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Preface

Stars are made of the material collected from the initial cloud of matter, which is falling towards the common
center of gravity. According to the law of angular momentum conservation, the material at large radius
brings inwards its angular momentum-speeding-up the rotation of the object it is building.

Since the stars are in general not fast rotators, there must be a mechanism which expels the angular mo-
mentum outwards from the central object, while gathering mass inwards. Simple theoretical arguments of
such processes of accretion of matter on the were extended throughout XX ct., and were increasingly corrob-
orated (or falsified) by the subsequent numerical simulations, which are needed to address the increasingly
detailed questions, posed by the ever more precise observations.

The observational evidence was mainly available in the field of close binary stars, so this is where the
need for most detailed models came first. The unprecedented wealth of data from the survey of fast series
of spectrographic data in “strange” stars like ϵ Aurigae and β Lyrae, gathered by Struve and collaborators,
initiated what Popper (1970) [HS70] called “Struve revolution”. The whole concept of stability of such systems
changed, so that about mid-XX ct. streams or rings of gas, exploding gas envelopes, Roche equipotential
surfaces and thick gas disks were included in the models, tested with observational data.

Similar concepts took hold in the other fields of astronomy, for explaining the inner workings of the
active galactic nuclei, centers of galaxy clusters and quasars.

When their radial extension is compared to height, many of such disks are thin, with height typically less
than 1/10 of the radial distance from the central object. This offered some simplification in the mathematical
analysis, as equations could be simplified by taking into account the height ratio as a small parameter in the
analysis. This is the approach in which the analytical full 3D purely hydrodynamical solution (Kluźniak &
Kita disk), which we present here, is obtained. We also present our magnetic extension of this solution.

In this series of lectures, we review methods from some seminal works on thin accretion disk, and of-
fer some insights in solutions of the encountered problems, both in purely hydrodynamic and magneto-
hydrodynamic treatment. To assist the reader, we often solve the equations in the great detail. The present
volume is dedicated to the theoretical concepts, and the second volume will detail the numerical simulations
of a thin accretion disk.

Lectures were delivered at the Silesian University in Opava in February/March 2022. Author is grateful
to students and the host, Institute of Physics in Opava, for a friendly and motivating environment. The work
in Opava was supported by the Czech ESF projects No. CZ.02.2.69/0.0/0.0/18 054/0014696, and author was
also funded by a Polish NCN grant No. 2019/33/B/ST9/01564.

PhD students in CAMK Warsaw, Fatemeh Kayanikhoo and Angelos Karakonstantakis, are thanked for
reviewing the final draft, and Angelos in addition for inputing the step-by-step equations for SS73 solutions.
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Chapter 1

Introduction to accretion

Accretion is a process of mass collection onto a (usually rotating) central body, where a particle or a fluid
element moving at some orbit transfers part of its energy and angular momentum to its surrounding. More
general, it can be described as inward motion of matter because of the gravitational force-this definition we
need to include the simplest case which we will first study, the spherical (Bondi) accretion.

Gravity was the first force to be studied extensively, in mechanics, our first applied science. In astron-
omy it was for long the only computed force, by Newton. It was The Force of celestial motions, until we
started computing the machinery of stellar power. Then it showed gravity is not enough- electromagnetic
interactions (chemistry) were also helpless - Sun burning coal would expire practically on our eyes. Nuclear
forces explained the powering of stars, but gravity made a comeback when we understood that the Sun-like
stars are weaklings in comparison to a much larger energy output of stellar compact objects, black holes and
galactic nuclei.

1.1 How we arrived to accretion

Historically, accretion was first considered as a relevant process in the close binaries: after collecting a wealth
of spectrographic data by Struve and collaborators, it became obvious that simple models of stellar stability
are insufficient to explain the spectral features-theoretical curves were too smoothed by the simplifications,
and observational curves were not smooth at all! Introducing more physical processes into astrophysics of
stars was called “Struve revolution” by Popper1 in 1970 ([HS70]): To explain the spectral features, hence
the energy and angular momentum evolution in the “peculiar stars” - which mostly showed to be close
binaries, astronomers around the middle of XX century had to include the streams of matter, gas rings,
Roche’s equipotential surfaces, and finally Huang [Hua63] included a thick disk. Gradually, with increase
in quality of data, similar concepts were introduced in the objects on other scales, like active galactic nuclei
(AGNs), quasars, and centers of clusters of galaxies. Astrophysics of accretion could start!

1.2 Energetics of accretion

When I said that with accretion gravity made a comeback, I should say that it made it with a boom! - accretion
is by far the most efficient way of extracting energy out of the matter we know: it yields about 10 times more
energy than nuclear fusion!

We can show it in a back-of-the-envelope calculation for the luminosity of the disk acquired by the infall

1Not the philosopher of science, Karl Popper, but astrophysicist Daniel M. Popper, from L.A., University of California.
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Chapter 1 Introduction to accretion 1.3 Eddington limit

Figure 1.1: Matter infalling from inifinity onto a central body.

of material from the large distance onto a central object. The luminosity L is

L =
dE

dt
, where E =

m

2
(v2∞ − v2Ki), with vKi =

r
GM⋆

Ri
(1.1)

the Keplerian velocity at the orbit Ri, and v∞ is the escape velocity of a massm. It will bring to the orbit Ri

the same energy which would be needed to launch it from that orbit into the “infinity” at R∞, beyond the
gravitational pull of the central object:

mv2∞
2

=
GM⋆m

Ri
− GM⋆m

R∞
, (1.2)

v∞ =

r
2GM⋆

Ri
so that L =

GM⋆ṁ

2Ri
. (1.3)

In the literature, one can find various numbers for the efficiency of accretion, I list some below, but what is
meant by “efficiency”? It is the power P available at a given mass accretion rate ṁ onto an object of radius
R: P = ṁGM/R. This power is usually dissipated away through radiation, otherwise there would be no
accretion- and the produced heat would push the matter away.

For a black hole of mass M⋆ with a Schwarzschild radius RS = 2GM⋆/c
2 we obtain the luminosity

L = ṁRSc
2/(4Ri), if the disk ends at 3RS above the center of black hole, we obtain L = ṁc2/12 which is

8% of the rest mass energy of the accreted mass. In the nuclear fusion we obtain typically 1% of the rest mass
energy, so accretion provides 10 times more efficient energy conversion than fusion!

Some examples of efficiency: Pair annihilation: η = 1; Nuclear (H) fusion: η ∼ 10−4; Accretion efficiency
η onto Earth: 10−9, Sun: 10−6, white dwarf: 10−4, neutron star: 10−1.

Accretion efficiency η = GM⋆/(Rc2) onto a black hole (an object without a hard surface) depends on
the details of accretion flow and spin of BH: 0.057 < η < 0.42 for a thin accretion disk around black hole.

1.3 Eddington limit

What is the maximum luminosity at which matter still can be accreted2?
2This means that gravitational force on a chunk of fluid still just exceeds the radiation pressure
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Chapter 1 Introduction to accretion 1.4 Spherical accretion

Simplest case is radial accretion onto a mass point M. If medium is fully ionised gas of electrons and
protons, and we assume Compton scattering with the simplest radiation pressure

Frad = +
σT
c

L

4πr2
and Fg = −mp

GM

r2
(1.4)

from Frad = Fg we get that LEdd = 4πGMmpc/σT. I list few Eddington luminosities: solar mass NS:
LEdd = 1.3× 1038(M/M⊙)erg/s ; supermassive BH: 1.3× 1046(M/108M⊙)erg/s.

Eddington mass accretion rate is ṁEdd = LEdd/(ηc
2).

Usually it is said that the accretion is not possible if L > LEdd but there are cases when it is not true, and
they are very interesting cases of supernovae and non-spherical accretion cases in disks and jets.

1.4 Spherical accretion

H. Bondi [Bon52] gave an analytical solution for the spherically symmetric, steady-state accretion flow of
an infinite gas cloud onto a point mass, in the Newtonian approach. Such model was later extended, to be
applied from the study of star formation to cosmology.

Bondi considered adiabatic (p ∼ ργ) accretion of gas. Far from central mass, gas elements move in
dependence of their thermal energy only, so that with gas temperature Tinf with sound speed cs we can say
that at some critical distance from the central mass rcr the escape velocity is equal to the speed velocity:
rcr = 2GM/c2s .

For r < rcr material falls freely onto the central mass, and for the density above the radius rcr , ρinf we
can write the infalling mass Ṁ = 4πG2M2ρinf/c

2
s .

Hydrostatic equilibrium gives ρ ∼ r−3/2 (with γ = 5/3) and temperature T ∼ r3(1−γ)/2. Infalling gas
reaches speed of sound at a distance rs from the center. We find rs =

1
4(5− 3γ)GM/c2s .

1.5 Disk accretion

Figure 1.2: Two neighbor rings in the disk.

Let us take another view on accretion: material point orbiting around a center of mass interacts with its
surrounding, transferring part of its energy and angular momentum. Consequence of such scenario is a slow
spiral-in of the mass point. Energy which can be extracted is equal to the bonding energy of the smallest
orbit: Eacr = GMm/R , see the back of the envelope calculation.

We consider rotating volume of gas with angular momentum L in cylindrical coordinates (R,φ, z), with
z parallel to the axis of rotation. We further assume that distribution of L between the gas particles is much

9



Chapter 1 Introduction to accretion 1.6 Viscosity

slower than radiation transfer and rotation, so that L of the particle with mass m remains constant, but its
kinetic and internal energy are distributed to other particles by collisions, shocks and radiation. For the
constant L the minimal energy is for the circular orbit ⇒ we obtain the thin disk in which particles rotate
with vφ = RΩ(R) and we can write, with the potential Φ: Fg = ma = mv2φ/R = −dΦ/dR = Fcf .

If there is a process counteracting the spread of particles (as viscosity), energy spreads through the system
by heat, and escapes from the system by radiation. As a consequence, mass particle will orbit at smaller R,
we can understand this as transformation of the orbital energy into radiation energy. With the gas surface
density S(R,t) and radial velocity vr(R, t), we observe the element of gas with inner radius R and outer
R + ∆R. Mass of such ring is ∆m = 2πR · ∆R · S, angular momentum L = R × p, where for angle of
90◦ between R and p we can write L = Rmvφ, and in fact we can write, with L = mR2Ω, that the angular
momentum of such ring is 2πR∆RSR2Ω. Change of mass of such a ring is equal to the fluxes in and out
from the neighboring rings (positive sign means the flow is directed away from the origin):

∂

∂t
∆m = flux(R)− flux(R+∆R) =

vr(R, t) · 2πRS(R, t)− vr(R+∆R, t) · 2π(R+∆R)S(R+∆R, t) =

vr(R, t) · 2πRS(R, t)− vr(R+∆R, t) · 2πRS(R+∆R, t)− vr(R+∆R, t) · 2π∆RS(R+∆R, t) =

with ∆R → 0, the 3rd term = 0 and f(x+∆x)− f(x) = ∆x∂f(x)∂x = −∆R∂(2πRSvr)/∂R.

Now we can write ∂/∂t(∆m)/∆R = −∂/∂R(2πRSvr) and since ∆m/∆R = 2πRS and we stay, after
divide by 2π, with ∂/∂t(RS) = −∂/∂R(RSvr), ∂R/∂t = vr. We can write further vrS + R∂S/∂t =
−vrS−R∂/∂R(Svr). Since ∂/∂R(RSvr) = vrS+R∂/∂R(Svr), we can write: R∂S/∂t+∂/∂R(RSvr) =
−vrS = 0, as we are interested only in the change of mass.

