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Outline of the lectures -
Part I: Newtonian simulations of accretion discs (M. Cemelji¢)

Lect. 1: General introduction to accretion and types of objects where accretion is important, jets, Linux shell
commands, text editors, ecology of computing

Lect. 2: Accretion energetics, spherical (Bondi) accretion, stationary thin accretion disc, fluid eqs, (M)HD eqs,
viscosity, resistivity, turbulence, MRI, Alfven waves, code PLUTO, structure of the code, hands-on installation and
testing, visualization with gnuplot

Lect. 3: Shakura-Sunyaev 1973 disc, initial and boundary conditions for Orszag-Tang test problem in PLUTO in 2D
and 3D, visualization in 2D and 3D with Paraview & Vislt

Lect. 4: KK 3D solution for thin disc in HD, Vertically averaged solutions for thin disc, setup and running of 2.5D
HD KK disc in PLUTO, analysis of the results from 2.5D runs with Paraview and Python

Lect. 5: Euler equations, Finite difference, volume and elements methods, Godunov’s scheme, Riemann problem,
CFL condition, Magnetized thin KK disc, setup and running of 2.5D disc in MHD in PLUTO, visualization of
magnetic field lines with Paraview.

Lect. 6: Approximate Riemann solvers, reconstruction methods, MHD numerics, astrophysical jets, simulations of
jets from disc as a b.c. and with the disc evolution included, streamlines in Paraview in 2D and 3D

Lect. 7: Different modules in PLUTO, cooling, radiative transfer, hot discs, post-processing of the results, DUSTER,
Python script for analysis

Lect. 8: Pseudo-Newtonian potential and its use in numerical simulations of a disk or torus around black hole or
naked singularity, star-planet simulations, running jobs on a linux cluster

Part II: General relativity simulations of accretion discs (obligatory for Geoplanet students) by Debora
Lancova (6 lectures)+1 lecture on Cosmological simulations by Tomasz Krajewski

M. Cemeljié, Numerical simulations of accretion discs, Winter Semester 2024/2025



Outline, Lect. 1: Introduction to accretion

-General intro on lectures, literature, well-being...

-What is accretion and why do we need it?
- History of accretion, disks, jets

- Observational material on accretion, cosmic magnetic fields

- Roche equipotential surfaces, PyAstro package

- Motivation and examples of accr. disk simulations

- Intro to Linux, shell commands, text editors

- Ecology of computing

M. Cemeljié, Numerical simulations of accretion discs, Winter Semester 2024/2025



General intro on lectures and literature 4
Lectures time is Mondays 13:30-15:30 CET, on-site for residents in Warsaw, online on Zoom. Attendance of 70% is
expected. Exam by preparing a report on chosen simulation setup and discussion of that report with the lecturer.
Literature for this course:
* Books:
Frank, King & Raine, ,Accretion power in astrophysics”
Kato, Fukue & Mineshige, ,Black-Hole Accretion Disks: Towards a New Paradigm”

M. Cemelji¢ lecture scripts from the Silesian University in Opava, (2022), “Thin accretion disks” part |: Basic concepts and
solutions, Part II: Numerical simulations

User manual of PLUTO code, available in PLUTO/Doc/userguide.pdf directory
Linux booklet “Linux Pocket Guide”, D.J.Barrett, O’'Reilly Media
Douglas Adams, “The Hitchhiker’'s Guide to the Galaxy”

* Journal papers:
Shakura & Sunyaev, 1973, “Black holes in binary systems”, A&A, 24, 337
Novikov & Thorne, 1973, general relativistic disk
Pringle, 1981, “Accretion discs in astrophysics”, ARAA, 19, 137
M. Cemelji¢, 2019, "Atlas" of numerical solutions for star-disk magnetospheric interaction,
A&A, 624, A31
Cemelji¢, Kluzniak, Parthasarathy, 2023, ,Magnetically threaded accretion disks in resistive
magnetohydrodynamic simulations and asymptotic expansion”, A&A 678, A57
Zhu & Stone, 2018, ,Global Evolution of an Accretion Disk with a Net Vertical Field: Coronal
Accretion, Flux Transport, and Disk Winds”, ApJ, 867, 34
B. Mishra, 2016, .”Strongly magnetized accretion discs: structure and accretion from global

magnetohydrodynamic simulation”, MNRAS 492, 1855
Mishra, Cemelji¢, Varela & Falanga, 2023, “Auroras on Planets around Pulsars”, ApJL, 959, L13 (SPI choice)

-On-line resources:
Abramowicz & Straub, “Accretion discs”, Scholarpedia article: http://www.scholarpedia.org/article/Accretion_discs



Advice on computer system, monitor,... 5

Use Linux. Full stop. The Microsoft Corporation is today the largest user of Linux. |
am echoing the Richard (Matthew) Stallman’s (rms) vocation:

“THERE IS NO SYSTEM BUT GNU AND LINUX IS ONE OF IT'S KERNELS.”

rms created GNU (Gnu’s not Unix) GNU/Linux, a Unix-like operating system made up of different OS
components and services that create the Linux OS. He created Emacs, the GNU C Compiler, and the
GNU Debugger, and is one of initial initiators of the open source movement for software to be distributed
In such a way that its users have the freedom to use, study, distribute, and modify that software. The four
fundamental freedoms for free software are, by him:

THE FREEDOM TO RUN THE PROGRAM AS YOU WISH, FOR ANY PURPOSE.

THE FREEDOM TO STUDY HOW THE PROGRAM WORKS, AND CHANGE IT SO IT DOES YOUR
COMPUTING AS YOU WISH.

THE FREEDOM TO REDISTRIBUTE COPIES SO YOU CAN HELP YOUR NEIGHBOR.
THE FREEDOM TO DISTRIBUTE COPIES OF YOUR MODIFIED VERSIONS TO OTHERS.

His explanation of the term GNU/Linux: Linux is the kernel: the program in the system that allocates the
machine's resources to the other programs that you run. The kernel is an essential part of an operating system,
but useless by itself; it can only function in the context of a complete operating system. Linux is normally used
in combination with the GNU operating system: the whole system is basically GNU with Linux added, or
GNU/Linux. All the so-called “Linux” distributions are really distributions of GNU/Linux.

rms ultimate geek stature in open source community is such that you can find lots of misinformation on

him, but also many funny comments like: “Richard Stallman is giving a talk at Microsoft campus. If the
world ends today, you know why.”

Numerical simulations are a time-consuming work, requiring hours and hours of sitting in front of the
screen. Please take care of appropriate dimensions and position of monitor, desktop settings (not black
on white, it is too tiresome for eyes) and seat position, and remember to regularly exercise. You will
appreciate it after 20-some years. Remember also to spend enough time with (good) living beings,
possibly humans. You will appreciate it immediately.



How we arrived to accretion 6

Historically, accretion was first considered as a relevant process in the close binaries: after
collecting a wealth of spectrographic data by Struve and collaborators, it became obvious
that simple models of stellar stability are insufficient to explain the spectral features.
Theoretical curves were smoothed by the simplifications, and observational curves were not
smooth at all! Introducing more physical processes into astrophysics of stars was called

“Struve revolution” by Daniel Popper in 1970 (not Karl Popper of the philosophy of Science!).

To explain the spectral features and the energy and angular momentum evolution in the
“peculiar stars”-which mostly showed to be close binaries, astronomers around the middle of
XX century had to include the streams of matter, gas rings, Roche’s equipotential surfaces,
and finally Huang (1963) included a thick disk. Gradually, with increase in quality of data,
similar concepts were introduced in the objects on other scales, like active galactic nuclei
(AGNSs), quasars, and centers of clusters of galaxies. Gravity was back, astrophysics of
accretion could start!

MAME Burnham's Mebula

Herbig-Haro (HH) objects (big one is

NGC1999) and young stellar objects

(YSOs) envelopes of which T-Tauri with

' the Burnham’s nebula HH255 were the

- prototype examples of complicated ‘

| environment, with streams of matter, gas -

envelopes and outflows, which show that

- simple models fail. We needed better

. theory of star formation to explain such
observations.




Roche equipotential surfaces

Roche surfaces usually emerge
when we are dealing with close
binaries.

French matematician Edouard
Albert Roche (1820-1883)
discussed the problem of
equipotential surfaces in the
context of stability of the orbits of
small planetary satellites in 1849.

Physical model is of the small
test mass m moving in the
gravitational fields of two
massive points. There is no
gravitational back-reaction from
m to M1 and M2.



Roche equipotential surfaces

Because of tidal forces, with close binaries we usually can work in this
approximation.

Lagrange in 1772 showed the existence of 5 points (Lagrange points L -L,),

where forces from M1 and M2 are balanced.

If we solve the equations in (X,y,z) put along the line connecting M1 and M2,
perpendicular to it in the plane of the paper and vertical out of the paper,

we obtain, with p and 1-u being the masses expressed in total mass
parts p=M1+M2 and distances r, and r, in the units of the masses

M1 and M2 distance: i
u2=::?+y2+g“‘ il

Constant C is defined by the initial conditions.

The velocity v=0 defines a surface at which velocities are >0 or
<0, real or imaginary, and C defines from which side of this
surface the mass m is moving.



Roche equipotential surfaces

e Jacobi found that v>=V-C, where

l 2 L pa-pis
VA== (i hiys) o e o
Q(I V') T T2

* |t shows that we can use the same approach for close binaries, even when
there are flows between them, or they are filling their respective “Roche
lobes”, so that the solution

gives us the equipotential
surfaces, U is the potential:

 We have v?=-2U-C



Astronomy packages 0

If you need some routine for astrophysical use, it is very probable someone else
also needed it. There is a pile of general routines from last decades in Numerical
Recipes. Astro routines nowadays you can find in python, and many, many are
available in IDL, a quite expensive proprietary software used when TRexes were
lingering around. As a Open Source promoter | would not mention it, but:

There is Open source initiative version of IDL, called GDL, which has most-but
not all, e.g. they lacked contour plots at my last look at it about decade ago -
functionality of IDL. For simpler graphics or most of computations it usually works,
give itatry. "G” in GDL is from Gnu..., so it is distributed with major linuxen, or can
easily be installed. If you inherited someone’s IDL routines for data handling, it is
very probable they will run as they are in GDL, for plotting, you might need to fiddle
a bit.

If you are lucky, your needed code might be already translated to python, and
available in Github or similar. One such library is PyAstronomy-currently at 0.23
beta edition, but growing, so best is you browse for it and find the current wersion, it
will for certain grow steadily, and is probably already partially translated to the next
“must know” code for the next generations of students (Julia? Or simply “oh Ailadin,
could you please plot for me...”?). | show how simple it is:



Roche surfaces in PyAstronomy

x - + Terminal - miki@mikic: ~/P
File Edit View Terminal Tabs Help

I A rochepot.py (python) from future import print function, division
flrom __ future__ import print_function, division
from PyAstronomy import pyasl
import numpy as np
import matplotlib.pylab as plt

This is a complete code

X, y = np.linspace(-1.5, 2, ), np.linspace(-1.6, ; ) .
XX, yy = np.meshgrid(x, y) for plOttlng Roche
z = equipotential surfaces in

PyAstronomy.

p = pyasl.rochepot_dl(xx, yy, z, q)

11, l1lpot = pyasl.get_lagrange_1(q)
12, 12pot = pyasl.get_lagrange_2(q)
13, 13pot = pyasl.get_lagrange_3(q)

14, 15 = pyasl.get_lagrange_4(), pyasl.get_lagrange_5()

l4pot = pyasl.rochepot_dl(14[0], 14[1], 14[2], q)

L5pot = pyasl.rochepot_dl(15[6], 15[1], 15[2], q)

print( )
print( )

rleff = pyasl.roche_lobe_radius_eggleton(q, 1)

r2eff = pyasl.roche_lobe_radius_eggleton(q, 2)

print( % rleff)

print( % r2eff)

print()

print( )
mcvoll = pyasl.roche_vol MC(q, 1)

mcvol2 = pyasl.roche_vol_MC(q, 2)

print( % (mcvoll[0:2]))
print( % (mcvol2[0:2]))
print( % (mcvoll[2:1))
print( % (mcvol2[2:]))
plt.contour(p, [L5pot* , L3pot, 12pot, 1llpot], colors=[ ) , ; 1, extent=[- y 2, - ) 1)
plt.text(11, o, , horizontalalignment= )

plt.text(12, 0, , horizontalalignment= )

plt.text(13, o, , horizontalalignment= )

plt.text(14[0], 14[1], , horizontalalignment= )
plt.text(15[0], 15[1], , horizontalalignment= )
plt.show()
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Roche surfaces in PyAstronomy

" Figure 1 ™ Applics - File ... B Terminal - mik...
x - + x - + i : ~ Terminal - miki@mikic: ~/Pv

File Edit
miki@m] y
/usr/1 N s/compat/__init _ .p
le. Yo 0. empting to use 1lzma
warn

Effect 5 1 second mass
Accord _ )83

Re ]

Re

Roche 0 Carlo integration:
MC 2
MC ° : . ; : . : 3
NC | . | ! . . . .

miki@mikic: $ python rochepot.py
/usr/local/lib/python3.5/site-packages/pandas/compat/ init_ .p
le. Your installed Python is incomplete. Attempting to use 1zma
warnings.warn(msg)

Effective (dimensionless) radii of first and second mass
According to the approximation of Eggleton 1983:

Reffl: 0.521

Reff2: 0.252

Roche volume and effective radius from Monte Carlo integration:
MC Roche lobe volume 1l: 0.6042 +/- 0.0032
MC Roche lobe volume 2: 0.0663 +/- 0.0004
MC effective radius 1: 0.5244 +/- 0.0009
MC effective radius 2: 0.2510 +/- 0.0005

You run it in Python in
terminal and get the result in a
pop-up window.



Observations of jets

We did not see accretion disks 100 years ago, but we knew jets. We know about jets for more
than 100 years-M87 was the first jet to be observed, by Heber Curtis at Lick Observatory. He first
noticed this “curious straight ray” in 1918 on photographic plates. The first visual observation of
M87’s 5,000-light-year-long jet was made by Otto Struve through the 100-inch telescope at
Mount Wilson. It was thought too dim for amateurs, but Barbara Wilson sighted it during the
1991 Texas Star Party through her 20-inch reflector (*disclaimer, many others saw it before, but
not reported. If you ever looked through a 0.6m Dobsonian, you know!). It is a typical elliptical
galaxy in Virgo, resembling an unresolved globular cluster or the head of a comet.

Gas Disk in Nucleus of
Active Galaxy M87

M87 (NGC 4486, Virgo A) is a giant
galaxy at 55 million light-years from us,
measuring 120,000 light-years across,
with 100 billions of stars and mass about
2 trillion solar masses. Only in the era of
Hubble Space Telescope (HST) we
obtained well resolved disk (dust and
gas, not accretion disk!) and jet optical
observations. In the case of M87, with
Event Horizon Telescope (EHT) i oionacs memp:"""'""""' :
collaboration we recently got very, very [ ALIEE
close to the central supermassive black




Observations of jets

Accretion

Disk

Jets from Young Stars - HH1/HH2 HST - WFPC2

PRC95-24¢c - ST Scl OPO - June 6, 1995 - J. Hester (AZ State U.), NASA

Stellar jets followed in HH objects in 1950's. Here also only HST provided well resolved disk
and jet observations. In the ALMA era, we got even closer-a team from ASIAA, Taiwan recently
measured a rotating disk and jet in HH212. Resolution of the observation is down to 8 AU! The
angular momentum carried by a jet is so small that it must be launched from the region well inside
the disk, about 0.05 AU from the star. This matches with the magnetospheric jet launching.



Observations of jet movement

H

HH47

Jets from Young Stars HST - WFPC2

PRC95-24a - ST Scl OPO - June 6, 1995 NASA HST/Wide Field and Planetary Camera 2.
C. Burrows (ST Scl), J. Hester (AZ State U.), J. Morse (ST Scl), NASA

We know well how the jets are moving through space, but we do not yet know how
they form. It is obvious that from the disk, but how? How they get collimated, how
the knots form?



Detailed observations of jet and disk

Stellar outflows in the case of massive young stars comply more to the magnetocentrifugal
outflow launching, where the outflow is launched from the disk surface. Here is a recent ALMA
image for Orion KL Source 1, and measured velocities. In the right panel the color shows the
motion of the gas: red shows gas moving away from us, blue shows gas moving toward us. The
disk is shown in green (Hirota et al., 2017).

