Practical Observational Astronomy Lecture 3

Wojtek Pych Based on lectures by Arkadiusz Olech

Warszawa, 2019-06-27

Refraction of light

Snell's law (law of refraction) -

a formula used to describe the relationship between the angles of incidence and refraction, when referring to light or other waves passing through a boundary between two different isotropic media, such as water, glass, or air.

$$\frac{\sin \theta_1}{\sin \theta_2} = \frac{v_1}{v_2} = \frac{\lambda_1}{\lambda_2} = \frac{n_2}{n_1}$$
$$v_1 = \frac{c}{n_1}$$
$$v_2 = \frac{c}{n_2}$$
$$n - \text{refractive index of a medium}$$

Reflection of light

Law of reflection \rightarrow incidence angle is equal to reflection angle.

$$\theta_1 = \theta_2$$

Lenses

Lens - a transmissive optical device that affects the focus of a light beam through refraction.

Types of lenses:

Lenses

If the lens is biconvex or plano-convex, a collimated beam of light passing through the lens converges to a spot (a focus) behind the lens. In this case, the lens is called a positive or converging lens. The distance from the lens to the spot is the focal length of the lens, which is commonly abbreviated *f* in diagrams and equations.

Lenses

If the lens is biconcave or plano-concave, a collimated beam of light passing through the lens is diverged (spread); the lens is thus called a negative or diverging lens. The beam, after passing through the lens, appears to emanate from a particular point on the axis in front of the lens. The distance from this point to the lens is also known as the focal length, though it is negative with respect to the focal length of a converging lens.

Lensmaker's equation

The focal length of a lens in air can be calculated from the lensmaker's equation:

$$\frac{1}{f} = (n-1) \left[\frac{1}{R_1} + \frac{1}{R_2} + \frac{(n-1)d}{nR_1R_2} \right]$$

where

f is the focal length of the lens,

n is the refractive index of the lens material,

 R_1 is the radius of curvature (with sign) of the lens surface closest to the light source,

 R_2 is the radius of curvature of the lens surface farthest from the light source,

d is the thickness of the lens (the distance along the lens axis between the two surface vertices)

The focal length *f* is positive for converging lenses, and negative for diverging lenses.

For thin lens :

$$\frac{d}{R} \ll 1 \qquad \qquad \frac{1}{f} \approx (n-1) \left[\frac{1}{R_1} - \frac{1}{R_2} \right]$$

Lensmaker's equation

If the distances from the object to the lens and from the lens to the image are S_1 and S_2 respectively, for a lens of negligible thickness, in air, the distances are related by the **thin lens formula**:

The principal planes are two hypothetical planes in a lens system at which all the refraction can be considered to happen.

The focal length for system of lenses is the distance of focal point from main focal plane for infinite rays.

The focal length for system of lenses is the distance of focal point from main focal plane for rays falling from infinity.

The main plane can be far away from the lens system \rightarrow teleobjective.

Barlow (negative) lenses can increase the focal lenght by factor of 2-5.

The focal length for system of lenses is the distance of focal point from main focal plane for rays falling from infinity.

Opposite situation. In wide field lenses the main plane is between the lens and a detector.

Concave mirror

Equation for reflective surface:

$$y^{2}-2Rz+(1-e^{2})z^{2}=0$$

 $K=-e^{2}$

$$y^{2}-2Rz+(1-e^{2})z^{2}=0$$
 $K=-e^{2}$

oblate ellipsoid	e < 0	K > 0
sphere	e = 0	K = 0
prolate ellipsoid	0 < e < 1	-1 < K < 0
paraboloid	e = 1	K = -1
hyperboloid	e > 1	K < -1

Concave mirror for infinite rays

$$\frac{dz}{dr} = \frac{r}{R - (1 + K)z} = \tan \phi$$

Concave mirror for infinite rays $z_{0} = \frac{r}{\tan 2\phi} = \frac{r(1 - \tan^{2}\phi)}{2\tan \phi}$ $\frac{dz}{dr} = \frac{r}{R - (1 + K)z} = \tan \phi$ $f = z + z_{0}$

Combining these three equations we have general equation for focal length:

$$f = \frac{R}{2} + \frac{(1-K)z}{2} - \frac{r^2}{2[R - (1+K)z]}$$

But we can solve the mirror equation for z and assume r/R as small.