Exercise: Do the derivation for conservation of the angular momentum of a ring, but now adding the
term for transfer of angular momentum between the rings, because of viscous torques J, ∆R∂J/∂R.

Solution:

∂

∂t
(2πR∆RSR2Ω) = vr(R, t)2πRS(R, t)R2Ω(R) =

−vr(R+∆R, t)2π(R+∆R)S(R+∆R, t)(R+∆R)2Ω(R+∆R) +
∂J

∂R
∆R =

(R+∆R)3 = R3 + 3R2∆R+ 3R(∆R)2 + (∆R)3 ≈ R3 + 3R2∆R =

vr(R, t)2πRS(R, t)R2Ω(R+∆R)− 3vr(R+∆R, t)2π∆RS(R+∆R, t)R2Ω(R+∆R) +
∂J

∂R
∆R.

In the linear approximation, first two terms are−δR∂(2πvrRSR2Ω)/∂R and we have 2π∆R∂t(RSR2Ω) =
−∆R∂R(2πvrrSR

2Ω)− 3vr2π∆RSR2Ω+ ∂RJ∆R. We obtain

∂R

∂t
SR2Ω+R2 ∂

∂R
(SR2Ω) = − ∂

∂R
(RvrSR

2Ω)− 3vrSR
2Ω− 1

2π

∂J

∂R
.

Again we discard constant 1st l.h.s and 2nd r.h.s. terms and write ∂R/∂t = vr to obtain:

R
∂

∂t
(SR2Ω) +

∂

∂R
(RvrSR

2Ω) =
1

2π

∂J

∂R
.

1.6 Viscosity

Now we will find the torque of two neighbor rings, as shown in Fig. 1.2. The speed of chaotic motion in the
gas is ṽ, and λ is the characteristic scale, which is also the mean free path. After exchange, element A will (in
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Chapter 1 Introduction to accretion 1.6 Viscosity

average) have torque from the positionR−λ/2, and element in B fromR+λ/2. Material in chaoticmovement
does not transfer matter (in average =0), only the steady flow can. Transferred mass is ∂m/∂t = Hρṽ, where
H is the disk height in z direction. For the accretion process essential is the difference in transported torques,
and there is transport of torque because of chaotic motions. This is viscous torque. Observer in point P,
rotating with Ω(R) sees fluid in R− λ/2 moving with speed (R− λ/2)Ω(R− λ/2) +Ω(R)λ/2. This gives
the average flow of angular momentum by the unit angle directed outwards ρṽHR[(R−λ/2)Ω(R−λ/2)+
Ω(R)λ/2] and inwards ρṽHR[R+λΩ(R−λ/2)/2−Ω(R)λ/2]. Torque on the outer ring by the inner ring
is equal to total outwards torque. In the first order approximation we have:

ρṽHR

���
R− λ

2

�
Ω

�
R− λ

2

�
+ Ω(R)

λ

2

�
−

�
R+

λ

2

�
Ω

�
R+

λ

2

�
− Ω(R)

λ

2

���
=

ρṽHR

�
RΩ

�
R− λ

2

�
−RΩ

�
R+

λ

2

�
− λ

2
Ω

�
R− λ

2

�
− λ

2
Ω

�
R+

λ

2

�
+ 2Ω(R)

λ

2

�
= −λρṽHR2 ∂Ω

∂R
,

since the first two terms in {} give −Rλ∂Ω/∂R, and 3rd and 4th after λ/2 → 0 give −λ/2Ω(R).
For the whole ring we multiply the obtained result with 2πR, and with the surface density ρH = S (from

ρ = m/V , S = m/A we divide with H, we have S/H = m/(AH), r.h.s.=ρ) we obtain that the torque of the
outer to the inner ring (- inner torque to the outer ring) is J(R) = 2πRνSR2∂Ω/∂R, where ν = λṽ is the
kinematic viscosity coefficient.

We had J=J(R,t), and with R∂Ω/∂R = A we have J(R) = 2πRνSAR, where νSA is a viscous force per
unit angle. Now we can insert the obtained viscosity in the disk equations. We insert J into the equation we
obtained from angular momentum conservation:

R
∂

∂t
(SR2Ω) +

∂

∂R
(RvrSR

2Ω) =
1

2π

∂J

∂R
. (1.5)

We divide this with R and together with R∂S/∂t+ ∂/∂R(RSvr) = 0 we can eliminate vr.
After the division with R, we can rewrite the equation as:

S
∂

∂t
(R2Ω) +R2Ω

∂S

∂t
+

1

R
R2Ω

∂

∂R
(SRvr) +

1

R
SRvr

∂

∂R
(R2Ω) =

1

R

∂

∂R
(νSR3∂Ω). (1.6)

We write R∂tS + ∂R(RSvr) = 0 as ∂R(Rsvr) = −R∂tS to obtain:

S
∂

∂t
(R2Ω) +R2Ω

∂S

∂t
−R2Ω

∂S

∂t
+

1

R
SRvr

∂R2Ω

∂R
=

1

R

νSR3∂Ω

∂R
. (1.7)

In the first approximation L is a constant vector, and since R2Ω is proportional to its length, we can discard
the 1st term. We obtain:

vr =
1
R

∂
∂R(νSR

3 ∂Ω
∂R)

S ∂
∂R(R

2Ω)
. (1.8)

Inserting it into R∂S/∂t+ ∂/∂R(RSvr) = 0 we have:

∂S

∂t
= − 1

R

∂

∂R

"
RS

1
R

∂
∂R

�
νSR3 ∂Ω

∂R

�

S ∂
∂R (R2Ω)

#
=

1

R

∂

∂R

( ∂
∂R

h
νSR3

�
− ∂Ω

∂R

�2i

∂
∂R (R2Ω)

)
. (1.9)

With Fg = Fcf , in the potential of a point mass M we have mv2/R = GMm/R2 and vφ = ΩR, G=gravity
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Chapter 1 Introduction to accretion 1.7 Role of turbulence

const., Keplerian Ω = (GM/R3)1/2 and dΩ/dR = −3/2(GM/R5)1/2. It follows:

∂

∂R

�
R2Ω

�
=

∂

∂R

�
R2

√
GMR− 3

2

�
=

∂

∂R

�√
GMR

1
2

�
=

1

2

√
GMR− 1

2 ,

∂S

∂t
=

1

R

∂

∂R

" ∂
∂R

�
νSR3 3

2

√
GMR

5
2

�

1
2

√
GMR−1/2

#
=

1

R

∂

∂R

" ∂
∂R

�
νS 3

2

√
GMR

1
2

�

1
2

√
GMR−1/2

#
=

3

R

∂

∂R

�√
R

∂

∂R

�
νS

√
R
��

.

This is the diffusion equation for the surface density S: mass diffuses inwards, angular momentum outwards.
Diffusion timescale is tvisc = R2/ν.

1.7 Role of turbulence

We obtained the equation for surface density S. In general, ν depends on local conditions in the disk, and
ν = ν(S,R, t) so that we obtained nonlinear diffusion eq. for S. If ν depends on R only, equation is linear
in S, even for the power of R - this was clear already in 1920-ies, Jeffreys 1924 [F J53], Weizsäcker in 1948
[Wei48].

Most of the mass moves towards the center, losing energy and torque. A tail of matter moves towards
larger R to conserve the angular momentum. Matter from the initial ring arrives to the center, and total
angular momentum is transported to large radii by a very small mass, compared to the disk mass. The disk
slowly spreads outwards.

In 1973 Shakura & Sunyaev [SS73, hereafter SS73] gave a solution, parameterizing viscosity as ν = αcsH ,
where α < 1 is a coefficient describing “turbulent viscosity”. Usually ν ∼ LV , where L is characteristic
scale, and v characteristic velocity of the turbulent eddies-so we assumed L ∼ H of the disk, and V ∼ cs
(turbulence is usually assumed to be subsonic). In astrophysics we are usually dealing with large Reynolds
numbers Re, defined through Re = LV/ν, simply because of large L.

Re measures ratio of inertial to viscous forces, so in the disc we usually have proportionality with v2φ/R
For Re << 1 viscous forces are dominating, and with Re >> 1 they are unimportant. In accretion discs
usually Re >> 1011 and we can not get much lower. Clue of the problem is exactly in so large Re: from
experiments we know that fluids have some critical value Rec, at which the velocity becomes chaotic, so
we have turbulence. Typical Rec = 103, so we can conclude that disc material is turbulent. Mathematically,
viscous process is a diffusion process (of matter and angular momentum), this is the basics for our description.

There were many works on turbulence, but we still do not have the full understanding of the mecha-
nism in accretion disks. Currently accepted paradigm is the one by [BH91], where magneto-rotational (MRI)
turbulence is invoked. Recent works shows that to the first order, at least in some astronomical objects, out-
comes of the viscous-alpha and MRI models are similar, see e.g. Mishra et al. (2020) [Mis+20]. It is still a
developing topic.
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Chapter 2

Steady accretion disk solutions

We will go through (sometimes painful) detail into the accretion disk equations. The obtained solution is still
a starting point for explanation of the birth of stars and larger structures. Matter which we consider, when
undergoing accretion, is gaseous, which means that interaction is by the collisions, not short distance forces.
We use, as we did before, λ for the mean free path of the particles, ṽ for the mean velocity (velocities are
measured in the comoving coordinates, and distributed following a Maxwell-Boltzmann distribution, which
is dependent on the temperature, T), ρ for the mass density of gas. When observing the gas at scales L >> λ,
we can consider it as a continuous fluid, with density, velocity and temperature defined in every point of the
flow. The equations to describe such fluid are the equations of conservation of mass, momentum and energy.