Spectacular ALMA image of the HL. Tau protoplanetary disk,
with the planet trajectories carved-out, is another example of
what we can expect from the new instruments (ALMA, 2014). A
million years young star with a disk of more than three Neptune
orbits radius, is located at 450 ly from us. It came as a large
surprise that such a young star would already show signs of
planet formation. Such observations will force numerical
simulations to be much more detailed, it is not enough any more
to just get a stable disk!




Disks & jets paradigm

It was observed that jets always go in pair with the disk and that the jet speed is always about the
escape velocity from the central object. . —_—

Orion nebula with its disks and jets.

@esa  ( russtie space recescore )

HASA, ESA and L. Ricci (ESO)

Models of accretion process followed not only the collapse of the material, but also the mechanism of the
extraction of the angular momentum from the system. The highly collimated jets can hardly be explained
without the action of the magnetic field. Such jets affect the interstellar environment, mixing the material
and expelling the magnetic field into it. In the case of active galactic nuclei (AGN) jets, the material and

magnetic field are expelled into the intergalactic space.



Magnetic field between galaxis, voids
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This could be part of the answer to the fact that between
the clusters of galaxies we observe voids with less
galaxies than average. If there is a magnetic field in the
voids, how it formed? Such galaxies dis not have enough

time from their formation to rotate around their axis to
produce a working dynamo.




Two different scales

In the cases of YSO and AGN jets we have similar objects at two very different scales, stellar
and extragalactic, which are about 100 000 times different. Are the processes also similar? We
still do not know, our simulations are not detailed enough to explain the details in
observations.

Core of Galaxy NGC 426l
Hubble Space Telescope

Wide Field / Planetary Camera

Ground-Based Optical/Radio Image HST Image of a Gas and Dust Disk

W o = B
380 Arc Seconds 17 Arc Seconds
88,000 LIGHTYEARS 400 LIGHTYEARS

Reality ver. simulations 100 000 AU=1.6 ly Hercules A, disk and jet in the galaxy with SMBH.



HD 141943

Accretion disk around young stellar objects (YSOs)

HD 191089

Circumstellar Disks
Hubble Space Telescope = NICMQOS

NASA and ESA

STScl-PRC14-16a

What is needed for the model of a disk around
young star? It is important also because of the
planet formation.

In the 1970-ties Shakura & Sunyaev
computed the hydrodynamical model, in
which dissipation is needed for the transport
of angular momentum.

Viscosity causes the angular momentum to be
transported outwards during the infall of
matter, because of the internal friction in the
flow.

Further computations showed that such discs
would not be stable. Also, such a mechanism
can not explain highly collimated jets.



Objects in which we observe disks and jets
In a brief summary, objects in which we observe disks and jets are:

-Active galactic nuclei (AGN), with a supermassive black hole in the center are the largest
objects launching jets.

Stellar jets we observe from:
— Young stellar objects with accretion disks (protoplanetary disks).

— Neutron stars or black holes with accretion disk, usually in binary systems with matter
from other, larger star.

— White dwarfs with accretion disk in double systems of white dwarf with a larger star or
a neutron star.

Artistic rendering (credit: STScl)of the cataclysmic variable Jets from SMBH in the center of Hercules A.

(CV) star. White dwarf inside the disk of matter mfallmg Composite Of HST and VLA radio te]escope.
from a normal star of slightly sub-solar mass.



Accretion disks and jets

-Accretion disk forms during the gravitational collapse of matter.

Until the middle of 20" ct. gravity was included in the star formation models
only as an attractive force pulling the matter inwards. The problem of decrease
of the initial angular momentum was not solved: from J = R x mv for

R _1>>R_2, for J,m=const, v_2>>v_1.

We know that Sun-like stars are rotating much slower than it would follow
from the angular momentum of the initial protostellar cloud. Without some
mechanism enabling the decrease of angular momentum, they would explode!
The following facts help to start understanding:

* During the evolution from a pre-stellar core to protostar, the angular momentum decreases for
about 4 orders of magnitude. The spin-up of a star is probably prevented by the magnetic
interaction between the star and the disk.

» The angular momentum can be extracted from the system in different ways:
-stellar winds, -violent outbursts, -stable outflows/jets, -accretion column onto the star.
Solar corona FU Ori (ESO)

DG Tau B

NICMOS




Magnetic fields in the universe

We still do not know what is the origin of the magnetic field in the
universe. Most of the mechanisms, like magnetic dynamo in galaxies or
stars, can only increase the already existing field, but can not create it.

One of proposed mechanism is Weibel instability, discovered in 1959,
which causes magnetic field creation in the homogenous plasma with
two oppositely directed particles (e.g. if there are regions of different
temperature in the plasma). Because of the movement of particles,
generated is the electromagnetic field.

There are many other models, with phase transitions, quantum effects
etc.

Magnetic fields are observed from the atomic to cosmological scales,
with strengths from nano-Gauss (10/-9) to 10A15 Gauss.



Strengths of cosmic magnetic fields

Initially non-existing or very small cosmic magnetic field increased during the evolution of
stars and galaxies. Turbulence enables the dynamo effect during the rotation of gases and
the field is increased locally.

-At the Earth surface magnetic field strength is about 0.3 Gauss (SI: 0.3x10/-4 T).

-At the Solar surface it is 1 Gauss, YSOs up to hundreds of Gauss
-White dwarfs 10 000-million Gauss.

-At neutron stars in some close biaries (millisecond pulsars) 100 million (10A8) to 10A12
Gauss, and 10715 Gauss on NSs with extremal magnetic field.

-In the galaxies it is 10 |1 (10x10/-6) Gauss, in the intergalactic space 1 UGauss.

How do we measure the magnetic field?
-in the lab: with magnetometer, measuring of the magnetic force.

-in the universe: synchrotron radiation (produced by he electrons moving in the magnetic
field); partial polarization of light when it passes through the dust oriented uniformly in the
magnetic field; Faraday rotation (1845, first proof of the connection between light and
electromagnetism) change of the polarisation plane; Zeeman effect, splitting of the spectral
lines in the magnetic field; indirect method-measuring the angle beween the direction of
the radiation intensity change and the direction of the magnetic field to infer the field
strength.



Simulations you will learn to do: Hydro-dynamical (HD) star-disk simulations
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Star-disk magnetospheric interaction
(SDMI) simulations
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Motivation for such simulations: stellar rotation rates

Solar mass young stars show a large dispersion of rotation rates. When they reach the main sequence,
they rotate with very different rotational velocities: from less then 10 km/s to more than 200 km/s. In a
later evolution, after few billion years, most of them rotates with rotational velocity of few km/s;
dispersion in rotation drops to only a few percents.

For solar mass stars, spin-down is thought to be mainly because of a braking effect of magnetically
driven winds. As the wind moves away from the star, its angular velocity decreases. The magnetic
field of the star interacts with the wind, which slows the stellar rotation. As a result, angular
momentum is transferred from the star to the wind, and the star's rate of rotation gradually decreases.
Skumanich's Law (1972) states that, for a Main Sequence star on time scale of several hundred Myrs,
angular velocity of a star decreases as Q~1/¥t.

To obtain a full picture about torques in the system, both wind braking and star-disk interaction have
to be considered. My simulations give an input on star-disk interaction.

Goal is to find scaling laws for exchange of angular momentum between the star and surrounding.

Idea is to predict the global stellar torque, which will then be used in stellar evolution models. For this,
we need to be able to determine torques of stars of different masses and at different evolutionary
stages. We will focus on the early evolutionary phases.

I also investigated the influence of magnetic field geometry on the transport of angular momentum
between the star and the environment. For this, a parameter study was needed, determining the torque
in the system:

- changing the rotation rates from 2-10 days, accretion rates from 10/-9 to

10/-6 solar mass/year, with mass outflow of about 1/10 of the accretion rate.

-all this with various strengths and geometry of magnetic field.



Another important motivation: jet launching mechanism
In a part of the parameter space, there is a continuous launching of an axial jet from the star-
disk magnetosphere. I found that one has to wait until few hundreds of rotations of the star.
The axial jet and the conical outflow are launched after the relaxation from the initial
conditions. They are similar to the results in Romanova et al. (2009) and Zanni & Ferreira
(2013).
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Magnetospheric launching of conical outflow and axial jet
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Color shows momentum in the MHD simulation in the young stellar object with conical
outflow and axial jet, lines are the magnetic field lines. Right panel is a zoom into the left
panel close to the star, to show the closest vicinity of the star.



The asymmetric jet launching (with A. Kotek)

With A. Kotek in her MS Thesis at theWarsaw Uni. we took another look at the solutions with the jet

launching in the full meridional plane, with Rx8=[217x200] grid cells in 8=[0,m]. We obtained the
asymmetric jets launched from the star-disk magnetosphere.
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Initial setup in a full meridional plane. Asymmetric jet launched from the

magnetosphere.



The asymmetric jet launching in 3D simulations
Time: 9.300000

 In the full 3D simulations I also obtain asymmetric jets. To be continued... maybe
some of you will do it.
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Basic Linux shell commands

man <command> -displays the manual page for a given command.

Is -lists the current working directory

cd -changes the current working directory

pwd -prints the user’s current working directory

cp <old> <new> -copies a file <old> to <new>

mkdir <name> -creates a new directory <name>

mv <old> <new> -moves (renames) a file or directory <old> to <new>

rm <name> -removes (deletes) a file <name>, use with care, it is irreversible

* (asterisk) -matches characters in a filename, so *.txt matches all files ending in .txt

grep -selects lines in all files that match patterns, very useful

Text editors: beware, some editors add metacharacters to text or rearrange the start and end of lines,
which can break your code. Use whatever you feel comfortable with for everyday work, but learn some
basics of terminal editors, because e.g. on clusters you might not be able to use display remotely

3 €€

Terminal text editors: “vi”, “vim”, many linuxen come with “nano”, in CAMK we use archaic (but
capable enough) “joe”.



33

Text editors
Text editors: beware, some editors add meta-characters to text or rearrange the start and end of lines,

which can break your code. Use whatever you feel comfortable with for everyday work, but learn some
basics of terminal editors, because e.g. on clusters you might not be able to use display remotely

Terminal text editors: “vi”, “vim”, many linuxen come with “nano”, in CAMK we use archaic (but

capable enough) “joe”. o Terminal - miki@mikic: ~
File Edit View Terminal Tabs Help

REGION GO TO GO TO DELETE EXIT SEARC

~“Arrow Select ~Z Prev. word ~U/"~V PgUp/PgDn ~D Char. ~KX Save ~KF F
— | o ees KB Begin "X Next word  MISC ~Y Line ~C Abort ~L N
e EE Ve e R Ee i * | KK End ~KU Top of f}le ~KJ Paragraph “W >Word ~KQ All HELP
| GNU nano 4.8 PLUTO/setup.py HLSEELY] “KV End of file "KA Center line "0 Word< FILE Esc .
[ ~“KM Move “A Beg. of line ~K Space Status ~J >Line ~KE Edit Esc ,
import sys “KW File ~“E End of line SPELL ~[0 Line< "“KR Insert “KH 0O
import shutil ~KY Delete ~“KL To line no. Esc N Word ~ Undo ~KD Save T M

~K/ Filter ~“G Matching ( Esc L File ~~ Redo ~K' Revert

I A PLUTO/setup.py (python) import os Row 1 Col 1
os.environ['PLUTO DIR'] import os

except KeyError: import sys
print 'PLUTO_DIR not defined. Setting it to timport shutil
pluto_directory = os.getcwd()

try:

pass try:
else: . _ os.environ| ]
pluto_directory = os.environ[‘PLUTO_DIR'] except KeyError:
: , print
sys.path.append(pluto_directory + '/Tools/Pytho . _
import menu pluto_directory = os.getcwd()
import configure pass

-from make_problem import MakeProblem else:

pluto_directory = os.environ[ 1
| .
def (pluto_dir, do_auto_update = SYs.path.append(pluto_directory + )
| work_dir = os.getcwd() import menu
interface_optval = "' import configure
! interface opts = ['Setup problem', 'Change mafrom make_problem import MakeProblem

e Get Help Write Out @\ Where Is { Cut Text & Justify ‘
{ Exit i Read File g\ Replace Paste Text g] To Spell
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Ecology of computing

The Ecological Impact of High-performance Computing in
Astrophysics

Simon Portegies Zwart

1T eiden Observatory, Leiden University, PO Box 9513, 2300 RA, Leiden, The Nerherfands

! Non-anonymous Dutch scientists.

Computer use in astronomy continues to increase, and so also its impact on the
environment. To minimize the effects, astronomers should avoid interpreted scripting
languages such as Python, and favor the optimal use of energy-efficient workstations.

ArXiv:2009.11295; Nature Astronomy vol.4, 819 (2020)
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Figure 1: CO’ emission (in kg) as a function of the time to solution (in days) for a variety
of popular computational techniques employed in astrophysics, and other activities common
among astronomers 2%, The solid red curve gives the current individual world-average pro-
duction, whereas the dotted curves give the maximum country average. The LIGO carbon
production is taken over its first 106-day run (using ~ 180 kW) <, and for ALMA a 1-year
average % A Falcon 9 launch lasts about 32 minutes during which ~ 110 000 liters of highly
refined kerosene is burned. The tree-code running on GPU is performed using V = 2% par-
ticles. The direct N-body code on CPU (right-most blue bullet) was run with N = 2"*7 and
the other codes with V= 2'°_ All performance results were scaled to NV = 2% particles. The
calculations were performed for 10 N-body time units ®. The energy consumption was com-
puted using the scaling relations of ® and a conversion of KWh to Co, of (0.283 kWh/kg. The
blue dotted curve shows the estimated carbon emission when these calculations would have
been implemented in Python running on a single core. The solid blue curve to the right, start-
ing with the orange bullet shows how the performance and carbon production changes while
increasing the number of compute cores from 1 to 10" (out of a total of 7299 (72, left-most
orange point) using the performance model by 1.

Carbon footprint of
astronomy and computing

Comparison of the average Human
production of COz2 (red line) with
other activities, such as telescope
operation, the emission of an
average astronomer, and finishing a
(four year) PhD.

The emission of carbon while
running a workstation is
comparable to the world’s per-
capita average.
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Carbon footprint of computing

The relation between the time-to-solution and the
carbon footprint of the calculations is not linear.
When running a single core, a supercomputer-used
to capacity-produces less carbon than a

workstation. More cores result in better | |
performance, at the cost of producing more carbon. /

Similar performance as a single GPU is reached /\
when running 1000 cores, but when the number /

of cores is further increased, the performance | !{Mf/ (
continues to grow at an enormous cost in carbon

production. R

When running a million cores, the emission by
supercomputer by far exceeds air travel and
approaches the carbon footprint of launching a
rocket into space.
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Ecological impact of computlng language
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Figure 3: Here we used the direct N-body code from 2¥ to measure execution speed and
the relative energy efficiency for each programming language from table3 of 2. The dot-
ted red curve gives a linear relation between the time-to-solution and carbon footprint
(~ 5kg CO./day). The calculations were performed on a 2.7GHz Intel Xeon E-2176M CPU
and NVIDIA Tesla P100 GPU.

Results were obtained with the
assumption that astrophysicists invest
in full code optimization that uses the
hardware optimally.

In practice, most effort is generally
invested into solving the research
question; designing, writing, and
running the code is not the primary
concern, if the result is obtained
reasonably fast. This is why
inefficient (and slow) scripting
languages as Python flourish.

According to the Astronomical
Source Code Library, ~ 43% of the
code is written in Python, 7 % Java,
IDL and Mathematica. Only 18%,
17% and 16% of codes are written in
Fortran, C and C++ respectively.

Python and Java are also less efficient
in terms of energy per operation than
compiled languages, which explains
the offset away from the dotted curve.

Among 27 tested languages, only Perl
and Lua are slower than Python-
popularity of Python should be
confronted with the ecological
consequences.
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How to improve?

Runtime performance of Python can be improved using numba or NumPy libraries, which offer pre-
compiled code for common operations-it leads to an enormous increase in speed and reduced carbon
emission. However, these libraries are rarely adopted for reducing carbon emission or runtime with
more than an order of magnitude.

NumPy, for example, is mostly used for its advanced array handling and support functions. Using these
will reduce runtime and, therefore, also carbon emission, but optimization is generally stopped as soon
as the calculation runs within an unconsciously determined reasonable amount of time, such as the
coffee-refill time-scale or a holiday weekend. We even teach Python to students, but without realizing
the ecological impact.

The carbon footprint of computational astrophysics can be reduced substantially by running on GPUs,
but the development time of such code still requires major investments in time and expertise.

As an alternative, one could run concurrently using multiple cores, rather than a single thread. It is
even better to port the code to a supercomputer and share the resources.

