has a negative potential and is coated with a photoelectron emitter substance
- The electrons are accelerated downwards
- Collisions with the walls release further electrons, multiplying the signal



 The burst can then be detected by another method

#### REFERENCES

- Bely 2003 (The design and construction of large optical telescopes)
- Cayrel 1988 (Proc. IAU Symposium 132, p. 345)
- Eversberg & Vollman 2015 (Spectroscopic Instrumentation)
- Garnir & Lefebvre 2005 (Nuclear Instruments and Methods in Phys. Research Section B, 235, 530)
- Howell 2006 (Handbook of CCD Astronomy)
- Howell 2012 (PASP, 124, 263)
- Kitchin 2003 (Astrophysical Techniques, 4ed)
- Lena et al. 2012 (Observational Astrophysics)
- Lesser 1994 (Proc. SPIE, Vol 2198, p. 782)
- Massey & Hanson 2013 (Astronomical Spectroscopy)
- McLean 2008 (Electronic Imaging in Astronomy)
- Merline & Howell 1995 (ExA, 6, 163)
- Pence et al. 2010 (A&A, 524, A42)