Conservation of mass:
∂ρ

∂t
+∇ · (ρv) = 0. (2.1)

Conservation of momentum follows from the force acting on a fluid element:

−
I

Pdn = (Gauss−Ostrogradski) = −
Z

V
∇PdV. (2.2)

P is pressure, and the direction of the unit vector n is outwards from the volume.
Force acting on the unit volume element of the gas is (−∇P ), and its equation of motion we obtain from

the 2nd Newton’s Law, multiplying it with the unit volume mass=density ρ and acceleration, so we can write:

ρ
dv

dt
= −∇P. (2.3)

Acceleration is also with respect to the comoving coordinates, not in the background rest system, so we have
two parts in the velocity change in this equation: one is the change of velocity in the given point of space
at a time interval dt: ∂v/∂tdt and another is the difference in velocities at two points of space, distanced r,
through which the fluid flows during dt, what we can write as dr∇v, so we can write all together:

dv =
∂v

∂t
dt+ dr∇ · v /

1

dt
, (2.4)

dv

dt
=

∂v

∂t
+ v∇ · v. (2.5)

When we insert it to the above equation of motion, we obtain:

ρ
∂v

∂t
+ ρv∇ · v = −∇P. (2.6)
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Chapter 2 Steady accretion disk solutions

General equation of motion should add the source term for the external forces acting on the system, we
obtain the Euler equation:

ρ
∂v

∂t
+ ρv∇ · v = −∇P + f . (2.7)

If we insert f = ρg for a gas in gravity field (g is the gravity acceleration), f could contain contributions from
viscosity, external magnetic field etc. Momentum of the fluid element is ρv, conservation of the momentum
is:

∂

∂t
ρv = 0 =

∂ρ

∂t
v + ρ

∂v

∂t
. (2.8)

For a stationary flow ∂ρ/∂t = 0, and also the last derivative is zero, and we have

ρv∇ · v +∇P − ρg = 0 (A) (2.9)

From
mg = −GMmr0/r

2 is g = −GMmr0/r
2. (2.10)

For the accretion onto spherical object of massM, we choose spherical coordinates (r, θ,φ), radial component
of the equation (A) is:

ρvr
1

r2

�
d

dr
(r2vr)

�
+

∂P

∂r
+ ρ

GM

r2
= 0 /

1

ρ
(2.11)

where [] = 2rvr + r2∂vr/∂r so we have (2.12)
2v2r
r

+ vr
∂vr
∂r

+
1

ρ

∂P

∂r
+

GM

r2
= 0. (B) (2.13)

From the continuity equation we have, for the stationary case with ∂P/∂t = 0 that ∂ρ/∂t+∇(ρvr) = 0.
For any vector A radial part is ∇ · A = 1

r2
[ ddr (r

2Ar)] so we have ρ 1
r2

d
dr (r

2vr) = 0/
R
, which means that

r2vr = const.
Since (−ρvr) is inflow mass flux, this constant must be related to mass flux, i.e. the accretion rate Ṁ =

4πrρ(−vr), since r2 · (inflow flux) = const = Ṁ/(4π), for the whole sphere is 4πr2Ṁ · (inflow flux).
Now we insert r2vr = −Ṁ/(4πρ) into the eq.(B) from above to obtain vr = −Ṁ/(4πρr2), which in the
limit r → 0 gives vr = 0 and for the stationary spherical accretion we stay with

vr
∂vr
∂r

+
1

ρ

∂P

∂r
+

GM

r2
= 0. (2.14)

Energy conservation:
The gas element energy is a sum of kinetic term ρv2/2 (by unit volume) and internal (thermal) energy ϵρ
(where ϵ is the specific energy-by mass unit, dependent on temperature T). From the equipartition of energy
we know that each degree of freedom has average energy of kT/2, so for a mono-atomic gas we have only 3
translational directions and we can write ϵ = 3kT/2. Energy conservation equation we write similar to the
mass conservation, adding source terms, depending on physics we include in our model. Instead of density
ρ, now we conserve the kinetic and internal energy, and in the spatial derivative we will have work done by
the pressure, Pv:

∂

∂t
(
1

2
ρv2 + ρϵ) +∇ · [(1

2
ρv2 + ρϵ+ P )v]− fv = 0, (2.15)

and for a stationary case:
ρϵ) +∇ · [(1

2
ρv2 + ρϵ+ P )v] = fv. (2.16)

On the r.h.s. we can add the losses (with the - sign!) by radiation, heat etc. as the source terms inside the
−∇() term.
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Chapter 2 Steady accretion disk solutions 2.1 Perturbative solutions for the disk

2.1 Perturbative solutions for the disk

Nowwemove to the perturbationmethod-we compute the perturbation in relation to the hydrostatic balance.
We obtained

∇ · (ρv) = 0

ρ(v ·∇)v = −∇P + f (2.17)

∇ ·
��

1

2
ρv2 + ρϵ+ P

�
v

�
= fv,

and with v = 0 in the hydrostatic case we stay only with

∇P = f . (2.18)

For the ideal gas, which we can assume everywhere except degenerate gas in some dense objects or near the
centres of the normal stars, we have

P =
ρKT

µmH
, (2.19)

with mH ∼ mproton the hydrogen atom mass, and µ is the average molecular mass in units of mH, so that
for completely ionized hydrogen it is µ = 0.5 and for neutral hydrogen µ = 1.

Now we assume a small shift in the density and pressure (ρ′, P ′) from the initial balance values (ρ0, P0):
ρ = ρ0+ρ′, P = P0+P ′, v = v′. Depending on the processes, perturbations can be isothermal or adiabatic.
For adiabatic changes with γ = 5/3 and isothermal with γ = 1 we can write P/(ργ) = const = k, so we
can write P0 + P ′ = k(ρ0 + ρ′)γ1.

Linearizing the mass continuity eq. with ∇(ρ′v) → 0 in the first approx.:

∂ρ

∂t
+∇ · (ρv) = ∂

∂t
(ρ0 + ρ′) +∇ ·

�
(ρ0 + ρ′)v′)

�
=

∂ρ′

∂t
+ ρ0∇ · v′ = 0. (2.20)

We do the same with Euler eq. to obtain:

(ρ0 + ρ′)
∂v′

∂t
+ (ρ0 + ρ′)v′ ·∇ · v = −∇(P0 + P ′) + f (2.21)

ρ0
∂v′

∂t
+ ρ0v

′ ·∇ · v′ = −∇P0 −∇P ′ + f .

Since ∇P0 = f , and products of second and higher orders are neglected, we obtain ρ0∂tv
′ = −∇P ′. We

obtained two equations:

∂ρ′

∂t
+ ρ0∇ · v′ = 0

∂v′

∂t
+

1

ρ0
∇P ′ = 0. (2.22)

From P0+P ′ = k(ρ0+ρ′)γ we see that P is a function of ρ only, so that we can write∇P ′ = (∂P/∂ρ)0∇ρ′,
to the first order, where with a subscript 0 we assigned that we evaluate the derivation for the equilibrium
state. The second of the equations 2.22 we can write now as:

∂v′

∂t
+

1

ρ0

�
∂P

∂ρ

�

0

∇ρ′ = 0. (2.23)

1If γ = 1 produces a failure in the simulations, try γ = 1.05 or a similar number slightly larger than unity. Without a preset
limit in the code, γ = 1 is often a problem in the isothermal case.
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Chapter 2 Steady accretion disk solutions 2.2 Stationary thin disk

We act on it with the ∇ operator: ∇ · ∂tv′ + 1/ρ(∂ρ/∂P )0∇2ρ′ = 0. We act on the first of the equations in
2.22 with ∂/∂t: ∂2

t ρ
′ + ρ0∇(∂tv

′) = 0. We subtract the two eqs.to obtain ∂2
t ρ

′ = (∂P/∂ρ)0∇2ρ′, the wave
equation. With (∂P/∂ρ)0 as a square of the sound speed c2s , we can write ∂2

t ρ
′ = c2s∇2ρ′.

For P ′ and v′ we obtain the equivalent equations, so we conclude that small perturbations around the
hydrostatic equilibrium positions spread with the speed of sound. Depending on the kind of perturbation,
we have two possibilities, adiabatic:

cad =

s
5P

3ρ
=

s
5kT

3µmH
∝ ρ1/3, or isothermal cisots =

s
P

ρ
=

s
kT

µmH
. (2.24)

2.2 Stationary thin disk

We obtained the equation 1.10 for the disk surface density:

∂S

∂t
=

3

R

∂

∂R

�√
R

∂

∂R

�
νS

√
R
��

.

To continue, we need the viscosity. That the disk would be “stationary” and that viscosity would work,
we need that the mass accretion rate Ṁ would be slow enough. Then we can set ∂/∂t = 0 and from the
mass conservation we can write Ṁ = 2πRS(−vr) and from the angular momentum conservation we have
RSvrR

2Ω = (J(R, t) + C)/(2π)), with C = const. related to the angular momentum rate of the accreted
matter. Star must rotate slower than the breakup rotation at the equator, so when approaching closer to
the star, there is a region in the disk where the disk co-rotates with the star. Even closer to the star, our
approximation breaks-here starts the discussion and departure from the simple estimates.

We had J = J(R, t), and with R∂Ω/∂R = A it was J(R) = 2πRνSAR, where νSA is a viscous force
per unit angle. After integration:

− νS
∂Ω

∂R
= S(−vrΩ) +

C

2πR3
. (2.25)

Inside a ring at RA + b, the rotation of the disk approaches Keplerian, reaches ∂Ω/∂R = 0, and increases
until it reaches R ∼ RA. We can write:

Ω(RA + b) =

s
GM

R3
A

�
1 +O

�
b

RA

��
. (2.26)

Closer than RA The thin disk approximation is not valid anymore. To find C we insert R = RA + b and
evaluate C = 2πRA3SvrΩ(RA + b)|RA + b (now Ω(), not multiplying!), which gives, after inserting mass
accretion rate Ṁ and Ω(RA + b), that C = −Ṁ

√
GMRA, exact to order O(b/RA). We insert it to eq. 2.25

to obtain:

νS =
Ṁ

3π

"
1−

r
RA

R

#
. (2.27)

Loss of energy because of viscosity is

D(R) =
g

4π

∂Ω

∂R
=

1

2
(νS)

�
R
∂Ω

∂R

�2

(2.28)

which is D(R) = g/(4pi)∂Ω/∂R per unit disk surface (g is the gravitational acceleration). Inserted back to
eq. 2.25 it gives that D(R) is independent of viscosity:

D(R) =
3GMṀ

8πR3

"
1−

r
RA

R

#
. (2.29)
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Chapter 2 Steady accretion disk solutions 2.2 Stationary thin disk

Now we can estimate the luminosity of a disk between R1 and R2 (factor 2 is for 2 disk sides):

L(R1, R2) = 2

Z R2

R1

D(R)2πRdR =
3

2
GMṀ

Z R2

R1

"
1−

r
RA

R

#
dR

R2
. (2.30)

If we substitute x = R/RA, we obtain

L(R1, R2) = 2

Z R2

R1

D(R)2πRdR =

3

2
GMṀ

"
1

R1

 
1− 2

3

r
RA

R1

!
− 1

R2

 
1− 2

3

r
RA

R2

!#
. (2.31)

For R = R1 and R2 → ∞ we obtain the complete disk luminosity:

Ldisk =
GMṀ

2RA
=

1

2
Laccr, (2.32)

where we defined Laccr = ∆Eaccr/∆t = GMṀ/RA. This means that half of the energy is radiated from
the disk, and half is released very close to the central star, which takes the same amount like the whole disk!
(which has a much, much larger surface).

This was derived for a radial direction, is it all consistent with the vertical direction? In the vertical, z
direction, there is mainly no flow, we have the hydrostatic equilibrium:

1

ρ

∂P

∂z
=

∂

∂z

"
GM√
R2 + z2

#
(2.33)

which we get from the vertical component of the Euler eq. 2.7, neglecting all the terms with velocities. For
the thin disk z ≪ R we have:

1

ρ

∂P

∂z
= −GMz

R3
. (2.34)

Since H||z we can write ∂P/∂z ∼ P/H and z ∼ H , and condition for a thin disk becomes H ≪ R. For
P ∝ ρc2s we have H ≃ csR

4
p
R/GM , which means that it has to be cs ≪

p
GM/R and there is an

additional condition for a thin disk: local Keplerian speed must be highly supersonic. Only with this satisfied,
the approximation of thin disk can be used. This is a strong condition for the inner workings of a disk, and
tells us that the local orbiting speed will be close to the Keplerian speed.