Best for the environment is to abandon Python for a more environmentally friendly (compiled)
programming language.
Even better is to use other interesting strongly-typed languages with characteristics similar to Python,

such as Alice, Julia, Rust, and Swift. They offer the flexibility of Python but with the performance of
compiled C++.

Educators may want to reconsider teaching Python to University students. There are plenty
environmentally friendly alternatives.



39
Summary of the Lect. 1

General introduction to this lectures, Linux

General intro to accretion history, observations

Roche equipotential surfaces, PyAstronomy package

Motivation and examples for accr.disk simulations, cosmic magnetic fields
Linux shell commands, terminal editors

Ecology of computing

M. Cemeljié, Numerical simulations of accretion discs, Winter Semester 2024/2025



40

Outline, Lect. 2: More detailed introduction to accretion

Energetics of accretion, Eddington limit, spherical (Bondi) accretion
Thin accretion disc, fluid & (M)HD eqs.

Viscosity, resistivity, Alfven waves

Code PLUTO, structure of the code, initial and boundary conditions

Hands-on installation and testing, visualization with gnuplot,

M. Cemeljié, Numerical simulations of accretion discs, Winter Semester 2024/2025
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Energetics of accretion

When | said that with accretion gravity made a comeback, | should say
that it made it with a boom! - accretion is by far the most efficient way of
extracting energy out of the matter we know: it yields about 10 times more
than nuclear fusion!

We can show it in a back-of-the-envelope calculation for the luminosity of
the disk acquired by the infall of material from the large distance onto a
central object:
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Energetics of accretion

In the literature, one can find various numbers for the efficiency of
accretion, | list some below, but what is meant by “efficiency”?

It is the power available at given mass accretion rate M onto an object of
radius R: P=M GMI/R . This power is usually dissipated (through radiation)
away, otherwise there will be no accretion-e.g. heat would push the matter
away.

Efficiency of pair annihilation: n=1
Efficiency of Nuclear (H) fusion: n~107{-4}

Accretion efficiency n : Earth: 10"{-9}, Sun: 10"{-6},
White Dwarf: 10°{-4}, Neutron star: 10°{-1}

Accretion efficiency n=GMI/(Rc”/2) onto black hole (no hard surface)
depends on the details of accretion flow and spin of BH:

0.057< n <0.42 for thin accretion disk



Eddington limit "3

What is the maximum luminosity at which matter still can be accreted?

(This means that gravitational force on a chunk of fluid still just exceeds
the radiation pressure)

Simplest case is radial accretion onto a mass point M. If medium is fully
lonised gas of electrons and protons. and we assume Compton scattering

with the simplest radiation pressure o N L and F,=-m p;”f
¢ 4mr? r
47GMm,c
from F_=F_we get that Lrda = .
g ar

M
. . .. Lvgqg = 1.3 x 1(¢ erg/s
Some Eddington luminosities: solar mass NS 5 (’U’H) /
supermassive BH Lgaa = 1.3 x 1[]‘16(10;51-1?:) ere/s

LEaq
nc?

Eddington mass accretion rate: Mmgdd =

Usually it is said that the accretion is not possible if L>L__, but there are

cases when it is not true, and they are very interesting cases of
supernovae and non-spherical accretion cases in disks and jets.
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Spherical (Bondi) accretion-fast forward

H. Bondi (1952): an analytic solution for the spherically symmetric, steady-state accretion
flow of an infinite gas cloud onto a point mass, in the Newtonian approach. It is spherical
accretion onto a compact object traveling through the interstellar medium. It is generally used
in the context of neutron star and black hole accretion.

Such model was later extended, to be applied from the study of star and planet formation to
cosmology.

The derivation is not a simple one, Wikipedia answer: a rough estimate goes from the
accretion rate M=rtR2vp where p is the ambient density, v is the object’s velocity, and R is
the Bondi radius, which comes from setting escape velocity equal to the sound speed and
solving for radius. It represents the boundary between subsonic and supersonic infall, and it
is R=2GMI/c * Inserted into M it gives M~an2M2/c 3. More detailed version is below.

Bondi considered adiabatic (p~pY) accretion of gas. Far from central mass, gas elements
move in dependence of their thermal energy only, so that with gas temperature T, . with

sound speed c¢_we can say that at some critical distance from the central mass r_ the escape
velocity is equal to the speed velocity: r_=2GMIc ?

For r<r_ material falls freely onto the central mass, and for the density above the radius r_,
P, . we can write the infalling mass I\'II=4rtG2M2pim,_/cs2 |
Hydrostatic equilibrium gives p~r 32 (with y=5/3) and temperature

T~1/rA\[3(y-1)/2]. Infalling gas reaches speed of sound at distance r_from the center. We
find r =GMlc ?(5-3y)/4 . Even more in details is on the next 6 pages, | give it if you'd ever

need it, but here we do not need it, we go for the disk.
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Let us take another view on accretion: material point orbiting around a
center of mass interacts with its surrounding, transferring part of its energy
and angular momentum.

* Consequence of such scenario is slowly spiral-in of the mass point.

Energy which can be extracted is equal to the bonding energy of the
smallest orbit: E_=GMm/R , see the back of the envelope calculation.

* The derivation of the basics of accretion process can be given within
General Physics terminology, as follows.

-We consider rotating volume of gas with angular momentum L in cylindrical
coordinates (R,9,z), with z parallel to the axis of rotation.

-We further assume that distribution of L between the gas particles is
much slower than radiation transfer and rotation=L of the particle with
mass m remains constant, but its kinetic and internal energy are
distributed to other particles by collisions, shocks and radiation.

-For the constant L the minimal energy is for the circular orbit=>we
obtain the thin disk in which particles rotate with v(p=RQ(R),we can write,

with potential ®: F =ma=mv ?/R=-d®/dR=F ..
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Accretion disk

* |f there is a process counteracting the spread of particles (as viscosity),
energy spreads through the system by heat, and escapes from the system
by radiation.

* As a conseguence, mass particle will orbit at smaller R, we can understand
this as transformation of the orbital energy into radiation energy.

- With the gas surface density S(R,t) and radial velocity v (R,t), we observe the

element of gas with inner radius R and outer R+AR. Mass of such ring is
Am=21R-AR-S, angular momentum L=Rxp, where for angle of 90°between
R and p we can write L=Rmv(p, and in fact we can write, with L=mR?Q),

that the angular momentum of such ring is 2MRARSR?Q). Change of mass of
such a ring is equal to the fluxes in and out from the neighboring rings
(positive sign is away from the center): a/ot(Am)=flux(R )-flux(R+AR)=

— v (R, t)- 27 RS(R,t) —v.(R+ AR, t)2r(R + AR)S(H + AR )=
— v, (R, t)2rRS(R.t) —v.(R+ AR, )2rRS(R + AR, t)-

~uv(R+ AR, t)2rARS(R + AR, t) =

=[with AR -0, 3" term=0 and f(x+Ax)-f(x)=Axaf(x)/ox]= -ARJ(2nRSv )/aR
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Accretion disk

- Now we can write 3/dt(Am)/AR=-3/0R(2nMRSv ) and since

Am/AR=21RS, so we stay, after divide by 2m, with
0/0t(RS)=-0/0R(RSv ), dR/ot=v_and we can write further

v 5S+RaS/at=-v 5-Ra/dR(Sv ). Since 3/dR(RSv )=v S+R3/0R(Sv )

we can write: RaS/ot+9/0R(RSv )=-v S=0, since we are interested
only in the change of mass.

« The same we can do for conservation of the angular momentum of
such a ring, but adding the term for transfer of angular momentum
between the rings, because of viscous torques, ARdG/oR:

9 (2 RARSRA) = vn(R, )27 RS(R,1) ()~
i

—v,(R+ AR, 1)27(R+ AR)S(R+ AR,t) - (R + AR*QUR+ AR)+

+€%3H — [(R+ AR)® = R*+3R?AR +3R(AR)* + (AR)® =
i

= linearnaaproksimacija = R®+3R*AR] =
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Accretion disk

= v,(R, )27 RS(R, ) R°*Q(R + AR)-

. di
_3u.(R+ AR 2FARS(R+ AR YRR+ AR) + H—Han

- In the linear approximation, first two terms are -ARd(2nv RSR*Q)/dR

and we have: J-iﬁs (RSR'Q) = .-;ui't%['zmr, RS R*Q)-

aG
— 3027 ARSR' O+ —AR

an
IR a i ol el gER
rj Hﬂ H —['“"H: :| ﬁtu"h“qﬁ ﬂ_]—ﬂi‘.rSH ﬂ-l_ﬁ'R D
« Again we discard constant 1t I.h.s and 2" r.h.s. terms and write
oR/at=v_to get: ; L 9G

5 Sre bl 5 sspeiit it o 51500
R=-(SR'Q) 4 ——=(Rv, SR0) = 5-2.
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Viscosity

A=A

Two neighbor rings in the disk.

Now we will find the torque of two neighbor rings. The speed of chaotic
motion in the gas is v, and A is the characteristic scale, which is also the
mean free path. After exchange, element A will (in average) have torque from
the position R-A/2, and element in B from R+A/2. Material in chaotic
movement does not transfer matter (in average =0), only the steady flow can.

Transferred mass is om/at=Hpv, where H is the disk height in z direction.

For the accretion process essential is the difference in transported torques,
and there is transport of torque because of chaotic motions. This is viscous
torque.

Observer in point P, rotating with Q(R ) sees fluid in R-A/2 moving with

speed \ \ \

(R— )R- 3) + RS
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Viscosity

* This gives the average flow of angular momentum by the unit angle directed

outwards: A\ A A
poHR[(R — Z)Q(R — ) + Q(R)]
and inwards: ) A\ A
poHR[R+ ZQ(R+ 2) — AR)T],

* Torque on the outer ring by the inner ring is equal to total outwards torque.

In the first approximation we have:

pOHR{(R~ 2)Q(R - 2) + AR)5] — [(R+ 5)R(R+ 3) - AR)Z]} =

_ A A o A N
= poH R{RQY R — -2—) — RQ(R + 5) — -Q-Q(R— -2-) - EQ(R-I- E) +QQ(R)§} -

=[first two terms in { } give -RA3Q/dR, 3™ and 4™ after A/2—-0 give
M2Q(R) ]=-ApDHR23Q/aR.
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Viscosity, and back to the disk

For the whole ring we multiply the obtained result with 2nR, and with the
surface density pH=S [from p=m/V, S=m/A we divide with H, we have

S/H=m/(AH), r.h.s.=p] we obtain that the torque of the outer to the inner
rng

(- inner torque to the outer ring) is G(R )=2nRvSR2?3Q)/oR,

where v= Av is the kinematic viscosity coefficient.

We had G=G(R,t), and with RoQQ/oR=A we have G(R )=2nRvSAR, where
PSA is a viscous force per unit angle.

Now we can insert the obtained viscosity in the disk equations. We insert G
Into the equation we obtained from angular momentum conservation:

5 ; G S L 1 dis

X - 1 S . —— .
H--_i{.?ﬁf ) 4 fmufzhn ) o IR

We divide with R and together with RaS/at+9d/0R(RSv )=0 we can
eliminate v..
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Viscosity, and back to the disk

« The first equation, after division with R, we can rewrite as:

i) i G
Sor(RQ) + RQ= + LRI om(SRu,) +
ik 1 9 , 00
+ SRR (R) = pon(vSROZE)

- We write RaS/at+0/0R(RSv )=0 as d(Rsv )/oR=-RaS/ot and we have

9 Gl e G ahE
S (RAD)E RIS RIS Sv—(RQ)

1 0
— Eﬁ(USRs )

« In the first approximation L is a constant vector, and since R2Q) is
proportional to its length, we can discard the 1% term.
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Viscosity, and back to the disk egs.

2

3 91}
* We obtain: %33(”51{ Eﬁ)

Vy =

- Inserting it into RaS/ot+9/0R(RSv )=

have: oS 1 0

Sor(R*Q)

[ SHaR( SR?’@R ]._

0 we

9t . ROR 2-(R*Q)
1 9 {BR[USRS(
~ ROR = (R*Q)

- With F =F, potential of point mass M is
mv?/R=GMm/R? and v =QR, G=gravity
const., Keplerian Q=(GM/R3)¥2 and

dQ/dR=-3/2(GM/R>)*? and

This is the diffusion equation for the
surface density S: mass diffuses
iInwards, angular momentum outwards.
=R?/v.

« Diffusion timescale is t

Visc

-

;—R(f ) = EQ-RW GMR™%) =

= i(\/GMR%] _ L V/GMR 1
oR 2

a5 VSR IVGIRY)

=

] )
{ "Eaﬁt{ 1/GMR™3
9 {BR[HS 3\/GM R3]

1

" ROR' LJ/GMR- i
30, /50
roRY FaR! YAl
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Viscosity, general discussion

We obtained the solution for S. In general, v depends on local conditions in
the disk, and v=pv(S,R,t) so that we obtained nonlinear diffusion eq. for S.

If v depends on R only, eq. is linear in S, even for the power of R
(it was clear already in 1920-ies, Jeffreys 1924, Weizsacker in 1948).

Most of the mass moves towards the center, losing energy and torque. A
tail of matter moves towards larger R to conserve the angular momentum.
Matter from the initial ring arrives to the center, and total angular
momentum is transported to large radii by a very small mass, compared to
the disk mass. The disk slowly spreads outwards.

In 1973 Shakura & Sunyaev gave a solution, parameterizing viscosity

as v=ac_H, where a<1 is a coefficient describing “turbulent viscosity”.
Usually v~LV, where L is characteristic scale, and v characteristic

velocity of the turbulent eddies-so we assumed L~H of the disk,
and V~c_(turbulence is usually assumed to be subsonic).

In astrophysics we are usually dealing with large Reynolds numbers Re,
defined through Re=LV/v, simply because of large L.
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Viscosity, general discussion

Re measures ratio of inertial to viscous forces, so in the disc we usually
have proportionality with v */R

For Re<<1 viscous forces are dominating, and with Re>>1 they are
unimportant. In accretion discs usually Re>>10% and we can not get much
lower.

Clue of the problem is exactly in so large Re: from experiments we know that
fluids have some critical value Re_, at which the velocity becomes chaotic, so

we have turbulence. Typical Re_=10° so we can conclude that disc material

IS turbulent.

There were many works on turbulence, but we still do not have the full
understanding of the mechanism in accretion disks. Currently accepted
paradigm is the one by Balbus & Hawley (1992), where magneto-rotational
(MRI) turbulence is invoked.

Mathematically, viscous process is a diffusion process (of matter and angular
momentum), this is the basics for our description. We will see it in the
following equations.
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We will now make a general intro to (M)HD equations-for the first read I suggest
J.D.Jackson “Classical electrodynamics”, 10" chapter (up to the 3™ edition, later removed,

probably as too specialized).

10.2 Magnetohydrodynamic Equations

We first consider the behavior of an electrically neutral, conducting
fluid in electromagnetic fields. For simplicity, we assume the fluid to be
nonpermeable. Itis described by a matter density p(x, #), a velocity v(x, 7),
a pressure p(x, t) (taken to be a scalar), and a real conductivity ¢. The
hydrodynamic equations are the continuity equation

dp

a_i_\',l'.(,.:,‘.,)=0 (10.1)
and the force equation:
dv 1
PE;=—VP+-(JxB)+F,,+pg (10.2)
c

In addition to the pressure and magnetic-force terms we have included
viscous and gravitational forces. For an incompressible fluid the viscous

force can be written
F, = yV2v (10.3)

where 7 is the coefficient of viscosity. It should be emphasized that the
time derivative of the velocity on the left side of (10.2) is the convective
derivative,

0
R - .V 10.4
dt a:+v ( )

which gives the total time rate of change of a quantity moving instanta-
neously with the velocity v.

With the neglect of the displacement current, the electromagnetic fields
in the fluid are described by

10B _

VxE+-—=0
c ot (10.5)
10.5
L
C

The condition V.J =0, equivalent to the neglect of displacement
currents, follows from the second equation in (10.5). The two divergence
equations have been omitted in (10.5). [t follows from Faraday’s law that
(0/0r) V-B = 0, and the requirement V- B = 0 can be imposed as an
initial condition. With the neglect of the displacement current, it is
appropriate to ignore Coulomb’s law as well. The reason is that the
electric field is completely determined by the curl equations and Ohm’s
law (see below). If the displacement current is retained in Ampére’s law
and V- E = 47p, is taken into account, corrections of only the order of
(v*/c?) result. For normal magnetohydrodynamic problems these are
completely negligible.