$$z = \frac{R}{1+K} \left[1 - \sqrt{1 - \frac{r^2}{R^2} (1+K)} \right] = \frac{r^2}{2R} + (1+K) \frac{r^4}{8R^3} + (1+K)^2 \frac{r^6}{16R^5} + \dots$$

Concave mirror for infinite rays

Combination of two equations:

$$f = \frac{R}{2} + \frac{(1-K)z}{2} - \frac{r^2}{2[R - (1+K)z]}$$

$$z = \frac{R}{1+K} \left[1 - \sqrt{1 - \frac{r^2}{R^2} (1+K)} \right] = \frac{r^2}{2R} + (1+K) \frac{r^4}{8R^3} + (1+K)^2 \frac{r^6}{16R^5} + \dots$$

Gives us focal length of the mirror:

$$f = \frac{R}{2} - \frac{(1+K)r^2}{4R} - \frac{(1+K)(3+K)r^4}{16R^3} - \dots$$

Spherical aberration is an optical effect observed in an optical device (lens, mirror, etc.) that occurs due to the increased refraction of light rays when they strike a lens or a reflection of light rays when they strike a mirror near its edge, in comparison with those that strike nearer the centre.

Fighting with spherical aberration.

$$\Delta f = f(r) - f(paraxial) = \frac{-(1+K)r^2}{4R} - \frac{(1+K)(3+K)r^4}{16R^3} - \dots$$

TSA = -(1+K) $\frac{r^3}{2R^2} - 3(1+K)(3+K)\frac{r^5}{9R^4} + \dots$

Solution 1 \rightarrow use parabolic mirrors (*K*=-1) Solution 2 \rightarrow use correcting lens

Fighting with spherical aberration. For lenses \rightarrow use aspherical lenses.

Chromatic aberration - is an effect resulting from dispersion in which there is a failure of a lens to focus all colors to the same convergence point. It occurs because lenses have different refractive indices for different wavelengths of light.

Chromatic aberration is small for slow (high F-ratio) lenses. F=f/DHevelius telescope with length of 45 meters!

Better solution \rightarrow achromatic lens consisting of two lenses with different refractive index.

Relation between curvature radii and differences in refractive indices.

$$\frac{R_1 + R_2}{R_1} \Delta n_C = \Delta n_F$$

Constructing achromat objective lens one can also minimalize spherical aberration.

For q=0.6 spherical aberration has its minimum value.

We have two equations with two unknowns $\rightarrow R_1$ and R_2 .

Disadvantages of achromats:

1. secondary spectrum.

2. significant field curvature (important in times of large photographic plates)

1960-1970s introduction of low dispersion glass (e.g. fluorite)

1960-1970s introduction of low dispersion glass (e.g. fluorite) \rightarrow apochromats

4,Off-axis aberrations – optical aberrations caused by rays inclined to optical axis.

Coma

Coma

Astigmatism

Distortion - deviation from rectilinear projection, a projection in which straight lines in a scene remain straight in an image. It is caused by different magnification of the image with increasing distance from the optical path.

No Distortion

Barrel Distortion

Pincushion Distortion

Mustache Distortion

Vignetting

Vignetting - is a reduction of an image's brightness or saturation at the periphery compared to the image center.

Types of telescopes - refractors

Galilean telescope (1609) \rightarrow positive lens as objective + negative lens as eyepiece \rightarrow results in a non-inverted and upright image

Keplerian telescope (1611) \rightarrow positive lens as objective + positive lens as eyepiece. The advantage of this arrangement is that the rays of light emerging from the eyepiece are converging. This allows for a much wider field of view and greater eye relief, but the image for the viewer is inverted.

Newtonian telescope (1668) \rightarrow concave mirror + flat mirror + eyepiece.

In parabolic mirror the coma is main source of blur especially for fast newtonians...

Limiting Field Radius for Good^a Images Paraboloid Telescope

F	Θ [arcmin]
4	1.42
8	5.59
10	8.89

^aGood defined as tangential coma that measures 1 arcsec.

Gregory's telescope (1663) \rightarrow concave mirror + ellipsoidal mirror + eyepiece. This design renders an upright image, making it useful for terrestrial observations. It also works as a telephoto in that the tube is much shorter than the system's actual focal length.