The radial component of the Euler eq.is:

vr
∂vr
∂R

− vφ
R

+
1

ρ

∂P

∂R
+

GM

R2
= 0. (2.35)

If we neglect the pressure term, because of cs ≪
p
GM/R, we have ρ−1∂P/∂R ∼ c2s/R in comparison to a

larger gravitational term GM/R2, with Ṁ = 4πrρ(−vr) which we know from before, and eq. 2.25 we have

vr = − 3ν

2R

 
1−

r
RA

R

!−1

. (2.36)

Nowwe are slowly shifting to the [SS73] main assumption: for any reasonable viscosity, the radial velocity vr
is highly subsonic, while orbital velocity is highly supersonic and approximately Keplerian: with ν ∝ CsH
we have vr ∝ ν/R ∼ csH/R ≪ cs Now we have all the equations for the disk structure.
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Chapter 2 Steady accretion disk solutions 2.3 Shakura & Sunyaev viscous alpha disk

2.3 Shakura & Sunyaev viscous alpha disk

Now we are in a better position to discuss the Shakura & Sunyaev (1973) [SS73] paper2, which is one of the
most cited papers on accretion disks3. It got a reprint in A&A in 2009, and a review by Andrew King, which
best describes its importance. It is an epithomy of a seminal paper.

With the thin disk approximation, we can compute the structure of the disk. In practice, we are solving
the 1Dwith only a radial dependence, as we decoupled it from the vertical, z-dependence, which is essentially
written as a hydrostatic equilibrium and energy transport. In the radial direction, the disk structure enters
only in the local energy dissipation rate D(R). From the hydrostatic eq. 2.34 for isothermal structure we
obtain the solution ρ(R, z) = ρc(R) exp

�
−z2/2H2

�
, where ρc stands for the density at z = 0.

The central density of the disk we can approximate as ρ = S/H , whereH = ρcs/vφ and c2s = P/ρ, where
P = Pg + Prad = ρkTc/(µmH) + 4σT 4

c /(3c) is a sum of gas and radiation pressure, with an assumption
T (T, z) ∼ Tc(R, 0). The central temperature Tc is determined by the relation between the vertical energy
flux and the energy dissipation because of viscosity. Locally, using the thin disk approximation, we now have
the vertical temperature gradient, so that for z = const. surface we have radiated energy flux

F (z) = −16σT 3

3κRρ

∂T

∂z
, (2.37)

where κR is the Rosseland mean opacity. We assumed the optically thick disk, with τ = ρHκR = SκR ≫ 1,
so that the radiation is locally very close to the black body radiation. In the case with τ ≤ 1 radiation
could directly exit the disk, and the equation for F (z) above would not be valid any more. For the energetic
balance it must be F (H) − F (0) = D(R), so that F (z) ∼ 4σT 4(z)/(3τ) which, with T 4

c ≫ T 4(H) gives
4σT 4

c (z)/(3τ) = D(R). For the full set of equations we need the κR = κR(ρ, Tc) relation, and an expression
for ν and its relation to S and Ṁ . This all amounts to 8 equations for ρ, S, H , Tc, cs, P , τ , ν in dependence
of R,M and Ṁ , with some parameter in the viscosity, which are describing the thin disk model:

(D1) ρ =
S

H
, (D2) H =

csR
3/2

√
GM

, (D3) cs =
P

ρ
, (D4) P =

ρkTc

µmH
+

4σT 4
c

3c
,

(D5)
4σT 4

c

3τ
=

3GMṀ

8πR3

"
1−

r
RA

R

#
, (D6)τ = SκR(ρ, Tc) = τ(S, ρ, Tc),

(D7) νS =
Ṁ

3π

"
1−

r
RA

R

#
, (D8) ν = ν(ρ, Tc, S,α, . . . ). (2.38)

With “alpha viscosity” parameterization ν = αcsH , [SS73] gave the first solution. They used the Kramers’
law4 κR = 5 × 1024ρT

−7/2
c cm2/g and neglected the radiation pressure in eq. D4 of 2.38. Now the system

of 8 equations D1-D8 can be solved. I give steps (from the “Accretion power. . . ”- book [FKR02] for easier
navigating through the solution: First we simplify f4 =

�
1− (RA/R)1/2

�
and write whole r.h.s. of eq. D5

as equal to D. Now with eq. D6, κR and eq. D2 we can write eq. D5 as 4σT 4/(3τ) = D = 4σT 15/2/(3 ·
5 · 1024ρS) = (ρ = S/H) = 4σHT 15/2/(15 · 1024S2) = H = csR

3/2/
√
GM and from eqs. D3 and D4

(without Prad pressure term) write

H = R3/2
√
T [kB/(GMµmp)]

1/2 = 4σR3/2T 8 [kB/(GMµmp)]
1/2 /(15 · 1024S2), (2.39)

2Usually cited before Shakura & Sunyaev disk is Lynden-Bell [Lyn69] discussion of the origin of emission from galactic nuclei -
“old quasars”, where Schwarzschild mouth was still the term for the event horizon.

3Citation count in the NASA ADS was at 10657 at noon Sunday 27.02.2022, 10909 half year later, at 27.08.2022, so it is still steadily
accreting citations.

4Beware that in many publications the value is given wrongly as 6.6× 1022.
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Chapter 2 Steady accretion disk solutions 2.3 Shakura & Sunyaev viscous alpha disk

and from that obtain T 8 = 15 · 1024S2D [kB/(GMµmp)]
1/2 /(4σR3/2). We insert D back as the r.h.s of

eq. D5 and use eqs. D7 and D8 (where ν = αcsH comes finally into use), to write the solution-I give the
detailed derivation of solutions below in the text, this is usually not shown in literature. Now we can write
vr from the equation we obtained at the end of the previous section, vr ∝ ν/R ∼ csH/R ≪ cs.

2.3.1 Surface density

eq. D5 with eq. D6 and κR = 5 · 1024ρT−7/2 gives

4σT 4

3S5 · 1024ρT−7/2
=

3GMṀ

8πR3

 
1−

r
RA

R

!
(2.40)

Using eqs. D1 and D2

ρ =
S

H
=

S

cs

r
GM

R3
(2.41)

By substituting cs =
q

P
ρ =

q
kT

µmH
from eq. D3 and eq. D4, we obtain,

ρ = S

r
GM

R3

µmH

kT
(2.42)

Going back to eq. 2.40:

4σT 4

3S5 · 1024S
q

GM
R3

µmH
kT T−7/2

=
3GMṀ

8πR3

 
1−

r
RA

R

!
(2.43)

and we solve for T :

T 8 =
45 · 1024
32πσ

S2

�
GM

R3

�3/2

Ṁ

r
µmH

k

 
1−

r
RA

R

!
(2.44)

eq. D8 in eq. D7 αcsHS = Ṁ
3π

�
1−

q
RA
R

�
, since

αc2sq
GM
R3

S =
Ṁ

3π

 
1−

r
RA

R

!
⇒ (from eqs. D3 and D4) ⇒

α
kT

µmH

Sq
GM
R3

=
Ṁ

3π

 
1−

r
RA

R

!
⇒

T =
µmH

kSα

Ṁ

3π

 
1−

r
RA

R

!

Now we put it into eq. 2.44,
"
µmH

kSα

Ṁ

3π

 
1−

r
RA

R

!#8
=

45 · 1024
32πσ

S2

�
GM

R3

�3/2

Ṁ

r
µmH

k

 
1−

r
RA

R

!
,

and we solve for S.
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S10 =
�µmH

k

�15/2 Ṁ732πσ

45 · 1024
1

(3πα)8

 
1−

r
RA

R

!7�
R3

GM

�3/2

⇒

S =
�µmH

k

�3/4
�

32πσ

45 · 1024
�1/10 α−4/5Ṁ7/10

(3π)4/5

�
R3

GM

�3/20
 
1−

r
RA

R

!7/10

(2.45)

2.3.2 Disk height

H = cs

r
R3

GM
=

s
kT

µmH

R3

GM

H16 =

�
k

µmH

R3

GM

�8

T 8 =

�
k

µmH

R3

GM

�8
45 · 1024
32πσ

S2

�
GM

R3

�3/2

Ṁ

r
µmH

k

 
1−

r
RA

R

!

H8 =

�
k

µmH

R3

GM

�4�
45 · 1024
32πσ

�1/2

S

�
GM

R3

�3/4

Ṁ1/2
�µmH

k

�1/4
 
1−

r
RA

R

!1/2

=

=

�
k

µmH

�15/4� R3

GM

�13/4

Ṁ1/2

�
45 · 1024
32πσ

�1/2
 
1−

r
RA

R

!1/2

S =

=

�
k

µmH

�15/4� R3

GM

�13/4

Ṁ1/2

�
45 · 1024
32πσ

�1/2
 
1−

r
RA

R

!1/2

·

·
�µmH

k

�3/4
�

32πσ

45 · 1024
�1/10 α−4/5

(3π)4/5

�
GM

R3

�−3/20
 
1−

r
RA

R

!7/10

Ṁ7/10 =

=

�
k

µmH

�3� R3

GM

�17/5

Ṁ6/5

�
32πσ

45 · 1024
�−2/5

 
1−

r
RA

R

!6/5
α−4/5

(3π)4/5

H =

�
k

µmH

�3/8� R3

GM

�17/40

Ṁ3/20

�
32πσ

45 · 1024
�−1/20

 
1−

r
RA

R

!3/20
α−1/10

(3π)1/10
. (2.46)

2.3.3 Mass density

ρ =
S

H
=

�µmH
k

�3/4 � 32πσ
45·1024

�1/10 α−4/5Ṁ7/10

(3π)4/5

�
R3

GM

�3/20
�
1−

q
RA
R

�7/10

�
k

µmH

�3/8 �
R3

GM

�17/40
Ṁ3/20

�
32πσ

45·1024
�−1/20

�
1−

q
RA
R

�3/20
α−1/10

(3π)1/10

=

=
�µmH

k

�3/8
�

R3

GM

�17/40

Ṁ3/20

�
32πσ

45 · 1024
�−1/20

 
1−

r
RA

R

!11/20
α−7/10

(3π)7/10
. (2.47)
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2.3.4 Temperature

From 2.44 we have

T =

�
45 · 1024
32πσ

�1/8

S1/4

�
GM

R3

�3/16

Ṁ1/8
�µmH

k

�1/16
 
1−

r
RA

R

!1/8

=

=

�
45 · 1024
32πσ

�1/10�
GM

R3

�3/20 �µmH

k

�1/4
Ṁ3/10 α−1/5

(3π)1/5

 
1−

r
RA

R

!3/10

. (2.48)

2.3.5 Optical depth

From eq. D6 we have, inserting ρ and T :

τ = 5× 1024SρT−7/2 =

= 5× 1024
�µmH

k

�1/4
�
45 · 1024
32πσ

�−2/5
Ṁ−1/5α−4/5

(3π)4/5

�
GM

R3

�11/10
 
1−

r
RA

R

!1/5

. (2.49)

2.3.6 Viscosity

From eq. D8

ν = αcsH = αH2

r
GM

R3
=

=

�
k

µmH

�3/4� R3

GM

�7/20

Ṁ3/10

�
32πσ

45 · 1024
�−1/10

 
1−

r
RA

R

!3/10
α4/5

(3π)1/5
. (2.50)

2.3.7 Velocity

From eq. 2.36 we now can write the radial velocity in the disk:

vr = − 3ν

2R

 
1−

r
RA

R

!−1

=

= −3Ṁ3/10

2R

�
k

µmH

�3/4� R3

GM

�7/20�
32πσ

45 · 1024
�−1/10

 
1−

r
RA

R

!−7/10

. (2.51)

In the literature, we usually find the solutions above written with R10 = R/1010cm, M1 = M/M⊙,
Ṁ16 = Ṁ/(1016gs−1), µ = 0.615, f = (1−

p
R/RA)

1/4 as:

S = 5.2α−4/5Ṁ
7/10
16 M

1/4
1 R

−3/4
10 f11/5 gcm−2,

H = 1.7× 108α−1/10Ṁ
3/20
16 M

−3/8
1 R

9/8
10 f3/5 cm,

ρ = 3.1× 10−8α−7/10Ṁ
11/20
16 M

5/8
1 R

−15/8
10 f11/5 gcm−3,

T = 1.4× 104α−1/5Ṁ
3/10
16 M

1/4
1 R

−3/4
10 f6/5 K,

τ = 190α−4/5Ṁ
1/5
16 f4/5,

ν = 1.8× 1014α4/5Ṁ
3/10
16 M

−1/4
1 R

3/4
10 f6/5 cm2s−1,

vr = 2.7× 104α4/5Ṁ
3/10
16 M

−1/4
1 R

−1/4
10 f−14/5 cms−1. (2.52)
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Chapter 2 Steady accretion disk solutions 2.4 Working of MRI in the disk

It is important that α is nowhere coming with large power, so that any error because of our not knowing
it, is less.