To complete the specification of dynamical equations we must specify
the relation between the current density J and the fields E and B. For a
simple conducting medium of conductivity ¢, Ohm’s law applies, and the

current density is
J = oFE (10.6)

where J' and E’ are measured in the rest frame of the medium. For a
medium moving with velocity v relative to the laboratory, we must trans-
form both the current density and the electric field appropriately. The
transformation of the field is given by equation (6.10). The current density

in the laboratory is evidently
J=J + pyv (10.7)

where p, is the electrical charge density. For a one-component conducting
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‘I'o complete the specification of dynamical equations we must specity
the relation between the current density J and the fields E and B. For a
simple conducting medium of conductivity ¢, Ohm’s law applies, and the
current density is

J = oF (10.6)

where J' and E’ are measured in the rest frame of the medium. For a
medium moving with velocity v relative to the laboratory, we must trans-
form both the current density and the electric field appropriately. The
transformation of the field is given by equation (6.10). The current density
in the laboratory is evidently

— T + o (10.7)

where p, is the electrical charge density. For a one-component conducting
fluid, p, = 0. Consequently, Ohm’s law assumes the form,

i cr(E +E x B) (10.8)

Sometimes it is possible to assume that the conductivity of the fluid is
effectively infinite. Then under the action of fields E and B the fluid flows

in such a way that
E+ley xB) =0 (10.9)
c

is satisfied.

10.3 Magnetic Diffusion, Viscosity, and Pressure

The behavior of a fluid in the presence of electromagnetic fields is
governed to a large extent by the magnitude of the conductivity. The
effects are both electromagnetic and mechanical. We first consider the
electromagnetic effects. We will see that, depending on the conductivity,
quite different behaviors of the fields occur. The time dependence of the
magnetic field can be written, using (10.8) to eliminate E, in the form:

2
Z—B =V x(vxB)+ —

V2B (10.10)
t 4o

Here it is assumed that o is constant in space. For a fluid at rest (10.10)
reduces to the diffusion equation

2
0B _ ¢ gop

ot 4mo (101)

This means that an initial configuration of magnetic field will decay away
in a diffusion time

__ 4mol®

(_.2

T

(10.12)

where L is a length characteristic of the spatial variation of B. The time 7
is of the order of 1 sec for a copper sphere of | cm radius, of the order of 10¢
years for the molten core of the earth, and of the order of 10 years for a
typical magnetic field in the sun.

For times short compared to the diffusion time + (or, in other words,
when the conductivity is so large that the second term in (10.10) can be
neglected) the temporal behavior of the magnetic field is given by

a—B=V x (v x B)
ot

(10.13)
From (6.5) it can be shown that this is equivalent to the statement that the
magnetic flux through any loop moving with the local fluid velocity is
constant in time. We say that the lines of force are frozen into the fluid
and are carried along with it. Since the conductivity is effectively infinite,
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the velocity w of the lines of force (defined to be perpendicular to B) is
given by (10.9):

_ (ExB)

W C —B3

This so-called “E x B drift” of both fluid and lines of force can be under-
stood in terms of individual particle orbits of the electrons and ions in
crossed electric and magnetic fields (see Section 12.8).

A useful parameter to distinguish between situations in which diffusion
of the field lines relative to the fluid occurs and those in which the lines of
force are frozen in is the magnetic Reynolds number Ry, 1f V is a velocity
typical of the problem and L is a corresponding length, then the magnetic
Reynolds number is defined as

(10.14)

Ry =~ (10.15)

where 7 is the diffusion time (10.12). Transport of the lines of force with
the fluid dominates over diffusion if Ry, = 1. For liquids like mercury or
sodium in the laboratory Ry, < 1, except for very high velocities. Butin
geophysical and astrophysical applications R; can be very large compared
to unity.

The above considerations have shown that if the conductivity is large
the lines of force are frozen into the fluid and move along with it. Any
departure from that state decays rapidly away. In considering the
mechanical or electromagnetic effects we treated the opposite quantities as
given, but the equations are, of course, coupled. In the limit of very large
conductivity it is convenient to relate the current density J in the force
equation to the magnetic induction B via Ampére’s law and to use the
infinite conductivity expression (10.9) to eliminate E from Faraday's law
to yield (10.13). The magnetic force term in (10.2) can now be written

laxB)=—L1Bx (¥ xB (10.19)
¢ 4
With the vector identity
jV(B-B)=(B-V)B + B x (V x B) (10.20)
Equation (10.19) can be transformed into

BE

1 . 1.
E(J x B) = v(g )+4F(B V)B (10.21)

Ll
This equation shows that the magnetic force is equivalent to a magnetic
hydrostatic pressure, >
=2 (10.22)
Pu 3o .

plus a term which can be thought of as an additional tension along the
lines of force. The result (10.21) can also be derived from the Maxwell
stress tensor (see Section 6.9).

If we neglect viscous effects and assume that the gravitational force is
derivable froma potentialg = —Vy, the force equation(10.2) takes the form

dv 1
p—=—=V(p+py+pyp)+—(B-V)B (10.23)
dt dor

In some simple geometrical situations, such as B having only one com-
ponent, the additional tension vanishes. Then the static properties of the

fluid are described by P + pas + py = constant (10.24)

This shows that, apart from gravitational effects, any change in mechanical
pressure must be balanced by an opposite change in magnetic pressure. If
the fluid is to be confined within a certain region so that p falls rapidly to
zero outside that region, the magnetic pressure must rise equally rapidly
in order to confine the fluid. This is the principle of the pinch effect



Alfven waves
10.8 Magnetohydrodynamic Waves

In ordinary hydrodynamics the only type of small-amplitude wave
motion possible is that of longitudinal, compressional (sound) waves.
These propagate with a velocity s related to the derivative of pressure with
respect to density at constant entropy:

- Eg)
* (ﬂpﬂ

If the adiabatic law p = Kp” is assumed, 5* = yp,/p,, Where y is the ratio

of specific heats. In magnetohydrodynamics another type of wave motion

is possible. It is associated with the transverse motion of lines of magnetic

force. The tension in the lines of force tends to restore them to straight-

line form, thereby causing a transverse oscillation. By analogy with
ordinary sound waves whose velocity squared is of the order of the hydro-
static pressure divided by the density, we expect that these magnetohydro-
dynamic waves, called Alfvén waves, will have a velocity

Buﬂ L

where By?/8x is the magnetic pressure.

(10.64)

(10.65)

Alfven is my hero in writing of a
short, impactful article!
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Simulation ver. computation

Computation is actually an evaluation: you plug the numbers in a known algorithm and
obtain the result. For this, you need to know the analytical expression. You still can use a
(human?) calculator with a slide ruler, or mechanical or electrical or electronic calculator or,
today, computer to actually obtain numbers and plot e.g. trajectory of a bullet, but you do
know the equation for the solution.

Simulation is needed when you do not know a simple equation for the solution. You set the
governing equations, e.g. differential equations, and use a numerical method to find the
solutions. This is usually done in time steps, and we obtain the solution to some precision.
We do not know the analytical expression for the solution, we just have numbers. We can
interpolate some power law and write the equation afterwards, but this will be only an
approximation, without physical understanding of the outcome. Then we usually hand-
wave the solution. More stirring of the air usually means less of physical understanding.

Why PLUTO? | used other codes, but PLUTO is constantly evolving (and is used in variety
of problems) and the development is followed in the manual-which is not so often the case
in the coding world. The version 4.4.2. just changed to 4.4.3. in September 2024. PLUTO
user manual gives chance to students to go through the-still steep-learning curve of the
numerical simulations in the shortest possible time. Check also Doxygen html files in
PLUTO/Doc.
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I HOPE YOU MANAGED TO DOWNLOAD THE CODE AND DO THE FIRST TEST. WE WILL
BRIEFLY GO THROUGH THE STEPS.

PLUTO is freely available. Source files of the code are downloadable from
http://plutocode.ph.unito.it/

After unpacking, the source code is in PLUTO directory. In PLUTO/Doc
IS the manual, userguide.pdf. Follow the “Quick start” at the beginning

of the document to install and test the code. Produce the gnuplot
output specified in the manual, to verify if the setup works.

The code comes with templates of subroutines which are usually changed.
They are given in the PLUTO/Src/Templates

Test examples, under /PLUTO/Test_Problems, are basic versions of
setups used in previous versions of the code, during the developments of
the setups for simulations presented In publications by various groups. It
IS a good library of examples for faster start of one’s own project.

| will provide the setup for HD and MHD accretion disk for this lectures.


http://plutocode.ph.unito.it/
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6.1 The HD Module

The HD module may be used to solve the Euler or the Navier-Stokes equations of classical fluid dynam-
ics. The relevant source files and definitions for this module can be found in the Src/HD directory.
With the HD module, PLUTO evolves in time following system of conservation laws:

p pv g 0
0
5 m + V. muv + pl = | —pVP® +pg (6.1)
Ey + p® (Bt +p+ pP)v m-g

where p is the mass density, m = pv is the momentum density, v is the velocity, p is the thermal pressure
and FE; is the total energy density:
2
m
By =pe+ —. 6.2
+ = pe+ 2 (6.2)
An equation of state provides the closure pe = pe(p, p).
The source term on the right includes contributions from body forces and is written in terms of the

(time-independent) gravitational potential ® and and the acceleration vector g (45.4).
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6.2 The MHD Module

The MHD module is suitable for the solution of ideal or resistive (non-relativistic) magnetohydrody-
namical equations. Source and definition files are located inside the Src/MHD directory.
With the MHD module, PLUTO solves the following system of conservation laws:

dp

V- = 0
5 + (pv)
B>\1"

om + V'[mUBBJrI(er)] = —pVe+tpg
ot 2
o (6.4)
o + V x(cE) =0

2
a(EtaJ;P‘I’) + V.[(%%-ﬂe—l-p-l-ﬂ@)v—&—cExB] = m-g

where p is the mass density, m = pv is the momentum density, v is the velocity, p is the gas (thermal)
pressure, B is the magnetic fiel and E; is the total energy density:
m? B?
E =pe+ — + — . .

t=pet ot (6.5)
where an additional equation of state provides the closure pe = pe(p, p) (see Chapter. The source term
on the right includes contributions from body forces and is written in terms of the (time-independent)
gravitational potential ® and and the acceleration vector g (see {5.4).

In the third of Eq. (6.4), E is the electric field defined by the expression

J
cE=-vxB+1.J+ xB (chva) (6.6)
ne

C

where the first term is the convective term, the second term is the resistive term (7 denotes the resistivity
tensor. see 48.2) while the third term is the Hall term (48.1). Note that the speed of licht ¢ never enters
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6.3 The RHD Module

The RHD module implements the equations of special relativistic fluid dynamics in 1, 2 or 3 dimensions.
Velocities are always assumed to be expressed in units of the speed of light. The special relativistic
module comes with 2 different equations of state, and it also works in curvilinear coordinates. Gravity
in Newtonian approximation can also be incorporated. The relevant source files and definitions for this
module can be found in the Src/RHD directory.

The special relativistic module evolves the conservative set U of state variables

T
U = (D‘ miy, Mz, My, Et)

where D is the laboratory density, m.1 .2 .3 are the momentum components, E; is the total energy
(including contribution from the rest mass). The evolutionary conservative equations are

D Dv \' 0
% m | +V-| mov+pl = I,
Et m U'fg

where v is the velocity, p is the thermal pressure. Primitive variables V' always include the rest-mass
density p, three-velocity v = (v;1, V42, v;3) and pressure p. With PLUTO 4 4, the acceleration term f g 18
treated consistentlwith the formalism of [Tau48)|. If a is the acceleration vector,

o= p [Yv(v-a)+al. (6.12)
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6.4 The RMHD Module

The RMHD module implements the equations of (ideal) special relativistic magnetohydrodynamics in
1,2 or 3 dimensions. Velocities are always assumed to be expressed in units of the speed of light. Source
and definition files are located inside the Src/RMHD directory.

The RMHD module solves the following system of conservation laws:

[ D)

ot E,

\ B

+V-

(

\

Do
?ﬁt'}f?'v'v — bb + Ip,
m

vB — Bv

)

/

C

\

(6.13)

where D is the laboratory density, m is the momentum density, E is the total energy (including contri-

bution from the rest mass) while f is an acceleration term (see|6.

6.3).
Primitive variables are similar to the RHD module but they:ajso contain the magnetic field, V' =

(p,v,p, B). The relation between V and U is

D = P

m = wy?v—b’b

Et _ ,U},t,},Q . bl’JbU — D

s

L
b =

Pt = P

_|_

Y-
B/~ +~(v-B)v

\ w; = ph+ B*/7*+ (v - B)?
BQ/’}’Q + (’U . B)?

B

2
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A note on public vs. non-public modules.

Besides the official code release, a few modules have not yet been made available with the standard
public version, as they are still under active development or testing stage. In other circumstances, a
private module may have been implemented under specific collaboration policies, which do not grant
its public distribution. These non-offical modules include:

e Lagrangian Particle Module
(Developers: B. Vaidya [bvaidya@iiti.ac.in], D. Mukherjee [dipanjan@iucaa.in]);

e Dust Module
(Developers: A. Mignone [mignone@to.infn.it], M. Flock [flock@mpia.de]);

e Relativistic Resistive MHD
(Developers: A. Mignone [mignone@to.infn.it], G. Mattia [mattia@mpia.de]);

Distribution, private sharing and usage of these modules is permitted only in the form of a collabora-
tion between our partner institutions network, requiring co-authorship from at least one of the module

developers.
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6.5 The Resistive RMHD (ResRMHD) Module

Note: This module is not part of the public code release, see “Terms & Conditions of Use” at the
beginning of this guide

The ResRMHD module deals with the non-ideal relativistic MHD equations using the approaches
discussed in [MMBD19]. Source and definition files are located inside the Src/ResRMHD directory.
The set of resistive relativistic equations arising from the time and space split of the covariant are, in

vectorial form,
oD

—— - (Dv) =0,

5 + V- (Dv) =0,

om

ﬁJrV-(wuu%—pH—T):U,

o0&

- -m =0, 6.14
8t+v m =0, (6.14)
0B

— E =0,

8t+V>< 0,

OE

W—VXB——J,

where | is the identity matrix and the fluid conserved variables are the density D = pvy as measured in
the laboratory frame, the total momentum density m = wyu + E x B, and the total energy density

E = ’UJ’}’Q —p+ Pem. (6.15)

In the expressions above, w = € + p is the specific enthalpy and Pgn = (E* 4+ B?)/2 denotes the EM

energy density. Finally, __ __
T=—-EE- BB+ i(E*+ B?)l (6.16)
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7. Equation of State

In the current implementation, PLUTO describes a thermally ideal gas obeying the thermal Equation of
State (EOS)

My [

where p is the pressure, n is the total particle number density, kg is the Boltzmann constant, 7" is the tem-
perature, p is the density, m,, is the atomic mass unit and p is the mean molecular weight. The thermal
EOS describes the thermodynamic state of a plasma in terms of its pressure p, density p, temperature
T and chemical composition p. Eq. is written in CGS physical units. Using code units for p and p
while leaving temperature in Kelvin, the thermal EOS is conveniently re-expressed as

T "L 2

-2 = =Lk (where k= Mt -”U) (7.2)

K p kp

where K is the KELVIN macro which depends explictly on the value of UNIT_VELOCITY.

p
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8. Nonideal Effects

In this chapter we give an overview of the code capabilities for treating dissipative (or diffusion) terms
which, at present, include

e Hall MHD (MHD), described in 8.1

e Resistivity (MHD), described in §8.2

e Thermal conduction (HD, MHD), described in §8.3

e Viscosity (HD, MHD), described in §8.4

Each modules can be individually turned on from the physics sub-menus accessible via the Python
script.
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Shell variable setup, aliases

* We follow the “Quick start” from the beginning of the
PLUTO/Doc/userguide.pdf

* Instead of every time after login repeating
export PLUTO_DIR=/home/user/PLUTO # in bash shell
Create in .bash_aliases (or .bashrc) a shell variable with path to PLUTO:
export PLUTO_DIR="/home/miki/PLUTO"

e Also, it is useful to create an alias (shortcut) for running the setup.py, e.g.:
alias pls='python $SPLUTO_DIR/setup.py’

e For runs on multiple processors on laptop, useful is alias like:
alias plutorun6="mpirun -np 6 ./pluto’



System setup

IW .bash aliases (Modified)

1 sshdisco="'ssh -Y miki@disco'
sshchuck="'ssh miki@chuck"
sftpchuck="sftp miki@chuck.camk.edu.pl’
kju='squeue -u miki'

sshgate='ssh -X -1 miki gate.tiara.sinica.edu.tw’
sftpgate='sftp miki@gate.tiara.sinica.edu.tw'