Cassegrain telescope (1672) \rightarrow parabolic primary mirror + hiperbolid mirror + eyepiece. This design puts the focal point at a convenient location behind the primary mirror and the convex secondary adds a telephoto effect creating a much longer focal length in a mechanically short system.

Ritchey-Chrétien telescope (1910) \rightarrow hiperbolic primary mirror + hiperbolic secondary mirror + eyepiece.

It is free of coma and spherical aberration at a flat focal plane, making it well suited for wide field and photographic observations. This design is very common in large professional research telescopes, including the Hubble Space Telescope, Keck Telescopes and VLT telescope.

Dall-Kirkham telescope (1928) \rightarrow elliptical primary mirror + spherical mirror + eyepiece. This system is easier to polish than a classic Cassegrain or Ritchey-Chretien system, but the off-axis coma is significantly worse, so the image degrades quickly off-axis.

Schmidt telescope (1930) \rightarrow spherical primary mirror + corector lens Large off-axis aberration free field of view. Significant field curvature.

Maksutov telescope (1941) \rightarrow spherical primary mirror + negative meniscus lens Large off-axis aberration free field of view.

Significant field curvature.

Schmidt-Cassegrain telescope (1946) \rightarrow parabolic primary mirror + corrector lens + hyperbolic secondary.

Maksutov-Cassegrain telescope \rightarrow

parabolic primary mirror + meniscus negative lens + hyperbolic secondary.

Klevtsov-Cassegrain telescope \rightarrow

parabolic primary mirror + Mangin secondary mirror with additional lens corrector.

Mangin mirror is a meniscus lens with one air-to-glass surface covered with reflective layer.

Types of telescopes – more complicated systems...

Willstrop telescope \rightarrow large field of view free of aberrations. 0.5-m telescope in Cambridge.

Types of telescopes – more complicated systems...

Coude or Nasmyth telescope/focus

Horizontal mount

Horizontal Dobsonian mount

German equatorial mount

American (fork) mount

American (fork) mount \rightarrow OGLE telescope

English mount

Yoke mount

Yoke mount \rightarrow 5-m Mt. Palomar telescope

Springfield mount

At each air-to-glass surface there is not only refraction of the light but also reflection.

Typical Bk7 glass reflects about 4-4.5% of light at one surface.

It is small problem for simple constructions (cemented achromats, triplets).

The problem is more significant for more complicated designs.

Cooke triplet (invented in 1893) comprises a negative flint glass element in the center with a crown glass element on each side.

It is very well corrected for almost all aberrations and allows to construct lenses as fast as f/3.5.

It has never became popular \rightarrow 6 air-to-glass surfaces \rightarrow T=0.955^6=0.758

But current optical devices are even more complicated.

For example SALT telescope SALTICAM CCD optical path.

We have mirror + 5-lens corrector + filter + 2-lens corector.

But current optical devices are even more complicated.

In case of astronomical spectrographs we have to deal with many lenses.

This construction $_$ If left uncoated the transmission is ~36%.

The solution is to put thin layer of substance on surface of the glass.

The refraction index of this substance should be between the refraction index of air and lens.

Two effects:

1. there are 2 shallow boundaries instead of one steep \rightarrow reduction of light loss

2. thickness of the antireflection layer is choosen to cancel out the waves reflected from two boundaries

Single layer of magnesium fluoride (n=1.38)

Multilayer coatings

Best multilayer coatings have 0.2-0.3% light loss at one surface.

Multilayer coatings

Best multilayer coatings have 0.2-0.3% light loss at one surface.

For mirrors we want to have highest possible reflectance. The first mirrors were made of polished bronze with R~60% For two mirrors in the telescope about 60% of light was lost.

In the middle of XIX century silver coated mirrors appeared.

In 1932 the method of vacuum covering by aluminium.

Aluminium layer can be covered by thin ($\frac{1}{2}$ lambda) glass layer \rightarrow protected aluminium with extreme durability. No need for aluminization every 2-3 years. But reflectance of about 82-86%.

Thin multilayer dielectric coatings (up to even 60 layers!) with R>99%

Magnification

Field of view. Apparent field of view of the eyepiece (AFOV) \rightarrow typically 50-80 deg.