The Kramers’ law for κR is critical, because when it is not holding any more, our approximation breaks
down, but until it holds, disk can extend far in R, of the order of Roche boundary of the more massive star.
Mass in the disk is

Mdisk = 2π

Z Rexternal

RA

SRdR ≤ 10−10M⊙α−4/5Ṁ
7/10
16 , (2.53)

which is even in the very large disks negligible in comparisonwith the central object. This justifies the neglect
of self-gravity of a disk, which is valid until ρ ≪ M/R3. Only for a very small α, of the order of 10−10, this
would not be fulfilled. The disk thickness in z-direction means that each element of the disc surface radiates
as a black body with a temperature T (R) given by equating the dissipation rate D(R) per unit face area to
the black body flux: σT 4 = D(R). If we insert D from above,

T (R) =

"
3GMṀ

8πR3σ

 
1−

r
R⋆

R

!#1/4
. (2.54)

For R ≫ R⋆, T = T⋆(R/R⋆)
−3/4, where

T⋆ =
3GMṀ

8πR3
⋆σ

1/4

, (2.55)

which gives 4.1× 104Ṁ
1/4
16 m

1/4
1 R

−3/4
9 K and 1.3× 107Ṁ

1/4
17 m

1/4
1 R

−3/4
6 K with R9 = R⋆/10

9 cm etc. for a
disk around white dwarf and R6 = R⋆/10

6 cm, respectively, in the case of neutron star5.
The low power ofα in the equations is good for usefulness ofα as a parameter, but it alsomeanswe cannot

expect to learn the typical size of α by direct comparison of steady-state disc theory with observations. This
is something what is troubling disk astrophysics until today. No free lunch!

A good thing is that for α ≤ 1 we obtained solutions, which are not too much off the models from obser-
vational data. Where we expect the assumptions (Kramers’ opacity and the neglect of radiation pressure) to
break down? We have κR = τ/S = 36Ṁ

−1/2
16 m

1/4
1 R

3/4
10 f−2 in Ṁ

2/3
16 m

1/3
1 f8/3 cm. This is smaller than the

radius of a white dwarf for any reasonable Ṁ , so for the accretion discs in cataclysmic variables we expect
Kramers’ opacity to dominate in most of the disc.

In a reasonable range we can rely on the results for the physical regimes in steadyα-discs around compact
objects. If the disk is concave, then the central, hot regions, could irradiate the more distant, colder parts of
the disk with hard radiation, and the picture complicates-this would show in observations. Similar would
be for a warped disk, where a non-central force of photons scattered from the disk surface would produce
torque on the disk.

If the disk is concave, then the central, hot regions, could irradiate the more distant, colder parts of the
disk with hard radiation, and the picture complicates-this would show in observations. E.g. in low-mass
X-ray binaries the disk is probably heated by irradiation by the central accretion source. If the accretor is a
luminous star, we can have a similar effect.

2.4 Working of MRI in the disk

Alpha viscosity does not give us predictive power. Since ∂/∂R(R2Ω) = 0 (Rayleigh criterion, stability
against axisymmetric perturbations) and ∂Ω/∂R) < 0. Most potential mechanisms are sensitive to the an-
gular momentum gradient, so they work in such a way that they are bringing angular momentum INWARDS.
We need a mechanism sensitive to Ω.

5Note that now it is RA = R⋆.
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Chapter 2 Steady accretion disk solutions 2.5 Self-gravity in the disk

If not alpha viscosity, then what? How the MRI works? Balbus-Hawley (1992) (magnetorotational, MRI)
instability. If we imagine a straight magnetic field B line threading a rotating disc, magnetic tension tries to
straighten line, there is imbalance between gravity and rotation which bends the magnetic field line.

Vertical field line perturbed outwards, rotates faster than surroundings, so centrifugal force is larger than
gravity, so that kink increases. Line connects fast-moving (inner) matter with slower (outer) matter, and
speeds latter up: this produces outwards angular momentum transport!

For a too large magnetic field, instability is suppressed. Distorted fieldline stretched in the azimuthal
direction by differential rotation, strength grows, pressure balance between flux tube and surroundings re-
quiresB2/8π+Pgas,in = Pgas,out, so that gas pressure (and density) are lower inside tube; buoyant (Parker)
instability works, and Flux tube rises above the disk, creating another vertical field, which closes the cycle,
which can transport the angular momentum – this was shown to work in numerical simulations.

2.5 Self-gravity in the disk

Another effect which will change the picture is when the disk becomes larger. E.g. the size of AGN disk is
set by self-gravity: vertical component of gravity from central mass is ∼ GMH/R3 and from self-gravity
∼ GρH3/H2 = GρH . Thus self-gravity takes over where ρ ∼ M/R3 or Mdisk ∼ R2Hρ ∼ HM/R.
Outside of this region, disk breaks-up into stars.
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Chapter 3

General accretion disk solutions

3.1 Urpin’s and Regev’s vertically averaged solutions

We mentioned before the z-averaged solutions. Assumptions in Urpin (1984) [Urp84] are all as in SS73 solu-
tion. He discusses the obtained solutions in the different regions in the disk, similar to SS73. It is interesting
that in his approach he first obtained the accretion flow in the disk having two directions: near the disk
mid-plane it is away from the central object1, and higher in the disk, it is towards the central object. Still, in
his solution, mass accretion rate towards the star exceeds the outward flow by a factor 4 or 5, depending on
the considered zone.

In Regev (1983) [Reg83], a solution by expansion on a small parameter ofH/R is proposed. On this, later
similar solutions are developed. To better understand the subsequent development, we briefly discuss his
solution.

Boundary layer between the inner disk radius and stellar surface is important-there ΩK of the infalling
material changes to Ω⋆ in a very thin layer, compared to the disk extension in radius. As we obtained in the
previous chapter, up to a half of the accretion luminosity is generated in this thin layer.

In SS73, Pringle (1981) [Pri81] and similar, dΩ/dr = 0 is used at r = r⋆ boundary. Solutions by Regev,
applied to a disk around a white dwarf relate to region (c) in SS73. He searches for steady, axisymmetric
solutions, with ∂/∂t = ∂/∂φ = 0, viscosity is present (only r−φ component of the viscous stress tensor, the
rest of it is neglected), the disk is optically thick, with radiation transfer treated in the diffusion approximation.

He solves the usual equations: momentum eq. in r and z directions (in cylindrical coords), angular
momentum (in radial direction), mass continuity and energy equations. He prescribes the radiative energy
fluxes in r and z directions assuming the optically thick disk, with radiation transfer treated in the diffusion
approximation

We need to supply the equation of state for P and opacity κR. The constant mass flux through the disk
is another requirement, which is a constraint for the solution: −2πr

R∞
∞ ρudz = Ṁ = const.

We will not follow Regev solution, because we will improve on it with KK solution. We only mention
that he used the “method of matched asymptotic expansions”2.

The ideal gas eq.is assumed, the radiative term neglected, opacity for free-free transitions is assumed, in
the main solution and also in the boundary layer. Viscosity in the boundary layer is assumed as νBL =
KV turbΛ, with K and V turb constant and Λ being a characteristic length scale in the boundary layer. In
the non-dimensional units it is

νBL =
K

α

vturb
ṽs

Λ

H̃
. (3.1)

1We call it backflow in the later text.
2Regev refers to it as “Bender & Orszag (1978, chapter 9) solution for differential eqs. which exhibit a boundary layer structure”.

I usually refer to it as performing a Taylor expansion in a small parameter ϵ, as this is to what we resort at the end.
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Regev uses the “matched” part of the solution at the boundaries to ensure the physicality of solutions. An
“outer” expansion at r ̸= 1, ϵ → 0 is constructed and matched to the inner expansion, valid in the disk.
Similar is done for the inner region, in the case when star is fast rotating, near the breakup velocity, he
assumes Ω⋆ = ϵ1/2ΩK,⋆. This is different from KK solution, where this constraint is relaxed.

Regev’s is another z-averaged solution, only more involved than Urpin’s. The obtained equations need
to be solved numerically, in difference to KK solution, which we will derive analytically.

3.2 Kluźniak-Kita 3D global solution

The work in Kluźniak & Kita (2000) [KK00, hereafter KK00] paper, which exists only in arXiv version3, is
actually a PhD thesis of David Kita from 1995 at Madison University, USA [Kit95]4. It is a general solution
obtained similarly to Regev’s, but without assumptions he used at the inner disk radius. It is a 3D, axisym-
metric, purely HD solution.

We will go through the process of deriving asymptotic matched solutions in, again sometimes painful,
detail. It is a very instructive example, and it could be of use for other similar work.

Motivation of KK00 paper is to find the solutions which would show that the backflow, which appeared
also in other solutions except Urpin and Regev, is not of a thermal origin. Urpin included thermal effects but
made the simplification of zero net angular momentum flow in the disk (equivalently, his self-similar solution
is valid asymptotically for large radii). KK chose the opposite route—neglect thermal effects, but include the
inner boundary condition. They were able to find a global solution. They show how the backflow is fed by the
inflowing fluid. An interesting note: Narayan & Yi (1995) [NY95] went beyond the one-dimensional solutions
by numerically constructing axisymmetric ADF solutions which factorize the three-dimensional equations,
i.e., solutions of the type f(r, θ) = R(r)Θ(θ). Solutions in KK00 are not factorizable.

Not to repeat the lengthy derivations twice, we will do the magnetic version, and outline the HD solutions
by setting B=05

Since the set of HD equations is closed, the purely HD solutions can be obtained. For the magnetic case
it is not the case, and only some general conditions can be obtained. With help of numerical simulations I
verified both the HD and non-ideal MHD solution, and found they are in great agreement. I will illustrate it
later.