#alias pls='python $PLUTO DIR/setup.py"’

alias pls4l='python $PLUT041 DIR/setup.py'’

lias pls42='python $PLUT042 DIR/setup.py’
pls43="python $PLUT043 DIR/setup.py"’
pls44="python $PLUT044 DIR/setup.py"’
pls442="python3 $PLUT0442 DIR/setup.py'’
pls443="python3.12 $PLUT0443 DIR/setup.py’
plschombo="'python $PLUT044AMR _DIR/setup.py --with-chombo"

plutorun2="mpirun -np 2 ./pluto’
plutorund4="mpirun -np 4 ./pluto’
plutorun6="mpirun -np 6 ./pluto’
plutorun8="mpirun -np 8 ./pluto’
plutorun24="mpirun -np 24 ./pluto’
plutorun42="mpirun -np 42 ./pluto’

echopl4="echo "mpirun -np 4 ./pluto” | at now'
echopl8='echo "mpirun -np 8 ./pluto” | at now'
echopll6="echo "mpirun -np 16 ./pluto” | at now'
echopl32='echo "mpirun -np 32 ./pluto” | at now'




Hands-on introduction: PLUTO/setup.py

I A setup.py (python) import os

import sys
import shutil

try:
os.environ|
except KeyError:
print
pluto_directory = os.getcwd()

pluto_directory = os.environ][

sys.path.append(pluto_directory +
import menu

import configure

from make problem import MakeProblem

def PlutoInterFace(pluto dir, do_auto update
work dir = os.getcwd()
interface_optval =
interface opts = [

if do_auto update:
MakeProblem(work dir, pluto dir, 1, 1)




M2 5 miki@petri: ~/Applics/PLUTO44

Hand . d .« . IN Config/Linux.mpicc.defs
ands-on introduction: R

: LUTO/Config/Linux.mpicc.defs _

Configuration file for mpicc (parallel)
T T T P D i ]
oo

CFLAGS
LDFLAGS

mpilcc
-c =03 -Wundef
-1lm

PARALLEL
USE_HDF5
USE_PNG

TRUE
FALSE
FALSE

o
# MPI additional spefications
S S e A R e e e

ifeq ($(strip $(PARALLEL)), TRUE)
endif

S S e A S e e e
HDF5 library options
L S A S e e e e R e

ifeq ($(strip $(USE_HDF5)), TRUE)

INCLUDE_DIRS +=/usr/local/lib/HDF5-parallel/include
LDFLAGS +=/usr/local/lib/HDF5-parallel/lib -1z -1m -lhdf5
endif

R T P S S A R A LT
PNG library options
R T P S S A R A T

** Joe's Own Editor v4.1 ** (utf-8) ** Copyright © 2015 **



Test problem: Sod shock tube in 1D 4

0.2 Running a simple shock-tube problem

PLUTO canbe quickly configured to run one of the several test problems provided with the distribution.
Assuming that your system satisfies all the requirements described in the next chapter (i.e. C compiler,
Python, etc..) you can quickly setup PLUTO in the following way:

1. Change directory to any of the test problems under PLUTO/Test_Problems, e.g.
"> od SPLUTC _DIR/Test Problems/HD/Sod
2. Copy the header and initialization files from a configuration of our choice (e.g. #01):

" /PLUTO/ Test_Problems/HD/Sod> cp definitions_01.h definitions.h
"/PLUTO/ Test_Problems/HD/Sod> cp pluto_01.ini pluto.ini

3. Run the Python script using

" /PLUTO/Test_Problems/HD/Sod> python SPLUTO_DIR/setup.py
and select “Setup problem” from the main menu, see Fig. You can choose (by pressing Enter)
or modify the default setting using the arrow keys.

4. Once you return to the main menu, select “Change makefile”, choose a suitable makefile (e.g.
Linux.gcc.defs) and press enter.

All the information relevant to the specific problem should now be stored in the four files init.c
(assigns initial condition and user-supplied boundary conditions), pluto.ini (sets the number of
grid zones, Riemann solver, output frequency, etc.), definitions.h (specifies the geometry, number
of dimensions, reconstruction, time stepping scheme, and so forth) and the makefile.

5. Exit from the main menu (“Quit” or press 'q’) and type

“/PLUTO/ Test_Problems/HD/Sod> make

to compile the code.
6. You can now run the code by typing

" /PLUTO/Test_Problems /HD/Sod> ./pluto

At this point, PLUTO reads the initialization file pluto.ini and starts integrating. The run should
take a few seconds (or less) and the integration log should be dumped to screen.
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The PLUTO original source will not be changed, for our simulations we just
append to it our version of some files in a pre-compiling step.

The changed version of a file in the work directory (for which | suggest the
name /home/Pluto and plz do it so, that | could easier help you, navigating
you to the routines where you should check for errors) has, by default in
PLUTO, priority to the original version in PLUTO/Src directory.

The files to be copied into the work directory from the working version into a
new setup are init.c, pluto.ini, definitions.h, (+userdef output.c,
res_eta.c, visc_nu.c for the accretion disk setup).

The file definitions.h is the only *.h file changed in the work directory. All the
other *.h files are to be changed directly in PLUTO/Src directory.

In the file pluto.ini are defined the grid, solvers and run parameters.

Most of the entries in definitions.h are done through the python
environment during the setup of the run, but some entries are to be done by
hand editing the definitions.h file, prior to compilation.

In the file init.c is defined the physics setup.
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Detailed Description from Doxygen file: The Sod shock tube problem is one of the most used benchmark for
shock-capturing schemes. It is a one-dimensional nroblem with initial condition given by a discontinuity
separating two constant states: (. v=p), = (1.0.1) for z<05

(P v P = (£,0,75) for z>05

The evolved structured at t=0.2 is shown in the panels below and consists of a left-going rarefaction wave, a
right-going contact discontinutity and a right-going shock wave. The results shown here were carried

with PARABOLIC interpolation, CHARACTERISIC_TRACING time stepping and the two_shock Riemann
solver on 400 zones (configuration #04).
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Test problem: Sod shock tube in 1D

Typing in terminal:
gnuplot> plot "data.0001.dbl" bin array=400:400:400 form="%double" ind O
You should obtain:
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Summary of the Lect. 2

Energetics of accretion, Eddington limit, spherical (Bondi) accretion
Thin accretion disc, fluid & (M)HD eqs.

Viscosity, resistivity, Alfven waves

Code PLUTO, structure of the code, initial and boundary conditions

Hands-on installation and testing, visualization with gnuplot,

M. Cemeljié, Numerical simulations of accretion discs, Winter Semester 2024/2025
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Outline, Lect.3 : General solutions for thin disk

Shakura-Sunyaev 1973 disc
Initial and boundary conditions in PLUTO
Setup and running of Orszag-Tang problem in 2D and 3D

Visualization in 2D and 3D with Paraview

M. Cemeljié, Numerical simulations of accretion discs, Winter Semester 2024/2025
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General equations

« We will go through (sometimes painful, but nobody said it is to be easy!)
detail into the accretion disk equations.

« The obtained solution is still a starting point for explanation of the birth of
stars and larger structures.

* Matter which we consider, when undergoing accretion, is gaseous, which
means that interaction is by the collisions, not short distance forces. We use,
as we did before, A for the mean free path of the particles, v for the mean
velocity (velocities are measured in the comoving coordinates, and
distributed following a Maxwell-Boltzmann distribution, which is dependent
on the temperature, T), p for the mass density of gas. When observing the gas
at scales L>>A, we can consider it as a continuous fluid, with density,
velocity and temperature defined in every point of the flow. The equations to
describe such fluid are the equations of conservation of mass, momentum and

energy. dp
« Conservation of mass: §;

Conservation of momentum follows from the force acting on a fluid element:
i j( Pdii = (Gauss —Ostrogradski) = — h VPdV
S

P is pressure, and the direction of ort vector n is outwards from the volume.
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General equations

Force acting on the unit volume element of the gas is (-VP), and its equation

of motion we obtain from the 2" Newton, multiplying it with the unit volume

mass=density P and acceleration, SO we can write: dv o p
L St
dt

Acceleration is also with respect to the comoving coordinates,

not in the background rest system, so we have two parts in the velocity
change in this equation: one is the change of velocity in the given point of
space at a time interval dt: dv/otdt and another is the difference in velocities
at two points of space, distanced r, through which the fluid flows during dt,
what we can write as drVv, so we can write all together: . _ 'Z_v dt + diV - ;,};_

When we insert it to the above equation of motion, 1z 95
. = I S AT T
we obtain Pﬂa_i VAT =P dt — o

General equation of motion should add the source term for the external forces
acting on the system, we obtain the Euler equation: | o v . 7=-vP+ [ (E)

If we insert f=pg for a gas in gravity field (g is the &z
gravity acceleration), f could contain contributions
from viscosity, external magnetic field etc.
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General equations

Momentum of the fluid element is pv, conservation of the momentum is:
D dp_. v
L

For a stationary flow ap/ot=0, so also the last derivative equals zero, so
with E we have: 07V - 5+ VP — pj =0 (A)

From mg = —GmMrp/r? j§§ = —GMry/r?

For the accretion onto spherical object of mass M, we choose spherical
coordinates (r,9,@), radial component of the equation (A) is (G=grav. const)

d dP GM
U, Iiﬂr rL]]+—+.r:?

*n;—

T'

where []=2rv +r°dv /or so we have

2 i
2”’ Ur%+lﬂp+ﬂ=[} (B)
r ar por r?
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* From the continuity equation we have, for the stationary case with aP/at=0
that ap/at+V(pvr)=O. For any vector A radial partis v. 4 = l?[di{rmrj],
r r
sowe have ! d

AL g it which means that r*v =const.
PT'sz'{T T-'r::l = [:I l'llj r

Since (-pv,) is inflow mass flux, this const must be related to mass flux,
+ i.e. the accretion rate M=4mrp(-v ), since r*(inflow flux)=const=M/4m,

for the whole sphere is 41ir2M-(inflow flux).
Now we insert rv = - M/4mip into eq.(B) from the previous slide to obtain

v =-M/4mipr?, which in the limit r - 0 gives v=0 and for the stationary

spherical accretion we stay with v 1dP  GM _ .

; J'IT

Uy

dr par
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General equations 8

Energy conservation:

The gas element energy is a sum of kinetic term 1/2pv? (by unit volume)

and internal (thermal) energy €p (€ is specific energy-by mass unit,
dependent on temperature T). From the equipartition of energy we know that
each degree of fredom has average energy of 1/2kT, so for mono-atomic gas
we have only 3 translational directions and we can write €=3/2KkT.

Energy conservation equation we write similar to mass conservation,
plus adding source terms, depending on physics we include in our model,
now instead of p we conserve the kinetic and internal energy, and in the
spatial derivative we will have work done by the pressure, Pv:

d.1 1 =, .
a7 (3P0 +pe)+ Y [(5pv’ +pe+ P)i] - 3 =0 and for a stationary case:

Nav -
V- [(5p0% + pe+ P)i) = fT

On the r.h.s. we can add the losses (so, - sign!) by radiation, heat etc. as
the source terms inside -V( ).



e with m,~m_
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Perturbative solutions for the disk

Now we move to the perturbation method-we will compute the perturbation
in relation to the hydrostatic balance. We had

V:(pv) =10
plT-Vi=-VP+ f
I 4 F
V- [(sv? + pe + P)i] = i

and with v=0 in the hydrostatic case we stay only with

VP=f

For the ideal gas, which we can assume everywhere except degenerate gas in
some dense objects or near the centres of the normal stars, we have

kT
pra G
JATTE B

.. 1s the hydrogen atom mass, and [ is the average molecular

mass in units of m,, so that for completely ionized hydrogen it is u=0.5
and for neutral hydrogen u=1.
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Now we assume a small shift in the density and pressure (p’, P’) from the
initial balance values (p,, P,): p=p,+p’, P=P,+P", v=Vv’

Depending on the processes, perturbations can be isothermal or adiabatic.

For adiabatic changes with y=5/3 and isothermal with y=1 we can write
P/p¥ = const=k, so we can write P +P’= k(p,+p’)¥[set y=1.05 in simuls!]

Linearizing the mass continuity eq.: R
& y €4.- gf+?~{ﬂﬁ'}=a{ﬂu+aﬂ“}+'~7-[iﬂu+ﬂ3"”’]=

with V(p’)v - O in the first approx.

dp’
— 2R Vv =0
:H+ﬂﬂ v

We do the same with Euler eq. to obtain:

—
[ s —

' {PD+P“}EIL+[;:U+F’}1F-?-IFI—":"{Pn-l'-P}‘i'f
Since VP =f, and products of

second and higher orders are Fﬂ%!: +pov'- V- =—VPy— VP + [

neglected, we obtain p 0v’/dt=-VP’ . rﬂ;:r

We obtained two egs.: a + poV - v' =0 (C)
%  Lypr=g

dt  po
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Perturbative solutions for the disk 8

From P +P’= k(p,+p")¥ we see that P is a function of p only, so that we can
write VP’=(aP/ap),Vp’, to the first order, where with a subscript ,we

assigned that we evaluate the derivation for the equilibrium state.
The second of the egs. (C ) we can write now as: gy 1

We act on it with V: o T E(dffdﬂ]n?p =0
al;; l ¢ 2l
We act on the 1% eq.in (C ) with 3/ot: ~ 3*p’ L

'@"P{Fu?atjzﬂ

We subtract the two eqgs.to obtain:

0?2 P.t
- 2
i (AP/dp)oV?*p'
the wave equation! With T as the sound speed, c*, we can write
ai ’
£ V2!

dt?
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 For P’ and v’ we obtain the equivalent equations, so we conclude that small
perturbations around the hydrostatic equilibrium positions spread with the
speed of sound.

« Depending on the kind of perturbation, we have two possibilities,

adiabatic ol 5T Ao Tanaky
g 3p Sumy
or isothermal: ... _ \/E S0 RRD
3 P Hmy
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Back in “Viscosity, and back to the disk eqgs”, slide 25, we obtained the

equation: 9S 1 0 &S Ra%m R3] s (G is gravity const. here!)
ot ROR' LJGMR:
it {%[uSi\/GMiR'F]}=
- ROR" 1VGMR™2
RaR[\/_--— US\/__]

To continue, we need the viscosity. That the disk would be “stationary” and
that viscosity would work, we need that the mass accretion rate M would be
slow enough. Then we can set 8/0t=0 and from the mass conservation we can
write M=2mRS(-v ) and from the angular momentum conservation we have

RSV R2Q=(G(R,t)+C)/(2m), with C=const. related to the angular momentum

rate of the accreted matter. Star must rotate slower than the breakup rotation
at the equator, so when approaching closer to the star, there is a region in the
disk where the disk corotates with the star. Even closer to the star, our
approximation breaks-here starts the discussion and departure from the simple
estimates.



Stationary thin disk 20

We had G=G(R,t), and with RoQ/oR=A it was G(R )=2nRvSAR, where
DSA is a viscous force per unit angle. After integration we have
-»S0Q/OR=5(-v Q)+C/(2nR°) (D), where C is a constant.

Inside a ring at R ,+Db, the rotation of the disk approaches Keplerian,
reaches 0Q2/0R=0. and increases until it reaches R~R,. We can

write (g, +b) = M _”_]] (G is gravity constant now!).