To project a sharp image of distant objects, S2 needs to be equal to the focal length *f*

$$\alpha = 2 \arctan \frac{d}{2f}$$

Resolution. Diffraction on the circular aperture.

$$I(\theta) = I_0 \left[\frac{2J_1(ka\sin\theta)}{ka\sin\theta} \right]^2$$

where:

$$k = \frac{2\pi}{\lambda}$$

a - radius of the aperture Zeros for:

$$\sin \theta = \frac{1.916 \lambda}{\pi r}, \frac{3.508 \lambda}{\pi r}, \frac{5.087 \lambda}{\pi r}, \dots$$
$$\theta \simeq \frac{1.220 \lambda}{d}, \frac{2.233 \lambda}{d}, \frac{3.238 \lambda}{d}, \dots$$
The first zero gives the equation for resolution:

$$\alpha = \frac{1.220\lambda}{d}$$

Resolution. The highest sensitivity of human eye is for 510 nm. This gives:

R = 0.128/D

Where R is resolution in arc seconds and D is diameter in meters.

Limiting magnitude

Amount of collected light is proportional to second power of diameter: $I \sim D^2$

 m_1 = 6.5 mag is limiting magnitude for naked eye,

 m_2 – limiting magnitude for the telescope,

d = 0.75 cm diameter of the human pupil in the darkness,

a – light loss caused by the optics.

From Pogson law:

$$m_1 - m_2 = -5 \log\left(\frac{d}{D}\right)$$

$$m_2 = 7.1 + 5 \log(\sqrt{a} \cdot D)$$

Limiting magnitude

Orion ODK (Optimized Dall-Kirkham).

Optical design and light path through telescope. Large back focus and three element computer optimised corrector lens system shown which enable a flat field of over 50mm to be acheived.

Specification	ODK12		
Primary mirror diameter	300mm		
Focal length	2040mm		
Focal Ratio	f6.8		
Tube Weight (inc. mount plate/dovetail)	19kg		
Tube Diameter	350mm		
Tube Length	615mm		
BFD (Back Focal Distance) from cell face*	218mm		
Tube Material	Carbon fibre sandwich		
Secondary Size	120mm		
Mirror Cell	Honeycombe CNC machined alum, cell		
Focuser	3" Crayford with 10:1 reduction		
Corrector Design	Multi coated 3 lens		
Flat Field Size	>52mm		
Spot Size on Axis	1.8µ		
Spot Size at Field Edge	<mark>5.6</mark> µ		
Mirror / Tube Cooling	3 Controllable fans. Heaters optional		
Attachment Method	CNC machined alum. dovetail with supports		

ATIK 460EX monochrome CCD camera.

	Atik 420	Atik 450	Atik 428EX	Atik 460EX
Sensor Type	Sony ICX274	Sony ICX655	Sony ICX674	Sony ICX694
Resolution	1620x1220 pixels	2448x2050 pixels	1932x1452 pixels	2750x2200 pixels
Pixel Size	4.4x4.4µm	3.45x3.45μm	4.54x4.54µm	4.54x4.54µm
ADC	16 bit	16 bit	16 bit	16 bit
Readout Noise (typical)	5 e-	5 e ⁻	5e-	5e-
Interface	USB	USB	USB	USB
Power	12V DC 1A	12V DC 1A	12V DC 1A	12V DC 1A
Maximum Exposure	Unlimited	Unlimited	Unlimited	Unlimited
Minimum Exposure	1/1000 s	1/1000s	1/1000s	1/1000s
Cooling	Thermoelectric	Thermoelectric	Thermoelectric	Thermoelectric
	Delta T = 30ºC	Delta T = 30°C	Delta T = 25ºC	Delta T = 25ºC
Weight	Approx. 400 g	Approx. 400g	Approx. 400g	Approx. 400g
Backfocus distance	13mm	13mm	13mm	13mm

ATIK 460EX monochrome CCD camera.

For f=2040 mm, 12.5x10 mm 2750x 2200 pix detector: \rightarrow field of view = 21.04' x 16.83'

 \rightarrow scale 0.46"/pixel

ASA DDM60 Pro equatorial mount of german type.

Connection to all popular telescopes (tube ring- and railsystem)

Connection to all common tripods (Losmandy, Berlebach, etc.)

DDM60 PRO:

USB-Hub, all power and data connections from the DEC-axis