We search for the quasi-stationary state solutions, assuming that all the heating is radiated away from
the disk. This is why the dissipative viscous and resistive terms are not present in the energy equation, nor
are the cooling terms. We still solve the equations in the non-ideal MHD regime, because of the viscous terms
in the momentum equation, and the Ohmic resistive term in the induction equation. We are solving viscous

3KK00 paper in arXiv is with figures given at the end, I rearranged it and made a more handy version with figures positioned in
their places in the text. It is downloadable from the webpage: http://web.tiara.sinica.edu.tw/ miki/PostPrez/KK00mikiversion.pdf

4Thesis is not available online, it is only in hard copy in the library in USA and an example in CAMK, Warsaw-but arXiv paper
is very similar to theThesis, all the formalism is copied in the paper.

5It is interesting that both are non-published work, present only in arXiv, referees did not appreciate the contributions, yet. KK00
paper has a decent following and it will stay in arXiv domain. The more recent magnetic generalization presented here is still in
push for the peer-reviewed publication.
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Figure 3.1: Illustration of the reach of the inner, middle and outer disk regions in the case of Young Stellar
Objects. In the innermost disk region the disk is in the ideal MHD regime. Further away from the star, in the
middle disk region, the Ohmic resistivity adds to the viscous dissipation. In the outer disk, which we do not
analyze here, other resistive terms prevail in the induction equation. Radial extension of the physical domain
in our simulations is indicated with the horizontal thick black solid line. Figure is taken from [ČPK18].

and resistive MHD equations (in the cgs units):

∂ρ

∂t
+∇ · (ρv) = 0 (3.2)

∇ ·B = 0 (3.3)
∂ρv

∂t
+∇ ·

�
ρvv +

�
P +

B2

8π

�
Ĩ − BB

4π
− τ̃

�
= ρg (3.4)

∂E

∂t
+∇ ·

��
E + P +

B2

8π

�
v − (v ·B)B

4π

�
= ρg · v (3.5)

∂B

∂t
+∇× (B× v + ηmJ) = 0, (3.6)

with ρ, P , v, B and ηm being the density, pressure, velocity, magnetic field and the Ohmic resistivity, re-
spectively. The acceleration of gravity is g = −∇Φg, and the gravitational potential of the star with mass
M⋆ is Φg = −GM⋆/R. The total energy density E = P/(γ − 1) + ρv2/2 and the electric current are given
by Ampere’s law J = ∇×B/(4π). An ideal gas is assumed, with the plasma adiabatic index γ = 5/3, or a
polytropic index n = 3/2. The unit tensor and the viscous stress tensor, respectively are represented by the
terms Ĩ and τ̃ .

Normalized units are used, so that we could compare the magnitude of the different terms in the equa-
tions. All the variables are written in the Taylor expansion, with the coefficient of expansion given by
the characteristic ratio of disk height to the radius, ϵ = H/R << 1. For a variable X we have then
X = X0 + ϵX1 + ϵ2X2 + ϵ3X3 + . . . and we can compare the terms of the same order in ϵ for each
variable.

In the case of a viscous, purely HD disk (B = 0), the equations can be solved inside the disk (KK00).
Assumption that the disk density decreases smoothly to zero towards the disk surface greatly simplifies the
solution. We can not use such an assumption in the magnetic case. There, a back reaction from the disk
towards the magnetosphere, with the ongoing magnetic reconnection, greatly complicates the solution. This
is why in a magnetic case we can obtain only the most general conditions, not the solution.

We search for stationary (∂/∂t = 0), and axially symmetric (∂/∂φ = 0) solutions6. We also assume the
symmetry under reflection about the z=0 midplane. Then physical quantities like Ω, ρ, P, η, u = vr, and c
are even functions of z, while v = vz is odd under reflections through the equatorial plane. When we expand
an even/odd function (e.g. Ω) in powers of ϵ << 1 we require each term in the expansion (e.g. Ωi; i = 0, 1,

6Sometimes we write ∂/∂x = ∂x for simplification.
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2,…) to be independently even/odd. This means that e.g. for Ω = Ω0 + ϵΩ1 + ϵ2Ω2 + ϵ3Ω3 + . . . , when we
have Ω =even, all the terms, including ϵ in (ϵΩn), should be even =¿ ϵΩ1 = 0 = Ω1 = 0 and so on for all the
odd terms. This is generalized in Rebusco et al. (2009) [Reb+09].

We work in the cylindrical coordinates (r,φ, z). The normalization is defined with the following equa-
tions: ϵ = c̃s/(R̃Ω̃) = H̃/R̃ ≪ 1, so that c̃s = ϵR̃Ω̃, and then c′s = cs/c̃s = cs/(ϵR̃Ω̃). Twiddles denote
characteristic values of the variables, and primes the scaled variables. Further, Ω′ = Ω/Ω̃, Ω̃ = ΩK =q
GM⋆/R̃3, r′ = r/R̃, z′ = z/(ϵR̃), v′r = vr/c̃s = vr/(ϵR̃Ω̃), v′z = vz/c̃s = vz/(ϵR̃Ω̃), v′φ = vφ/(R̃Ω̃). The

magnetic field we normalize with the Alfvén speed ṽA = B̃/
√
4πρ̃ as a characteristic speed, and ρ′ = ρ/ρ̃.

Then we haveB′ = B/B̃ = B/(ṽ2A
√
4πρ̃), and B̃ is the normalization for all the magnetic field components:

B′
r = Br/B̃, B′

z = Bz/B̃, B′
φ = Bφ/B̃.

The beta plasma parameter β = Pgas/Pmag = 8πPgas/B
2. With P = Pgas we can write c2s = γP/ρ =

γβB2/(8πρ) = γβv2A/2, so that ṽ2A/c̃2s = 2/(γβ̃).
The viscosity scales with the sound speed as a characteristic velocity and the height of the disk H , so

that the normalization for the kinetic viscosity is ν̃v = c̃sH̃ = ϵ2R̃2Ω̃, and then η̃ = ρ̃ν̃v = ρ̃ϵ2R̃2Ω̃.
Then η′ = η/η̃ = η/(ρ̃ϵ2R̃2Ω̃). For the resistivity we choose the normalization with the Alfvén speed as a
characteristic speed, so that η̃m = ṽAH̃ = ϵR̃ṽA. Then η′m = ηm/η̃m = ηm/(ϵR̃ṽA) = ηm

q
γβ̃/2 /(c̃sϵR̃) =

ηm

q
γβ̃/2 /(ϵ2R̃2Ω̃).

We write the normalized equations of continuity, magnetic field solenoidality (∇ ·B = 0), momentum,
induction and energy density. For simplicity, in some cases we use the notation ∂x = ∂/∂x, and we drop
all primes in the following (where all the variables are scaled, so no confusion can arise). In the results,
a = f(r), and b = f(r) do not imply a(r, z) ≡ b(r, z), we just denote a generic radial function as f(r),
without implying any particular functional dependence on r.

We illustrate the asymptotic approximation method in detail by deriving all the terms through the second
order in the continuity equation. Other equations are derived by following the same method.

Equation of continuity:

The continuity equation is:
∂ρ

∂t
+∇ · (ρv) = 0. (3.7)

In the stationary case ∂tρ = 0. With the condition of axial symmetry ∂φ(ρv) = 0:

1

r
∂r(rρvr) + ∂z(ρvz) = 0. (3.8)

The normalized equation, with the terms in the order of a small parameter ϵ:
1

R̃r′
1

R̃
∂r′(r

′R̃ρ̃ρ′ϵΩ̃R̃v′r) +
1

ϵR̃
∂z′(ρρ̃ϵΩ̃R̃v′z) = 0. (3.9)

Dividing through ρ̃Ω̃ and removing the primes, we can write:
ϵ

r
∂r(rρvr) + ∂z(ρvz) = 0. (3.10)

With the expansion in ϵ in each quantity:
ϵ

r
∂r[r(ρ0 + ϵρ1 + ϵ2ρ2 + . . . )(vr0 + ϵvr1 + ϵ2ρ2 + . . . )]

+∂z[(ρ0 + ϵρ1 + ϵ2ρ2 + . . . )(vz0 + ϵvz1 + ϵ2vz2 + . . . )] = 0. (3.11)

Now we can write the terms in the different orders in ϵ.
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Order ϵ0:

∂

∂z
(ρ0vz0) = 0 ⇒ vz0 ≡ 0. (3.12)

Since ρ0 is an even function, and vz is odd with respect to z, at the disk equatorial plane this product is
ρ0vz0 = 0. Since it does not depend on z, and ρ0 ̸= 0, we conclude that vz0 = 0 throughout the disk.

Order ϵ1:

In the first order in ϵ it is:
1

r

∂

∂r
(rρ0vr0) +

∂

∂z
(ρ0vz1) = 0 ⇒ vz1 ≡ 0. (3.13)

Since vr0 ≡ 0 (KK00), we have ∂z(ρ0vz1) = 0 ⇒ ρ0vz1 = const along z. Since vz is odd with respect
to z, following the same argumentation as above in the zeroth order term in ϵ, we conclude that vz1 = 0
everywhere.

Order ϵ2:

In the second order in ϵ:
1

r

∂

∂r
(rρ0vr1) +

∂

∂z
(ρ0vz2) = 0. (3.14)

Finding the solution for vr1 will give us the vertical dependence of vz2.
The same procedure is carried in each of the following equations.

Magnetic field solenoidality (∇ ·B = 0):

ϵ

r

∂

∂r
(rBr) +

∂Bz

∂z
= 0 (3.15)

Order ϵ0:

∂Bz0

∂z
= 0 ⇒ Bz0 = f(r) or Bz0 = 0. (3.16)

Order ϵ1:

1

r

∂

∂r
(rBr0) +

∂Bz1

∂z
= 0. (3.17)

Order ϵ2:

1

r

∂

∂r
(rBr1) +

∂Bz2

∂z
= 0 (3.18)

29



Chapter 3 General accretion disk solutions 3.2 Kluźniak-Kita 3D global solution

Radial momentum:

ϵ2vr
∂vr
∂r

+ ϵvz
∂vr
∂z

− Ω2r = − 1

r2

�
1 + ϵ2

�z
r

�2
�−3/2

−ϵ2n
∂c2s
∂r

+
2

γβ̃

1

ρ

 
ϵ2Br

∂Br

∂r
+ ϵBz

∂Br

∂z
− ϵ2

B2
φ

r

!

− ϵ2

γβ̃

1

ρ

∂B2

∂r
+

ϵ3

ρr

∂

∂r

�
2ηr

∂vr
∂r

�
+

ϵ

ρ

∂

∂z

�
η
∂vr
∂z

�

+
ϵ2

ρ

∂

∂z

�
η
∂vz
∂r

�
− ϵ3

2ηvr
ρr2

− 2ϵ3

3ρ

∂

∂r

"
η
1

r

∂

∂r

�
rvr

�#

−2

3

ϵ2

ρ

∂

∂r

�
η
∂vz
∂z

�
.

(3.19)

For an ideal gas with the polytropic index n, if adiabatic index γ = 5/3, we have n = 3/2.

Order ϵ0:

Ω0 = r−3/2 (3.20)

Order ϵ1:

−2rΩ0Ω1 =
2

γβ̃

1

ρ0
Bz0

∂Br0

∂z
+

1

ρ0

∂

∂z

�
η0

∂vr0
∂z

�
(3.21)

Since vr0 ≡ 0, from the vertical symmetry Ω1 = 0 follows, as shown in KK00 for the HD disk, see also
Appendix A in Rebusco (2009) [Reb+09] for a more formal derivation7.