1 +
RS, B H,q,

Closer than R, The thin disk approx. is not valid animore. To find C
we insert R=R,+b and evaluate C=2nR *Sv Q(R,+b)|, ,,, (now Q) ,
not multiplying!), which gives, after insertina mass accretion rate M

and Q(R,+b), C=-M(GMR,)"?that -:,-_E{ i E],exact to order O(b/R,).
We insert it to eq. D to obtain 10l 37

g o 1 a5l
Loss of energy because of viscosity is A ey b :'fﬁaﬁz which is
D(R)=0/(411)9Q2/oR per unit disk
surface. Inserted back to (D) ititgi =~ " ‘;{ﬁ””

D(R ) is independent of viscosity: D(R) = e [1 - F]
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Stationary thin disk °

Now we can estimate the luminosity of a disk between R and R, (2 is for 2

IGMM [Fs Ra| dR
disk sides: L(Ry, Ry) = / D(R)2rRdR > LRy, Re) = — j:{ []— E‘ R

Fis

: : J 2Ry 2 [R
If we substitute x=R/R,, we obtain L(#;, R.) = %"-E{E[ == ——’;‘]—Ell—idﬂ—:i}

For R=R, and R, - % we obtain the complete disk luminosity (G is gravity

const): GAMNE it |
disk — ERA —= 9 akrecije

ABu. GMM
AT

where we defined [ ,..;. =

This means that half of the energy is radiated from the disk, and half is
released very close to the central star, which takes the same amount like the
whole disk! (which has a much, much larger surface).
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Stationary thin disk °

This was for radial direction, is it all consistent with the vertical direction? In
the vertical, z direction, there is mainly no flow, we have the hydrostatic

equilibrium: 197 _ @ [ GM ] which we get from the vertical component of
poz Oz |VRE+ 22

Euler eq. (E), neglecting all the terms with velocities.
For the thin disk z<<R we have 19F _ GM:

pdz R3
Since H||z we can write dP/0z~P/H and z~H, and condition for a thin
disk becomes H<<R. For Pxpc* we have R =
H ™~ e\ =
which means that it has to be “Vem

c.<<(GM/R)"*; additional condition for a thin disk: local Keplerian speed

must be highly supersonic. Only with this satisfied, the approximation of thin
disk can be used. - This is a strong condition for the inner workings of a disk,
and tells us that the local orbiting speed will be close to the Keplerian speed.
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* The radial component of the Euler eq.is:  gu. ﬁ 1 dP GM i
If we neglect the pressure term, because '"dR p0R T R T
. of ¢ <<(GM/R)"*, we have p*aP/dR~c_*/R in comparison to a larger
gravitational term GM/R?, with M=4nrp(-v ) and it R
we have Lo o=l Vg
L= —%{1 - R—;]_l

« Now we are slowly shifting to the Shakura & Sunyaev (1973) main
assumption: for any reasonable viscosity, the radial velocity v _is

highly subsonic, while orbital velocity is highly supersonic and
approximately Keplerian: with ve«c H we have v «v/R~c H/R<<c_

« NOW WE HAVE ALL THE EQUATIONS FOR THE DISK STRUCTURE.



Lynden-Bell on steady model disk

94

Now we are in a better position to discuss the SS73 paper, which is one of the most cited papers on accretion disks (10657
at noon Sunday 27" 02 2022, 12244 on 11.10.2024)

Galactic Nuclei as Collapsed Old Quasars

by
D. LYNDEN-BELL

Royal Greenwich Observatory,
Herstmonceux Castle, Sussex

RYLE gives good evidence® that quasars evolve into power-
ful radio sources with two well separated radio components,
one on each side of the dead or dying quasar. The energies
imvolved in the total radio outbursts are calculated to be
of the order of 108 erg, and the optical variability of some
quasars indicates that the outbursts probably originate
i a volume no larger than the solar system. Now 10 erg
have a mass of 10%° g or nearly 107 Suns. If this were to
come from the conversion of hydrogen into helium, it
can only represent the nuclear binding energy, which is
3/400 of the mass of hydrogen involved. Hence 10°® solar
masses would be needed within a volume the size of the
solar system, which we take to be 10 em (10 light h).
But the gravitational binding energy of 10° solar masses
within 10*® em is GM?/r which is 10°® erg. Thus wo are
wrong to neglect gravity as an equal if not a dominant
source of energy. This was suggested by Fowler and
Hoyle?, who at once asked whether the red-shifts can
also have a gravitational origin. Greenstein and Schmidt?,
however, earlier showed that this is unlikely because the
differential red-shift would wash out the lines. Attempts
to avoid this difficulty have looked unconvineing, so I
shall adopt the cosmological origin for quasar red-shifts.
Even with this hypothesis the numbers of quasar-like
objects are very large, or rather they were so in the past.
I shall assume that the quasars were common for an initial
epoch lasting 10® yr, but that each one only remained
bright for 10 vr, and take Sandage’s estimate (quoted in

Powerful emissions from the centres of nearby galaxies may represent
dead quasars.

which we shall call the Schwarzschild throat. We would
be wrong to conclude that such massive objects 1n space-
time should be unobservable, however. It is my thesis
that we have been observing them indirectly for many
yvears.

Effects of Collapsed Masses

As Schwarzschild throats are considerable centres of
gravitation, we expect to find matter concentrated toward
them. We therefore expect that the throats are to be
found at the contres of massive aggregates of stars, and
the centres of the nuclei of galaxies are the obvious
choice. My first prediction is that when the light from the
nucleus of a galaxy is predominantly starlight, the mass-
to-light ratio of the nucleus should be anomalously large.

We may expect the collapsed bodies to have a b
spectrum of massecs. True dead quasars may
or 101 M while normal galaxies like o
only 107-10% M ~ down their throats.
shows that the last stable circular
12 GM [c? = 12m so we shall call-the sphere of this diameter
the Schwarzschild mout imple calculations on circular

may have
ple calculation

orbits yield the following results, where M, is the mass of

the collapsed body in units of 107 M ¢, so that M, ranges
from I to 10%

Circular velocity
Ve = [GM/[(r—2m)]'/2 where r > 3m (1)

it has a diameter of

Usually cited
before Shakura
& Sunyaev
disk is
Lynden-Bell
(1969)
discussion of
the origin of
emission from
galactic
nuclei-"old
quasars”
chwarzschild
mouth was
still the term
for the event
horizon.
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It got a reprint in A&A in 2009, and a review by Andrew King, which best describes its importance and why it was needed-it
stem from observational evidence, new X-ray astronomy was pending: The mere requirement that an object should produce

X-rays at all was already challenging. It showed unambiguously that the accretion flow must itself be luminous, and so quite
different from the cool protosolar disks studied in detail in the past.

In addition, tight constraints on sizes, geometry, and timescales flowed from the identification of many of the early sources
as close binaries. This opened the possibility of showing that accretion on to a black hole or a neutron star was the only
reasonable way of explaining a mass of data. The challenge for theorists was to supply a robust theory of these accretion

flows that was easy to apply to observations.

A&A 500, 53-54 (2009)
DOI: 10.1051/0004-6361/200912147
© ESO 2009

Ag?tronomy
Astrophysics
Special issue

CoMMENTARY ON: SHAKURA N. I. AND Sunvaev R. A., 1973, A&A, 24, 337

Accretion: the gold mine opens

A. King

Theoretical Astrophysics Group, University of Leicester, Leicester LE1 7RH, UK

e-mail: ark@astro.le.ac.uk

In the early 1970s, Yakov Zeldovich suggested that two young
Moscow astronomers, Nikolai Shakura and Rashid Sunyaev,
should combine their efforts to understand how accretion could
power bright X-ray sources.

The result was a paper now amongst the most cited in all
astronomy. Another highly influential paper on accretion disks
(Pringle 1981) calls it “seminal”, and so it is. Yet it is not by any
means the first paper on disks. The references in the paper make
it clear that the authors knew of a large literature on the subject
going back to the early 1960s. Indeed Pringle (1981) shows that
knowledge of the principles and even the equations of disk the-
ory dates back still earlier (to the 1920s and 1940s, respectively).

The reason for the paper’s vast and deserved success lies
partly in its approach to the problem it attacked, and partly in a
technical innovation. Shakura and Sunyaev’s title: “Black Holes
in Binary Systems. Observational Appearance” makes their aim

momentum and so drives accretion, thus tapping the gravita-
tional energy of infall. There is a direct connection between vis-
cosity and accretion rate, and in a steady disk one can infer the
surface dissipation rate purely in terms of the latter. Observations
made it clear that none of the obvious candidate mechanisms —
certainly not the standard “molecular™ viscosity for example —
was adequate to drive accretion at the rates required.

Authors therefore resorted to various parametrizations of the
unknown process, usually thought of as some kind of turbulent
effect. Shakura and Sunyaev adopted the now famous alpha-
prescription, in modern notation usually written

v = acH.

Here v is the kinematic viscosity, ¢s the sound speed, and H the
local disk scaleheight, i.e. the disk semithickness.
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With the thin disk approximation, we can compute the structure of the disk.
In practice, we are solving the 1D with only a radial dependence, as we
decoupled it from the vertical, z-dependence, which is essentially written as a
hydrostatic equilibrium and energy transport.

In the radial direction, the disk structure enters only in the local energy
dissipation rate D(R). 19pr  GM:

From the hydrostaticeq. #92  R* for isothermal structure we obtain the
. 12 . —
solution o(R.z) = pe(R) €577 where p_ stands for the density at z=0.

—

The central density of the disk we can approximate as p=5/H, H=pc/v .

, L I
c.>=P/p, where P is a sum of gas and radiation pressure p = =< 27

pm, 3¢
with an assumption T(T,z)~T (R,0). The central temperature T_is determined

by the relation between the vertical energy flux and the energy dissipation
because of viscosity.

Locally, using the thin disk approximation, we now have the vertical
temperature gradient, so that for z=const surface we have radiated energy flux

(%, is the Rosseland mean opacity): : 16072 0T

- —
I

it 3H.Rﬁ 0z
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-« We assumed the optically thick disk: T=pH» =Sx >>1, so that the radiation

is locally very close to the black body radiation. In the case with T=<1
radiation could directly exit the disk, and the equation for F(z) from the
bottom of previous slide would not be valid any more.

« For the energetic balance must be F(H)-F(0)=D(R ), so that #(z) ~ —T“( )
which, with T *>>T*(H) gives S—TT: = D(R) .

 For the full set of eqs.we need the xR=xR(p,TC) relation, and expression for

v and its relation to S and M. This all amounts to 8 equations for
P, S, H, T, c, P, T,v independence of R, M and M ,with some
parameter in the viscosity, which are describing the thin disk model:

S eET (52T _ 3GMM[1 i _R_A]
.::,R"'% 37 87 R3
‘) —
YR Ve [6)n SR A pi D) (SEPST)
2 M R
) Cim (1) vS.=5[1 —\/F]
(4) p = 2 | 39 TS o)
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Shakura & Sunyaev viscous alpha disk

- With “alpha viscosity” parameterization p=oac_H Shakura & Sunyaev (‘73)

gave the first solution. They used the Kramers’ law (6.6:1022 wrongly sometimes!!)
%, =5-10%*pT_72cm?/g and neglected the radiation pressure in eq.(4). Now
the system of 8 egs.can be solved. | give steps (from “Accretion power..."):

- First we simplify f*=1-(R,/R)"* and write whole r.h.s. of eq.5 as equal to D.
Now with eq.6, %, and eq.2 we can write eq.5 as
40T*/(31)=D=40T?/(3*5:10%*pS)=[p=S/H]=40HT'>?/(15-102%45?)=
={H=c_R¥?/(GM)*> and from egs. 3 and 4 (without rad pressure term)
write
H=R32T2[k /(GMpum )]*? } =40R3>?T®[k /(GMum )]*?/(15-10°*S?), and from
that obtain T8=15-10%%S?D[k,/(GMum )]*?/(40R3?). We insert D back as the
r.h.s of eq.5 and use eqgs.7 and 8 (where finally 1)=O(CSH comes into

game), to write the solution-I give the detailed derivation of solutions on
the next slide, this is usually not shown in literature so I leave for you to
type it down in Latex; then we can write v
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We usually find in the literature:
Rio = R/(10™ cm),M; = M/My i Mg = M/(10'® gs™'),p = 0.615,f =

(1 — (Ra/R)*S)M4:
S =5. ‘?a"‘”:‘M:ré'u ’VIW‘RI 3“_)"”’5 g cm™?,

Ly e at 08 —1;1nM3,ﬂn w—s;a Rg’!gf:’"'f’ il
p=3.1-10"8a~"MOMIOMIEREFIS ¢
T, = 1.4-10% S04 "M R £9° K (3.39)
T =]59“cr_”51¥1”5f”5
v =1.8-101a 4"5Mfém H-I’MREHIE” cm? 7!,
b = 207 108 MM AR A P em s,

It is important that a is nowhere coming with large power, so that any error because of
our not knowing it, is less.
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The Kramers'’ law for 3 Is critical, because when it is not holding any more,

our approximation breaks down, but until it holds, disk can extend far in R, of

the order of Roche boundary for a more massive star.
Mass in the diskis |, _,; fﬁ SRAR £ (107°My)a~*M7*° , Which Is even in the

A

very large disks negligible in comparison with the central object. This justifies
the neglect of self-gravity of a disk, which is valid until p<<M/R3. Only for a
very small a, of the order of 1019, this would not be fulfilled.

The disk thickness in z-direction means that each element of the disc

surface radiates as a blackbody with a temperature T (R) given by equating
the dissipation rate D(R) per unit face area to the blackbody flux: oT*=D(R )

If we insert D from the bottom of slide 47: | {:s(;*ﬂmr . (&yﬁ }”’1
For i 5.4, STR3c R

T = T(R/R.)*/

where

/4 \
M, =M /10%* g s, m =M/M_,R,=R,/10° cm etc. for
v disk around WD (R,) & NS (R,). Note R =R, now!

. 1
3GMM
T = | —=
| ( 8TRio
— 4.1 x 10* M *m!/* Ry3/*K
= 1.3 x 107 M/*m/* R;¥/*K. |
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* The low power of « in the equations is good for usefulness of a as a
parameter, but it also means we cannot expect to learn the typical size of a by
direct comparison of steady-state disc theory with observations. This is
something what is troubling disk astrophysics until today. No free lunch!

A good thing is that for a=1 we obtained believable solutions, which are not
too much off the models from observational data.

Where we expect the assumptions (Kramers’ opacity and the neglect of
radiation pressure) to break down? We had » =1/S=36 M, ""*m "R, ¥ {>

independent of a. We compare with other opacity sources-the major
competitive opacity is electron scattering where XR=0T/mp~O.4cm2/g with

Kramers’ opacity dominating for R>2.5x107 M. 23 m 283 cm. This is smaller
pacity g 16 1

than the radius of a white dwarf for any reasonable M, so for the accretion
discs in cataclysmic variables we expect Kramers’ opacity to dominate in
most of the disc.
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 In reasonable range we can rely on the results shown in the figure below for
the physical regimes in steady a-discs around compact objects:

Typical Roche

Typical Roche lobe size,
Radius of neutron star, lobe size, massive
last stable orbit around Radius of cataclysmic X-ray

black hole white dwarf variable binary

19

M 4y neutron star,

1 B hlack hole

B RADIATION PRESSURE,
ELECTRON SCATTERING
OPACITY

FRESSURE,
ELECTRON
SCATTERING

OPACITY

-,
Q‘t’j I
= (GAS PRESSURE,
@
r§: KRAMERS' OPACITY

GAS PRESSUHE,
16 — OTHER OPACITY —

SOURCES

15 —
S 6 7 8 9 10 11 12

log R (cm)
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o If the disk is concave, then the central, hot regions, could irradiate the more
distant, colder parts of the disk with hard radiation, and the picture
complicates-this would show in observations.

compact
star

central
source

k indicates the direction of propagation of the radiation incident on the disc and n is the local
inward-directed normal vector.

* In low-mass X-ray binaries the disk is probably heated by irradiation by the central
accretion source. If the accretor is a luminous star, we can have a similar effect.
 If the central source can be regarded as a point, its total radiative flux at disc radius

Ris L /(4nR?), source with L total luminosity. The flux We can write:
L
i i is point is F = +es (1 — 8) cos ¥ ;
crossing the disc surface at this point is a2 (L~ B)cost . g _044
B is the albedo, the effective fraction of incident radiation
. . . where
scattered from the surface without absorption, and y is the A
angle between the local inward-directed disc normal and tand = -,
the direction of the incident radiation. and

tan ¢ =

E!
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e Since dH/dR, H/R are both <<1 for a thin disc
dH H

cos ) = sin(f — @) = cos f cos p|tan § — tan ¢| ~ —

dR R
+ With effective temperature T  resulting from irradiation by the point source and F from the

L H din H
L —1{(1 - ),
P 474‘}?.20'(}?) [dlnR ]( b,

Tpe\'  H(RN\’[dnH
(%) =%(%) [mz-1ja-»

T, is the effective temperature of the central source, defined by L. = 4nR 0T 7,

previous slide,

or

with the characteristic source dimension R,. With H varying as R®, for the non-irradiated disk in the

solutions for the disk, in a disc deriving all its luminosity from irradiation by a point source, one can
show that H « R%’, and the factor in square brackets in solution lies between 1/8 and 2/7, which we
name g, (to add another g). The ratio H/R is roughly constant in a disc, so T | falls off as R . For a

large enough disc T dominates the disk effective temperature, which goes as R™*. We obtain:
To )"1 2 RLy H

- - 1-03).
Tefr 3GMM 791 = 0)

« If the central luminosity L results from accretion, as in low-mass X-ray (

binaries, we have Lpt = GM M /R, where R,= 10 km for a neutron star, and

"~ 3R.R
« This means that even if the combination (H/R)g(1 — ) can be <107, the central source will dominate for a disc with a

a similar value for a black hole. Then ( T )’1 2 R H 1-p)
- g — 7).
Ter

large enough ratio R/R,. In low-mass X-ray binaries R~10°m and outer disk radius is ~10'°cm, so R/R,~10* and
there will be a large range of surface temperatures in the disk.
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 Alpha viscosity does not give us predictive power.

« Since 9/0R(R?Q)=0 [Rayleigh criterion, stability against axisymmetric
perturbations] and 9QQ/d0R<0 . Most potential mechanisms are sensitive to
the angular momentum gradient, so they work in such

a way that they are bringing angular momentum INWARDS. We need a
mechanism sensitive to Q.

» If not alpha viscosity, then what? Currently Balbus-Hawley (magnetorotational,
MRI) instability (1992), how it works?

If we imagine a straight magnetic field B line threading a rotating disc,
magnetic tension tries to straighten line, there is imbalance between gravity
and rotation which bends the line (figures in this and next 2 slides are from A.

Klng,s lecture I found OHIIDE) . Vertical fieldline perturbed outwards, rotates faster than
surroundings, so centrifugal force > gravity = kink increases
magnetic field B threading disc = Line connects fast-moving (inner) matter with slower (outer)

matter, and speeds latter up: outward a.m. transport

magnetic tension tries to straighten line
imbalance between gravity and rotation bends line

if field too strong instability suppressed
(shortest growing mode has A>H )
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Working of MRI in a disk

« Vertical fieldline perturbed outwards, rotates faster than surroundings, so
centrifugal force > gravity, so that kink increases. Line connects fast-moving

(inner) matter with slower (outer) matter, and speeds latter up: outwards a.m.
transport!

—>new vertical field, closes cycle

numerical simulations show this cycle
can transport a.m. efficiently

« For a too large mag. field, instability is supressed. Distorted fieldline stretched
azimuthally by differential rotation, strength grows, pressure balance between flux
tube and surroundings requires B2/8l'[+Pgas,m:F’gaS,Out , S0 that gas pressure (and

density) are lower inside tube; buoyant (Parker) instability works, and Flux tube rises
above the disk, creating another vertical field, which closes the cycle, which can
transport the angular momentum - this was shown to work in numerical simulations.
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« Another effect which will change the picture is when the disk becomes larger:

main difference: size of AGN disc set by self—gravity

vertical component of gravity from central mass is ~ GMH / R?

|

|

cf that from self—gravity of disc ~ GpH S/H? ~ GpH

3
Thus self—gravity takes over where ©O ™ M /R , Or

H
disc RZH/O ~ EM

disc breaks up into stars outside this

M




2D test problem: Orszag-Tang
0.3 Running the Orszag-Tang MHD vortex test

1. Change directory to PLUTO/Test_Problems/MHD/Orszag_Tang.
2. Choose a configuration (e.g. #02) and copy the corresponding configuration files, i.e.,

" /PLUTO/Test_Problems/MHD/Orszag_Tang>» cp definitions_02.h definitions.h
"/PLUTO/Test_Problems/MHD/Orszag_Tang>» cp pluto_02.ini pluto.ini

3. Run the Python script:

“/PLUTO/Test_Problems/MHD/Orszag_Tang>» python SPLUTO_DIR/setup.py

select “Setup problem” and choose the default setting by pressing enter;

4. Once you return to the main menu, select “Change makefile” and choose a suitable makefile (e.g.
Linux.gcc.defs) and press enter.

5. Exit from the main menu (“Quit” or press ‘q’). Edit pluto.ini and, under the [Grid] block, lower the
resolution from 512 to 200 in both directions (X1-grid and ¥2-grid). Change single_file,
in the “dbl” output under the [Static Grid Output] block, tomultiple_files. Finally, edit defini-
tions.h and change PRINT_TO_FILE from YES to NO.

6. Compile the code:

“/PLUTO/Test_Problems/MHD/Orszag_Tang> make

7. 1f compilation was successful, you can now run the code by typing

T/PLUTO/Test_Problems/MHD/Orszag_Tang> ./pluto

At this point, PLUTO reads the initialization file pluto.ini and starts integrating. The run should
take a few minutes (depending on the machine you're running on) and the integration log should
be dumped to screen.



Orszag-Tang 1.C. & B.C.

For each simulation we need to define initial and boundary conditions.
| introduce some numerical simulations terminology here in bold.

We set velocity and magnetic field in a 2D Cartesian coordinates, in a
computational box with (x,y,0)=(256x256x0) grid cells and a physical domain

X,y=[0,2*pi]

Velocity components: v = (-sin y, sin X, 0)
Magnetic field: B = (-sin y, sin 2x, 0)
Density: rho = 25/9

Pressure:p =5/3
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OT, standard test but not so standard results
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OT, standard test but not so standard results
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log|/z|

0.0
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X

Figure 2. Logarithm of the out-of-plane current density magnitude |J;| at = 10z, for § = 2 x 103 (left), S =2 x 10* (middle), and a zoom into the current she
§ =2 x 10* showing the AMR grid blocks (right), each consisting of 8 x 8 cells, in black. Both cases have an effective resolution of 8192 cells in the domair
plasmoid-unstable current sheet on the right is captured by more than 10 cells over its width.

10t} . 10t} 10t} .
&y fay i
n=>5x10"* n=5x10"
1024 x 1024 1024 x 1024 =10
— 2048 % 2048 —— 2048 % 2048 1024 = 1024
— 4096 = 4096 — 4096 = 4096 — 2048 = 2048
—R192 x 8192 — 8192 x 8192 — 4096 x 4096
— 16384 = 16384 — 16384 = 16384 — 8192 x 8192
10 - - 8192 x 8192 s - - 8192 x 8192 100 — 16384 % 16384
lU L L L l” L L L lU L L L
0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10
t t t

Figure 3. Evolution of the domain-averaged magnetic energy density B2 for § = 2 x 10° (left), § = 2 x 10* (middle), and the ideal case n = 0 (right) for all
resolutions considered.



Hands-on introduction to setup files of PLUTO

Guided tour through the source files:

-pluto.ini contains definition of:
grid, solver, choice of boundary conditions, output steps, parameters.

-Definition of output formats.
-Output files, files to save for later analysis and eventual restart.
-definitions.h: macros setting.

-init.c: physical setup, equations for initial and boundary conditions.



I pluto.ini (ini)
[Boundary]

Hands-on introduction: pluto.ini

S E miki@petri: ~/Pluto44/0Tang2D
I pluto.ini (ini)

[Grid] X1-beg periodic

X1-end periodic
X1-grid 1 0.0 200 u 6.28318530717959 X2-beg periodic
X2-grid 1 0.0 200 u 6.28318530717959 X2-end periodic
X3-grid 1 0.0 1 u 1.0 X3-beg periodic

X3-end periodic
[Chombo Refinement]

[Static Grid Output]

Levels 4
Ref_ratio 22222
Regrid_interval 2 2 2 2 : :
Refine_thresh 0.3 16.31 -1 ?1”%19?T{19
Tag buffer size 3 -1.0 -1 single Ttlle
Block factor 4 0.31 -1 single file
Max_grid size 32 -1.0 -1
Fill_ratio 0.75 -1.0 -1

-1.0 -1
[Time] 1

-1.0 -1
CFL 0.8
CFL_max_var 1.1 [Chombo HDF5 output]
tgtop 3.1
First_dt Loe-4 Checkpoint_interval -1.0 ©
[Solver] Plot_interval 1.0 0
Solver hll [Parameters]

|Boundary]



Output formats & files to save

In pluto.ini we defined which output

data.xxxx.dbl files — viewing, processing with Python, idl etc. packages.
-also, for restart, together with restart.out.

Data.xxxxdbl.h5 - hdf5 files-need to set the flag in /PLUTO/Config/*.defs file
data.xxxx.vtk files — for viewing with Paraview, VislIt.

Together with data.xxxx.dbl and .vtk files, always save also, in the same
directory with the results, pluto.ini, definitions.h. init.c, grid.out, dbl.out,
restart.out, to know which setup produced the files, and also for some analysis
and plotting packages, which might need them.

grid.out files defines the geometry, dbl.out lists the output variables



— —— e——
@ S E miki@petri: ~/Pluto44/0Tang2D

I A definitions.h (c) | _ .
PHYSICS MHD Hands on.

DIMENSIONS o o,
GEOMETRY S definitions.h

BODY FORCE NO
COOLING NO
RECONSTRUCTION LINEAR
TIME_STEPPING HANCOCK
NTRACER

PARTICLES NO
USER_DEF PARAMETERS

EOS IDEAL
ENTROPY_SWITCH NO

DIVB CONTROL EIGHT WAVES
BACKGROUND FIELD NO
AMBIPOLAR DIFFUSION NO
RESISTIVITY NO

HALL_MHD NO
THERMAL_CONDUCTION NO
VISCOSITY NO
ROTATING_ FRAME NO

LIMITER




Ref_ratio
Regrid_interval
Refine_thresh
Tag_buffer_size
Block_factor
Max_grid_size
Fill_ratio

CFL
CFL_max_var
tstop
first_dt

uservar

periodic
periodic
periodic
periodic
periodic
periodic

8530717959
8530717959

Hands-on: pluto.ini

In PLUTO/Test_Problems/MHD/Orszag_Tang
copy *_06%* to pluto.ini (set vtk to + and e.g.
change the output frequency in vtk output, so you
would get 10 outputs, to see the evolution of run.)
and definitions.h and try runs with different
resolutions. It was 256x256, try 64x64 and
1024x1024 and 2048x2048, and check the results.
You will see the emergence of plasmoids in the
vortex, for which the setup is different only in
resolution. This is an example of qualitative
difference in the results. No help of better
algorithms here, the simulation has to be done
with better resolution.

dbl . . single file
flt -1. - 51ngle file
vtk . . single file
tab : :

Ppm

png

log

analysis




M = © miki@petri: ~/Pluto44/0Tang2D

I A init.c (c) void Init (double *us, double x1, Hands-on introduction:

void Init (d

double x=x
g_gamma =

us[VXx1]
us[VXx2]
us[VX3]
us[BX1]
us[BX2]
us[BX3]
us[RHO]

us[PRS] =

us[TRC]

us[AX1]
us[AX2]
us[AX3]

double c
us[VXx2]
us[VX3]
us[VX1]

nine

us[BX2]
us[BX3]
us[BX1]

ouble *us, double x1, double x2, double x3) 1nit.c

Note that at the beginning of

1, y=x2 ,z=x3; most of *.c files in PLUTO is a
/33 brief description about what it
0.7% iiﬂm does. It is a very good practice,

; ' follow it.
- s;n(y); T RACES Row 27 Col 1 12:55 Ctrl-K H for
sin( *X) ;
cosiy) + * cos(2.0%*x);
j siniz);
sin(y);
co*( - *sin(2.0*z) + sin(x));
cO*( sin(x) + sin(y));
cO* ( sin(y) + sin(z));




Visualization with Paraview

Time: 10.000000 Time: 10.000000
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Summary of the Lect. 3

Shakura-Sunyaev 1973 disc
Initial and boundary conditions in PLUTO
2D and 3D Orszag-Tang problem

Visualization in 2D and 3D with Paraview.

M. Cemeljié, Numerical simulations of accretion discs, Winter Semester 2024/2025
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Outline, Lect.4 : Kluzniak-Kita solutions for thin disk

KK 3D solution for thin disc in HD
Vertically averaged solutions for thin disc
Setup and running of 2.5D HD KK disc in PLUTO

Analysis of the results from 2.5D runs with Paraview and Python

M. Cemeljié, Numerical simulations of accretion discs, Winter Semester 2024/2025
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Hydrodynamic flows in accretion disks

V. A. Urpin

Ioffe Physics and Technology Institute, USSR Academy of Sciences, Leningrad
(Submitted December 14, 1982)
Astron. Zh. 61, 84-90 (January—February 1984)

Calculations of the velocity field in an accretion disk show that matter may flow in the disk not only toward
but also away from the central object. The rates of flow are determined, and the geometry of hydrodynamic

motions in nonstationary disks is discussed. )
. 3¢ V(oY) =0. (2)
I was mentioning before the z-averaged
solutions. Assumptions by Urpin are ($)=1v): It has been suggested that the motions along the r, z
directions may take place at subsonic velocities, while the
. . tational velocity V , may exceed the sound speed cg.
We shall adopt the turbulent-viscosity model.f® Ac- o : e H !
cording to this model the influence of small-scale turbulent Estimates indicate (gefs. 1, 2) that these conditions will

often be satisfied in real objects. Moreover, we shall con-
sider only objects in which the accretion rate varies so
slowly that the inequality

motions upon the regular motions is tantamount simply to
a renormalization of the viscosity coefficient. The equa-
tion of motion will then take the form

t&>}3::ot.1=2ﬂrfvw (3)
av & holds for all r; here t, is the time scale for change in the
P57 To(V-V)V=—Vpt+pVy+Vn, ) cccretionrate. Inthis event the disk will be axisymmetric.
1
(?C)-h=p-6( 5Vf+6j_’5__2_’_6_ VV) . With these assumptions the z component of Eq. (1) re-
0z, oz 3 duces to the simple hydrostatic-equilibrium condition
I noticed here we forgot to discuss on viscous 1 0p  GMz
tensor, of which the above eq.is a component: e 0z e
The viscosity was defined by the where M is the mass of the central object (we neglect the
) self-gravitation of the disk). The radial component of
T=1, |(VU) + (VU)T _ E(V . U)I‘ : Eq. (1) will take the form
- " 2 d 7] i -
. . woke g2V Vo o - OF 0N HC 0GR,
with the dynamic viscosity n, = pv, ar 9z r p or or p
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Since V. ~ §/r and V, ~ (z¢/ 1)V, (z, is the character-
istic disk thickness; see, for example, Shakura and Syun-

1 - =
yaev'), one can readily show that the EerSt two terms on If the condition (3) holds, the ¢ component of the equa~
the left are much smaller than (z,/r) Vgg /r. We may tion of motion will become
therefore neglect them. The last term on the right is

asil imated: - = %
eagily estimated V i(rVq,)—l—V,aV =—1:—(Vn)w.
r or 0z P
1. (vﬁ) g @Vq Ut lt Vq:z Zﬂz
?‘ %) S = (c— ) (Z) @ In the disk V, ~ (z(/r)Vy, and furthermore avw/ar ~
v\ [ Lo\ [ 2o \* Vi Zo\? V2 (z /r)BV(P/ or. We may therefore neglect the second term
=2l =<l = on the left. Then
2 o

it too may be neglected. Then V=" (z5) (V. (5)

V. dgp 1 dp ) o &

= e + > o According to the definifion of the tensor ™ we may write

Later we will need an expression for V , accurate to Va=[V(pD) VIVHpdVV+pdV (VV) +VIVV (p9) )

terms of order (z/r)2. Since y =GM/R, where R = (r? + —(VV) V(pg)_i V (pHVYV).
22)1/ 2 is the distance from the compact object, we readily 3
find
GM\"“(. 32  r ap
bt (—r_) {1_7?+ 2GMp E"}‘ (4)
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Next he discusses the three zones of the disk, neglecting

Since we have assumed the disk to be axisymmetric with the closest one to the star:

8/ op =0,
) IV, 3(p) 3(o§) [V, V firm that the law (8) holds for zones B, C. In zone A,
(Vi) o= e ( 9:— —;) Shakura and Syunyaev! found that p is independent of

oV, & 0V, V height, but if one allows for turbulent heat transfer, this
2 +_( ar"‘+_;";)] _ conclusion will no longer be valid.” The density variation

in zone A then can also be described to fair accuracy by

Eq. (8). However, in the accretion disks around neutron

stars and white dwarfs zone A evidently is often absent;

Substituting this expression into Eq. (5), we obtain

. 9% 7 p oV, 3(p) we therefore shall consider in detail only the flows in zones
V,~— 2
P (GM) { 9z &z BirG:
d(pD) Ve V, 9*V, oV,  V, I have obtained the following expressions for the scale
ar [a_r_"T l@[ 0z ( or r_)]} z, in these two zones':
s _2_1{ ( L ) " 3V 9 (p-ﬁ) zone C: zo= 10% *mvm’™R’"* cm,
GM az az 'y 1 1) IS i (9)
V. 34 (P@) 3 zohe B: zo==2 1-10f a="om oS {*/» cm,
tod dz ] T2 ar 4P '5} (6) Here m =M/Mg; m = M/(1.9 - 10%¥ m - g/sec), with M

the accretion rate; ® =rc?/6GM =r/(8.89 - 10° m - cm);
It is evident from Eq. (6) that to determine the radial comand the parameter o = $/z.¢. measures the level to which
ponent of the velocity correctly we must know V , to term,turbulence has developed in the disk [cg = (kT,/ mp)l/ 3,
of order (z/r)% since 8°V,,/ 82% ~ 8%,/ 8% ~ Vp /12

Al . .
O arbieasian 19 bH des this accuracy ong with these expressions we shall also need the

condition that the mass flux be conserved. We can obtain
The vertical velocity component V, can be determined it from the equation of continuity, together with Egs. (6),

from the equation of continuity: (8):
G 1 @ a _ e —
E(p )= — —————( oV ;;. (7) M=const=— f2:n:rer dz=3n¥n p.Hz, (10)

- 00

where p , is the density in the central disk plane.
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Now we compute v : we have from eq.4, because of vertical hydrostatic equilibrium

L. GM)”’(_iap_ L e %) (11)
( p or CMp*orozl’

9z 2\ r
We introduce the convenient dimensionless paramefers

t = z/2pf=T/Te ¥=p/pe- With these definitions we
obtain

dlnp dlnp. _ ¥ dlng,

or or v oar

(12)

13p_2chf{61npnT., E(‘I’_|_)" dIn z,
p or my ar v _f-) or }

(the dot signifies differentiation with respect to £).