Order ϵ2:

2rρ0Ω0Ω2 =
3ρ0
2

z2

r4
+ nρ0

∂c2s0
∂r

− ∂

∂z

�
η0

∂vr1
∂z

�

− 2

γβ̃

 
Br0

∂Br0

∂r
+Bz0

∂Br1

∂z
+Bz1

∂Br0

∂z
−

B2
φ0

r

!

+
1

γβ̃

∂B2
0

∂r
.

(3.23)

Azimuthal momentum:

ϵ
ρvr
r2

∂

∂r

�
r2Ω

�
+ ρvz

∂Ω

∂z
=

ϵ2

r3
∂

∂r

�
r3η

∂Ω

∂r

�
+

∂

∂z

�
η
∂Ω

∂z

�

+
2

γβ̃

1

r

�
ϵ2Br

∂Bφ

∂r
+ ϵBz

∂Bφ

∂z
+ ϵ2

BφBr

r

� (3.24)

7If this is maintained in the MHD case, we can write, with vr0 = 0:

Bz0
∂Br0

∂z
= 0. (3.22)

.
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Order ϵ0:

0 =
∂

∂z

�
η0

∂Ω0

∂z

�
, (3.25)

consistent with Eq. (3.20).

Order ϵ1:

ρ0vr0
r2

∂

∂r

�
r2Ω0

�
=

∂

∂z

�
η0

∂Ω1

∂z

�
+

2

γβ̃

1

r
Bz0

∂Bφ0

∂z
(3.26)

Since vr0 = Ω1 = 0, we obtain that:

Bz0
∂Bφ0

∂z
= 0. (3.27)

Order ϵ2:

ρ0vr1
r

∂

∂r

�
r2Ω0

�
=

2

γβ̃

�
Br0

∂Bφ0

∂r
+Bz0

∂Bφ1

∂z
+

Br0Bφ0

r

�

+
1

r2
∂

∂r

�
r3η0

∂Ω0

∂r

�
+

∂

∂z

�
η0

∂Ω2

∂z

�
.

(3.28)

Vertical momentum:

ϵvr
∂vz
∂r

+ vz
∂vz
∂z

= − z

r3

�
1 + ϵ2

�z
r

�2
�−3/2

−n
∂c2s
∂z

+
2

γβ̃

1

ρ

�
ϵBr

∂Bz

∂r
+Bz

∂Bz
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�
− 1

γβ̃

1

ρ

∂B2
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+
2

ρ
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η
∂vz
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+
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∂
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∂vz
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ϵ
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∂
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η
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Order ϵ0:

0 = − z
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− n

∂c2s0
∂z
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γβ̃
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ρ0

∂B2
0

∂z
. (3.30)

From Eqs. (3.16), (3.22) and (3.27), with Bz0 = f(r) it follows that Br0 = f(r) and Bφ0 = f(r). With
B2

0 = B2
r0 +B2

z0 +B2
φ0 it gives ∂zB2

0 = 0 = ∂zB0. For a disk in the vertical equilibrium, components of the
magnetic field do not contribute in the zeroth order in ϵ to the vertical gradient of the magnetic field.

We remain with the vertical hydrostatic equilibrium equation identical to the purely HD case:

z

r3
= −n

∂c2s0
∂z

. (3.31)
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This is consistent with the demand that, for a quasi-stationary disk, the lowest order in ϵ of the magnetic field
components does not contribute to the solution:

Br0 = Bz0 = Bφ0 = 0 ⇒ B0 = 0. (3.32)

Order ϵ1:
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(3.33)

With Bz0 = B0 = 0 we obtain:
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Order ϵ2:
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(3.35)

If now we use Eq. (3.17) with Br0 = 0, giving

∂Bz1

∂z
= 0, (3.36)

we obtain:
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(3.37)

3.2.1 B0=0 solutions

We review already obtained results with the vanishing com- ponents of B0 , when magnetic field influences
the solution only in the higher orders in ϵ. Then Eqs. (3.14), (3.23) and (3.28) become the same as in a HD
case:
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In the disk solution in [Hōs77] and KK00, those equations were solved by assuming that the disk density
decreases towards the surface, ρ0 → 0. If, instead, we supply at the disk surface a value at the boundary with
the coronal density ρcd, we obtain:

ρ0 =

�
ρ
2/3
cd +

h2 − z2

5r3

�3/2

, (3.39)

where h is the disk semi-thickness. The pressure and sound speed now become:
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s
5

3

�
ρ
2/3
cd +

h2 − z2

5r3

�
. (3.40)

The [Hōs77] solution is recovered by setting ρcd = 0, for the boundary at the disk maximal height.
In our case, since h ∝ r, we can write, with the proportionality constant h′, h = h′r. Assuming the

corona at the surface of the disk to be in the hydrostatic equilibrium, with ρcd ∝ (ρc0/r)
3/2 we can write:
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(3.41)

with ζ2 = 1/(5kρρc0 + h′2), where kρ is the proportionality constant, and ρc0 ∼ 0.01 is the ratio between
the initial corona and disk density.

Now we can continue with the rest of equations.

Radial induction equation:
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(3.42)

Order ϵ0:
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∂z
+ ηm0
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∂z2
= 0. (3.43)

If we multiply this with Bz0, the first term equals zero because of Eq. (3.22), and we remain with the
second term:

ηm0Bz0
∂2Br0

∂z2
= 0. (3.44)

If all the zeroth-order magnetic field components are zero, Br0 = 0 and we remain with 0 = 0
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Order ϵ1:
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With the components of B0 vanishing, we remain with:
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Without the components of B0, we remain with:
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Azimuthal induction equation:
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Order ϵ0:
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= 0, (3.50)

in agreement with Eq. (3.16).
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which, with vanishing components of B0, becomes:
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This confirms Eq. (3.36).
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Without the vanishing components of B0 it becomes:
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Vertical induction equation:
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giving, with Br0 = 0 that 0 = 0

35



Chapter 3 General accretion disk solutions 3.2 Kluźniak-Kita 3D global solution
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With vanishing components of B0:
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which with vanishing components of B0 becomes:
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Energy equation:
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Order ϵ0:
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∂

∂z
(Ω0rBφ0Bz0) ⇒ Bφ0

∂Bz0

∂z
+Bz0

∂Bφ0

∂z
= 0,

which, with the first term vanishing by Eq. (3.16), confirms the Eq. (3.27).
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With Eq. 3.17, we can write:
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which with ∂zBz0 = 0 can be recast into:
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In all three orders in ϵ, withBi0 = 0with i = (r,φ, z)we obtain identities 0=0, confirming that our assump-
tions and results are in agreement with the energy equation.
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We now list the obtained conditions on the solution. In the magnetic case we can only obtain a general
set of conditions that should be satisfied in a self-consistent solution.

Expanding the stationary and axi-symmetric normalized analytical equations in the small parameter ϵ =
H/R, with the assumed vertical symmetry accross the disk equatorial plane, we find:
• vr0 = vz0 = vz1 = Ω1 = cs1 = ρ1 = 0, as found in HD case.
• From the radial component of the momentum equation we readily obtainΩ0 = r−3/2. This solution is valid
equally in the HD and MHD cases.
• B0 = 0 and also Bi0 = 0, with i = (r,φ, z). Magnetic field influences the disk only in the higher orders in
a small parameter ϵ.
• ∂zBz1 = 0, vertical dependence of the leading component of the magnetic field in the vertical direction is
f(r) only.
• Vertical hydrostatic equilibrium condition gives the same solutions for the lowest order in ϵ for the density
(see Eq. 3.39), pressure and the sound speed as in the HD solution. The difference from KK00 is that now the
disk surface boundary condition is not vacuum, but a corona with the density ρcd(r) at the disk interface.
The zeroth order profile of density, pressure, and the sound speed are:
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�
. (3.66)

Clearly, ρ0(r, h) = ρcd(r).

3.2.2 Analytical expressions from the numerical solutions

We verify if the results of our numerical simulations satisfy the obtained conditions.
Extensive numerical simulations with a KK00 disk as an initial condition were performed in [Čem19],

following [ZF09]. Here we give a brief overview of the setup.
We solve the non-ideal MHD equations using the pluto (v.4.1) code [Mig+07] in the spherical grid. The

resolution is R × θ = (217 × 100) grid cells, in a logarithmically stretched radial grid and in a half of the
meridional half-plane in a uniform grid θ = [0,π/2]. The viscosity and resistivity are parameterized by the
[SS73] α-prescription as proportional to c2s/ΩK. For the magnetic field, a split-field method is used, so that
we evolve in time only changes from the initial stellar magnetic field [Tan94; Pow+99], with the constrained
transport method used to maintain the ∇ · B = 0. Simulations were performed using the second-order
piecewise linear reconstruction and an approximate Roe solver. The second-order time-stepping (RK2) was
employed.

Here we present the results in our HD and non-ideal MHD numerical simulations of a YSO, in the physical
domain reaching 30 stellar radii, Rmax = 30R⋆, with the (anomalous8) viscosity parameter αv = 1 and the
mass accretion rate in the disk Ṁ0 = 5× 10−7 M⊙/yr. The stellar rotation rate is taken to be Ω⋆ = 0.2 Ωbr,
where Ωbr is the equatorial mass-shedding limit rotation rate, equal to the Keplerian angular velocity for the
star ΩK⋆ =

p
GM⋆/R3

⋆. Thus, the corotation radius is Rcor = (GM⋆/Ω
2
⋆)

1/3 = (0.2)−2/3R⋆ ≈ 2.9R⋆. In
the Classical T-Tauri star case, the stellar mass is M⋆ = 0.5M⊙, radius R⋆ = 2R⊙, the Keplerian velocity

8Anomalous diffusive coefficients are much larger than their microscopic equivalent. They are usually given as free parameters
in the simulations, assuming that dissipation is a result of turbulence.
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Figure 3.2: Capture of our hydrodynamic simulation after t=100 stellar rotations. The matter density is shown
in logarithmic color grading in code units, with a sample of velocity vectors. Since the poloidal velocity in
the corona is much larger than in the disk, velocity vectors are shown with a different scaling, as indicated
by the arrows below the panel corresponding to multiples of the Keplerian velocity at the stellar surface.

Figure 3.3: Illustration of the quasi-stationarity of our solution in the HD case. Top panel: evolution in time
of the mass flux in the wind, onto the star and through the disk at r=15R⋆ (dashed green, dotted and solid
lines, respectively), in units of Ṁ0 = ρd0R

3
⋆ΩK⋆. Bottom panel: the torque exerted on the stellar surface by

the matter accreted from the disk, and by the wind (solid and dashed green lines, respectively) in units of
J̇0 = ρd0R

5
⋆Ω

2
K⋆ per stellar angular momentum J⋆ = k2M⋆R

2
⋆Ω⋆. For the typical normalized gyration radius

of a fully convective star we use k2 = 0.2. Positive torque spins-up, and negative torque spins-down the star.
Time is measured in the number of stellar rotations.
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Figure 3.4: Captures of our magnetic simulation after t=80 stellar rotations (top panel), and a zoom closer to
the star (bottom panel) to better show the accretion column. Colors and vectors have the same meaning as in
Fig. 3.2. Note the different scale of the poloidal velocity (arrows below the panels). A sample of the poloidal
magnetic field lines is shown with the solid lines.

Figure 3.5: Illustration of the quasi-stationarity in our magnetic case solutions, in the same units as in Fig. 3.3.
Top panel: the mass flux in the various components of the flow through the disk at r=15R⋆ (solid line), onto
the stellar surface (dot-dashed line) and into the stellar wind (dashed green line). Bottom panel: the torques
in the different components of the flow in the wind (dotted green line), in the matter falling onto the star
from the part of the disk beyond Rcor (dot-dashed line) and below Rcor (solid blue line).
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at the stellar equator is vK⋆ = 218 km/s and the stellar rotation period is P⋆ = 2π/Ω⋆ = 2.3 days. Then
ρd0 = 1.2 × 10−10g/cm3. In the magnetic case we add the stellar dipole field of B⋆ = 500 G, and the
resistivity parameter αm = 1, so that the magnetic Prandtl number Pm = 2αv/(3αm) = 0.67.

The assumed values of anomalous coefficients αv = αm = 1 are much larger than one would expect in
an accretion disc. By such a choice we avoided changes in geometry of the flow: with αv < 0.685 there
is a backflow in the disk (see e.g. KK00 and [MČK20b] for a HD, and [MČK20a] for a MHD case), and with
smaller values of αm often a conical and/or axial outflows are launched from the magnetosphere [Kot+20].

A table for rescaling to other types of objects is given in [Čem19] where we performed a parameter study
with the same set-up. We varied the stellar rotation rate, magnetic field strength and resistivity in the disk
and compared the changes in results in dependence on those parameters.

We output the results along the z axis at two radial positions in the disk: in the middle of the radial
domain, which lies far behind the distance rm, where the viscous torque is vanishing9 and closer to the star,
just behind the corotation radius. We derive two sets of expressions along the vertical direction from those
results, one at each distance from the star. Along the spherical radial direction, we output the results in the
disk along a line near to the disk equator, and also along a line near to the disk surface. For each physical
quantity, we verify if there is a unique solution throughout the disk.

Starting from the analytical solution as an initial condition in the simulations, we obtain a numerical
solution. We then compare the quasi-stationary solutions in both the HD and the MHD solution, to the
initial condition (i.e. the analytical solution) itself. The quasi-stationary solution does not change much in
the final several tens of stellar rotations in our simulations. The magnetic field and the accretion rate of
the observed stars are practically constant during such an interval, so that our time-independent analytical
solutions are a good representation of the solutions.

Our computational domain reaches into the middle disk region, shown in Fig. 3.1, where the resistivity
adds to the viscosity as a dissipation mechanism. This could make some of the assumptions from the purely
HD disk implausible—we check whether or not this is true with the help of numerical simulations. We find
that the magnetic solutions follow the HD solutions in the functional dependence, only the proportionality
constants change.

A capture of our HD solution after 100 stellar rotations is shown in Fig. 3.2. The poloidal fluid velocity
vectors are represented by the arrows, red for the corona, black for the disk, with a different scaling (one unit
of arrow length corresponding to velocities in the corona and the disk in the ratio 40:3). In this case, accretion
onto the star proceeds through the disk connected to the stellar equator. The mass and angular momentum
fluxes onto the star and into the wind during the simulation are shown in Fig. 3.3.

The solution in the magnetic case is shown in Fig. 3.4. When the stellar dipole field is large enough, an
accretion column is formed from the inner disk rim onto the stellar surface near the polar region. The matter
is lifted above the disk equatorial plane, following the magnetic field lines. The mass flux onto the star and
into the wind is shown in Fig. 3.5, together with the angular momentum fluxes, shown in the second panel
in the same figure.

To investigate how much the magnetic solutions depart from the HD ones, and from the KK00 analytical
solution, we directly compare the density and velocity profiles. Since the KK00 solutions are obtained in the
cylindrical coordinates, which are more convenient to plot, we project our results from the simulations in
spherical coordinates to the cylindrical coordinates. In all the cases we also show the closest match10 to the
case with B⋆ = 500 G.

We can write the results in our simulations as simple functions obtained in KK00, with coefficients of
9The distance rm defines a natural length scale r+ = Ω2

mr4m/(GM⋆), with Ωm the Keplerian rotation rate at rm, see KK00. The
outer region of the disk is at a much larger radius.

10Our approximate matches are not formal fits, but the simplest functions following the quasi-stationary solution. In most cases
when the solution is without oscillations, the match is inside the 10% of the solution, as shown in Appendix. If oscillations are
present, the error can be larger.
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proportionality we find from our simulations:
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Magnetic field components are proportional to r−3, as expected for the dipole stellar field, and depend
linearly on height above the disk midplane:

Br(r, z) =
k5
r3

z, Bz(r, z) =
k6
r3

z, Bφ(r, z) =
k7
r3

z, (3.69)

In the case of Br , the linear dependence is a consequence of the boundary condition at the disk equatorial
plane, where the magnetic field components are reflected, with the change in sign of the component tangen-
tial to the boundary. This means that the radial magnetic field component Br → 0 at the equatorial plane,
and is slowly increasing above (and below) that plane, in the densest parts of the disk. It is catching-up with
more dramatic changes only close to the disk maximal height at the given radius, where it matches the values
in the corona above the disk.

The vertical dependence of the viscous and resistive dissipative coefficients η and ηm in the initial condi-
tions was taken to follow the (z/r)2 dependence of c2s0 from Eq. (3.66) in the analytical solution in Eq. (3.40),
which can be further written as in Eq. (3.41). The same dependence is found in the results of our simulations,
in both inner and outer parts of the disk:
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We assign the proportionality coefficients as k1, k2, . . . in the cases with a stellar dipole field of 500 G
and 1000 G in Table 3.1, indicating by the additional subscripts i and o if they are given in the inner (R=6) or
outer (R=15) position in the disk. We also assign the corresponding coefficients ζ1, ζ2, . . . where needed.

In the following, we compare the above matches to solutions obtained in the simulations, with the con-
ditions obtained from the analytical equations in the magnetic case.

3.3 Comparison of the analytical and numerical solutions

We show here the results in the cases of YSOs with the stellar magnetic field of 250, 500, 750 and 1000 G. In
all the figures, shown are the approximate matching curves to the MHD solution in the case with the stellar
field of 500 G.

When there are no oscillations in the solution, matching curves are mostly inside the 10 per cent error
margin. When the oscillations are present, the error is larger. Functions are chosen to best match the values
in the region of interest in the respective slices, even when it results in a larger error in the other parts of the
approximated line.
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Figure 3.6: In the top panels are shown comparisons of the matter density in the initial set-up (thin solid line)
with the quasi-stationary solutions in the numerical simulations in the HD (dot-dashed line) and the MHD
(long-dashed line) cases, with Ω=0.2Ωbr. Left top panel: radial dependence along the midplane, just above
θ=90◦. Right top panel: the profiles along the vertical line at r=15R⋆. The HD and MHD profiles are nearly
identical. In black, green, blue and red colors are the results in the MHD cases with the stellar magnetic field
strengths 0.25, 0.5, 0.75 and 1.0 kG, respectively (from bottom to top along the line about the middle of the
X-axis in both panels). The closest match to the 0.5 kG case is depicted with the diamond symbols. In the
middle and bottom panels, with the samemeaning of lines and symbols, are shown comparisons of the results
for the radial velocity (the time-averaged radial components of the poloidal velocity are measured along the
middle of the disk because of instability in a single time snapshots) and magnetic field components.
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Table 3.1: The proportionality coefficients in our simulations with B⋆=0.5 kG and 1 kG.

B(kG) 0.5 1
coef. R=6 — R=15 R=6 — R=15

k1i—k1o 0.9 1.2 — 0.29
k2i—k2o -0.01 — -0.006 +1.2× 10−4—−2.9× 10−3

k3 −2.65× 10−4 −4.4× 10−3—−3.6× 10−5

k4 0.255 0.255
k5i—k5o -0.69 — -0.41 -1.25
k6i—k6o -0.35 — -0.15 -0.29 — -0.19
k7i—k7o -2.8 — -1.1 -8.2 — -1.18

k8 5.8× 10−3 8.× 10−3

k9 0.01 0.01
ζ1 5. 5.
ζ2 0.5 0.5
ζ8 5. 6.8
ζ9 6. 4.5

We check now if the numerical solutions in the inner and outer disk regions are compatible with the
conditions derived from the analytical equations. For the comparison, we use the expressions listed in the
Eqs. (3.67-3.71).

Results for the radial dependence along a line just above the equatorial mid-plane of the disk, and for
the vertical dependence along a line at r=15R⋆ show that the matching functions along the equatorial plane
are of the same shape as along the disk surface at θ = 83◦. Also, the matching functions along a vertical
direction closer to the star than r=15R⋆ are of the same shape as along a line further from the star, only the
proportionality constants are different.

How do the obtained expressions compare to the general conditions obtained from the analytical equa-
tions?

•The numerical solution for the density in the magnetic case has the same dependence as the analytical
one in the HD case. Both can be approximated by the same expression, with the difference only in the
proportionality constant.

•The same is true for the velocity components, with the difference between the two numerical solutions
most visible in the radial dependence in radial and vertical components of the poloidal velocity. The azimuthal
velocity component does not change from the initial value since it is not evolved in our two-dimensional
axisymmetric simulations.

•The magnetic field components in the disk in the simulations follow the expected 1/r3 decrease in the
dipole field strength with distance from the star.

• In the analytical solution, all three magnetic field components are functions of r alone in the zeroth
and first order in ϵ. With the nonvanishing magnetic field in the disk, and its vertical dependence on z, this
leads to the conclusion thatB0=0, and vertical, linear dependence on height above the disk equatorial plane
should be related to the higher order in ϵ.

3.4 Difference between numerical and analytical solutions

Benefit of having a set of analytical expressions for the definition of accretion disk is in its universality in
comparison with a particular numerical solution. In the theoretical work, in the initialization of the new
numerical simulations, or post-processing of the simulations results, it is much simpler to refer to analytical
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Figure 3.7: An example of difference between our numerical solutions and analytical expressions, in per-
centage of the value in the simulations. Our analytical solution is mostly inside the 10% margin everywhere
inside the thin disk region, below the thick white solid line demarcating h = 0.1r dependence, where h is the
disk height. Close to the star and accretion column footpoint, our simulations are in the ideal MHD regime,
so the analytical expressions fail there. It is also failing close to the outer boundary, where the material is fed
into the disk by the amount based on the analytical solution in purely HD approach.

expression.
How different are our analytical expressions from the results in the simulations from which they are

derived? We use the results computed with expressions from Eqs. (3.67-3.71) and coefficients from Table 3.1,
to compute the difference for the physical quantities throughout the disk. The percentage of the value for the
quantity Q from the simulation is:

δQ(%) = 100
|Qsim −Qan|

Qsim
. (3.71)

We show examples of this difference in Fig.3.7, the quasi-stationary result in a simulation with 500 G stellar
field, and unit viscous and resistive coefficients α and αm. In the thin disc, our analytical solutions for
the density and velocity components are inside the 10% margin. Similar results hold for the viscosity η
and resistivity ηm. Between the star and accretion column footpoint our simulations are in the ideal MHD
regime, and close to the outer boundary the material is fed into the disk as prescribed from the HD results.
Our analytical expressions are derived inside the middle disk region, so they fail in both those regions, as
expected.
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