The r-dependence of the parameters p ., T¢» 2g» § has
been investigated by Shakura and Syunyaev (Ref. 1) and the

author.” For these parameters the following relations hold:

dIn p. 15 dlnT
goneCy —————=———,

dlnr 8 dlnr
dlnz, 9 dIlnd 3
dlar 8 olnr 4 °
dlnp. 33 dInT. 9

F————

o

H

3
4

zone B:

dlnr 20’ dlnr 10’
dlnz, 21 dInH

3
dlnr ET dlnr 5" (13)

As mentioned above, ¥ ~ exp(—£ % in zones B, C. Sub-
stituting the expressions (12), (13) into Eq. (11) and noting
that ¥ /¥ ~ —2¢, we obtain

OV, Bz (GM\% oo

zone C; —*= 16r2( - ) £ (5—7/—6E*+6fE —3Ef),
oV, 3z {GM\" >
, o AT 4E 14T —TEF).
zone B: 40:4( - ) £ (11— 17— 14E*+14fE*— TEf)

Using these expressions, it is not hard to evaluate V.
In zone C,

s

r

__.::}_. 5__1% i i 3 __3 2% (14)
Lt At ¥ S—Ef},

5 7,28 ., ,...8_,
-/-Tevame g

while in zone B,

3
Vi —50%{22—171‘— 1065*+7678"+288" 288 —315/+28E°f—TET).
(15)
Notice that when £ = 0 the radial component of the velocity
is positive, and equal to 9$/8r in zone C and 3§/4r in
zone B. Thus in the vicinity of the central plane, matter
is flowing away from the compact object.
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If ¢ is not too large, we may use for the function f the
asymptotic expressions’:

zone C: f~1—0,258*+0,0048E—
zone B: f=1—0.288*+0.0054E*—

With these we can easily obtain analytic expressions for
Vy at reasonably small heights £:

zone Cs: V,= %?(1—1.452—4.85“— o
zone B: V,=%g(i—0.8§2—7.6§‘— i)
r

Comparison with a numerical calculation of V, from Egs.
(14), (15) indicates that the asymptotic expressions (16)
reproduce the V,. profile almost exactly if £ = 0.6; they
work quite well for 0.6 = £ = 1 [accurate to ~ (20-30)%l,
and are qualitatively valid for 1 < £ < 1.5.

Having V.., it is not hard to compute from Eq. (7) the
vertical velocity component:

99 0z,
zone C: ¥, =§'%__z__g(1 —1.482—4 8k — e
(17)
3
zone B: V. __4‘%__.5(1 —0.88:—T7.68—...);
V, changes sign at the same height z¢y as Vy. When z <

Zoye Vz 18 directed away from the central plane; when z >

z_, towards.
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Next he discusses the three zones of the disk, neglecting
the closest one to the star:

S e e g
— o — —

—_—— e —

On substituting into Egs. (16), (17) the appropriate val-
ues” of §, we obtain the following expressions for the ve-
locity components in the two zones:

zone C:  V,=9:-10%c"sm~"smi" f-" (1—1 4E*— 4.8 — ...
V.~ A1 0% om= i oo (1— . 4 —4,8E— . . ),
zone B:  V,=2,6-10%"sm~"sm"*R~"s(1—0.8*—7.68'— .. .),

V.~6,4-10%a” om="omm /R ~"/vE (1—0.8E*—T7.68'— ...).

Figure 2 schematically illustrates the geometry of the reg-
ular motions in the disk.
Now Iet us estimate the rates at which mass flows in

different directions in the disk. Denoting by M+, M_ the
ﬂux toward andaway from the compact object, we will have
M4 — M- =M = canst(r). Equations (8), (10), (16) then
readily yield

M_= j.é;nrpV, dz '.-s{ 0'35&{ .in zone C,

. 0,250 in zone B,
Thus the mass flow toward the center exceeds the opposite
flow by a factor of ~4 in zone C and 5 in zone B.

Some of the matter flowing into the disk will change
direction immediately adjacent to the compact object; that
is where most of the outward flow will originate. Our
similarity solution is not valid in this region.
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Regev solution

The disk-star boundary layer and its effect on the accretion disk structure

O. Regev

Department of Physics, Technion — Israel Institute of Technology, Haifa 32000, Israel

Received March 15, accepted May 2, 1983

Summary. The method of matched asymptotic expansions is
proposed for a self consistent calculation of an accretion disk and
the disk-accreting star boundary layer. A model of a thin, optically
thick, region (c) accretion disk and boundary layer is calculated
with the help of the method. The disk in this model is hotter and
denser than in the corresponding Shakura and Sunyaev.(1973)
model.

The significance of the model is discussed and the method is
proposed for other cases of interest.

soft X-rays, emerging from the top and botton
Pringle and Savonije (1979) propose strong shoc
thin emitting region in the boundary layer to e
emission of dwarf novae. Finally, Tylenda (
possibility of hard X-ray emission in an optic
boundary layer without strong shocks. In a rece;
al. (1982) point out that observations show that .
significantly smaller than predicted by a theoreti
model.

* In Regev’s solution by expansion on a small parameter of H/R is proposed.
On this, later similar solutions are developed.

 We will contrast his solution with the later ones, to better understand the

development.
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Regev solution

Boundary layer between the inner disk radius and stellar surface is
important-there (), of the infalling material changes to Q, in a very thin

layer, compared to the disk extension in radius.

As we obtained at slide 48, up to a half of the accretion luminosity is
generated in this thin layer.

In SS73, Pringle ‘81 and similar, dQ/dr=0 is used at r=r, boundary.
Solutions by Regev, applied to a disk around a white dwarf relate to region
(c) in SS73.

He searches for steady, axisymmetric solutions, with a/ot=0/0¢=0,

viscosity is present (only r-¢¢ component of the viscous stress tensor is
present, the rest is neglected), the disk is optically thick, with radiation
transfer treated in the diffusion approximation.
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Regev solution

We are already familiar with the equations:
momentum eq.in r and z directions (cylindrical
coords), angular momentum (in r), mass
continuity and energy eqs. Radiative energy
fluxes in r and z directions are, with the
assumptions from the bottom of previous slide:

dac T OT

We need to supply the equation of state for P
and opacity ..

The constant mass flux through the disk is
another requirement, which is a constraint for
the solution:

—2nr | oudz=M (constant)
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We will not follow Regev solution in detail but just outline it, because we will repeat it related to KK solution:

In order to proceed it is imperative to write the equations in a
non-dimensional form. To this end various quantities are scaled by
their typical values (denoted by a tilde ~). Thus ¢, T, v, k are in
units of g, T, 7, &, respectively. Velocities are expressed in the units of
a typical sound velocity ,, pressure in units of gz and € in units of
the Keplerian angular velocity at the surface Q,, =(GM,/R3)'?.
Two length scales are introduced — r is scaled by R, and z by i, a
typical value for the disk half-thickness.

Before writing down the non-dimensional equations it is
advantageous to state the next two assumptions (in the framework
of which this entire work is done).

(v) The circular flow is highly supersonic or, equivalently, the
disk is (geometrically) thin —z/r<1 in the disk.

(vi) The viscosity in the bulk of the disk is given by an *“‘alpha
model”, 1.e. v=ov,H.

The above assumptions are customary and are used by SS (see
also Pringle, 1981). Assumption (v) introduces a small parameter
into the problem &= (ii;/Q, R,) <1, with the help of which a typical
vertical scale of the disk H is expressed —H=¢R,.

The scaled non-dimensional equations are:

Out Cu 1 0P 1 3 22
2 G (P @i T T e
g u_{:'r+£L % Qr=—¢ T FEe 5 = (7
dv v LdP £ ArF
Yt e Bl S B 8
Eu 5r+v P 7 r3+8 5 5 6))
18 0
&~ = (row)+—- (ov)=0, ®)
r or dz
u @ 0 , 1 8 00
S — =gt — — | vor* — |, 10
o= (PQ)+v 2 e (vg ar) (10)
oT oT 1 ¢ dv
ol ] kifeell = —yPle - — _
ﬂg(su or T 0 )QC" X |:8 r or (ru}—l—@z]
(11)

C, 1s expressed in units of #/u 4 with # the gas constant and u 4
the mean molecular weight. The new nondimensional constants
here are:

—

Pgas "
ﬁggﬁ‘l ’?Eﬁr’"r

where
P, 4e 1
ﬁr—'—: _w_uzd and AET— e
QUS T‘?S T'Z

}3@5 and P,,, are the gas and radiation pressure respectively for
typical conditions, ¢ is the velocity of light and 7, is the optical
depth in the vertical direction in a typical point of the disk %, = &g H.
The physical meaning of these constants is self evident and their
numerical value depends on the scaling quantities which reflect a
particular regime of interest.

The scaled form of Eq. (6) is:

r | oudz= —euM, (12)
where M is in units of M and u= M/(2nH?35,). The fluxes F” and F*

are given as in Eq. (5), but with the constant term (4ac/3) now
missing.
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Equations 7-12 depend on the small parameter € and other nondimensional constants, order of which is important
for finding an approximate solution. The “method of matched asymptotic expansions” is used [Regev refers to it as
“Bender & Orszag (1978, chapter 9) solution for differential eqs.which exibit a boundary layer structure”, I usually
refer to it as doing Taylor expansion in a small parameter €, as this is to what we resort at the end.]. Scaling is done
to the typical values as in the table:

Sealnp vanables N‘}ﬂ;di‘:‘emi"nal The ideal gas eq.is assumed, the radiative term neglected,
n . o, . . .
] opacity for free-free transitions is assumed, in the main
solution and also in the boundary layer. Viscosity in the

R,=9 10® cm E—R£—1 371072 K A
C : — :
Th, il s boundary layer is assumed as DBL Vturb , with
1/2 D . . L.
0,,= (%) =0.427 rad s™! B, :.{} s =1=% Kand V_. constant and AN being a characteristic length
ovs v : : : s
%_10° CK* scale in the boundary layer. In the nondimensional units it is
s @ 12 LaTe T K Vturb A
7 ) % a . BE=" “& =
. =5 6 1 L 3 + .
V, (3 5 T) 5.265 10° ¢cm s i 557 1.819 10 ' SR TR H
4ec 1
— h- /1 _———m —v-—3 1{]2
A=—2=123310" cm 7 . . _
Qus n= B4 0.641 Now comes the “matched” part: solution of eq.7 in previous
§=510"°gcm™3 o slide in the leading order is proportional with r -, this can
P=52=1.386 10° dyne cm™? = not be valid at the boundary. An “outer” expansion at r#1 ,
; dln P - i 1 1
=011 AT~ =1.048 cm?® g~ s ( : n ) 1 € . 0.15 const.ructed and matched to the inner expansion,
_ N e , InT valid in the disk.
M=210" gs '=3.1510 Mg yr C,=3

—
s

o =0.795
= ZrtHngb '




Regev solution

1. The outer solution

Let Q=Q,+eQ,+...; u=up+eu+...; v=vp+ev;+... with
the other variables expanded in & in a similar way. In lowest order

. 1
we obtain from Eq. (7) 2§ =, and thus:
r

Q,=r"3? (Keplerian). (14)
Equation (8) gives

1 8P, =

T (15)

vo has been set to be equal to zero for the following reason. From
Eq. (9) it follows that (6/6z) (gyve) =0 and thus gove =7£(r). Atz=0
vo =0 (symmetry), thus f(r) =0 and since g, +0, v, =0 everywhere.

The lowest order term in Eq. (10) is trivial vy(6Q,/0z)=0, and
from Eq. (11) we get

2 % 2_ a__ z
UVoloF (5!‘ ) =n 5a F. (16)

Order ¢ of Eq. (10) gives: uy(8/dr) (r*Qy) =0, which implies u, =0.
Using this in the order ¢ of Eq. (9) gives (3/0z) (gov,)=0 and thus
also v; =0. Thus, the & order of Eq. (10) implies

d 0 a2
FisQo = (rQy) =0 3 (‘*‘0@0-"3 a—;}) (17

Similar is done for the inner region, in the case when star is
fast rotating, near the breakup velocity, he assumes
Q*= El’ZQK* . This is different from our solution later,

when we will relax this constraint, so we do not follow it
further in detail here, just an outline:

Zod=| oolr,2)de=285(r)H) 18y 133

with H(r), the half thickness of the disk to be given from (15) by

H(r)="2 = 1422, (19)
20

Also

o= H(r)=Tor'™. (20)

Integrating now Eqs. (16) and (17) over z
80y '\

avuzvrl(;) =2nF3., (21)
or J

i d a0,
- M & (rédp)=a — (v.:Eurz' T“) (22)
r or or

where condition (13) has been used in (21).

Proceeding as in 55 we put Fj=4% Th/(koZ,) withxg=5,Ty **
and thus Fj=T7 H(r)/Z}=T§Z; 2r**, Using (14) and (20) Eq.
(21) takes the form:

ﬁ:(z_:)zgr-ﬂ_ (23)
Integration of (22) gives

o o GLD
P, —C= — (;IM) TaZor? ﬂ—rﬂ 24)

where C is a constant to be determined by the inner boundary
condition. S5 (and others—see Pringle, 1981) put C =1 arguing that
(802,/dr)=0 at approximately r=1 where £J;=1. This is entirely
inconsistent with (14). In the framework of our treatment C is left
undetermined at this stage and will be found from the matching
with the inner solution, This is the important difference between
this and the 55 solution, giving rise to a significant correction (as
will be seen below). Substituting @, and vy 1n (24) solving it together
with (23) for T, and I, one gets

To=Aa~ VSN0 31401 _ p=1zpI0 (25)
Zo=Ba M0 "3 (| — O 1210, (26)
where 4 and £ are known constants:

A=(23n)"% B=A(8n/9)'5,

Equations (25) and (26) are equivalent to the S8 formulae for
region (¢} of the disk except for the constant C. Other variables can
be found also; for instance the inflow velocity:

wo=—uMr-'Z;' et (27)



It is convenient to use here P, as a variable. In our units
Po=1/p0, T, (7 is the adiabatic exponent=3/3 in our case) and
thus po=7vP,/Tp.

From the thin disk approximation H=T}?/Q, and Xy =20, H
=2yP, Ty 1?Qy'. Using these relations the following set of
equations is obtained:

oy @ -1, (34
‘;% = (;7) MQy(1 - Qo) TE2 Py Y, (35)
%:% M2QZ(1 — Q) P, (36)
z%= — Ko % Qo @7)

with ko= P, Ty *~ for free-free opacity. It should be pointed out
that various quantities like Py, gy ete. arein fact z-average here (like

Regev solution
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Fig. 1. The structure of the boundary layer for the model example.
T — the temperature, X — the surface density and Q — the angular
velocity are given as a function of radius very near the star’s
surface. The quantities are in units used in the text (see Table)
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2 4 6 8 10 12 14

Fig. 2. The structure of the disk as obtained from the matched
solution for the model example (solid curves). The dashed curves
correspond to a solution with C=1 like that of SS (see text)

This is another z-averaged solution, only more involved than Urpin’s. Those equations need to be
solved numerically, in difference to KK solution, which we will derive analytically. Regev obtains
curves from Figs. 1&2 for the disk structure. Since KK obtained a general solution, all this became

obsolete.



Kluzniak-Kita solution

THREE-DIMENSIONAL STRUCTURE OF AN ALPHA ACCRETION DISK

Wiodzimierz Kluzniak and David Kita

Physics Department, University of Wisconsin, Madison, WI 53706, USA

ABSTRACT

An analytic solution is presented to the three-dimensional problem of steady
axisymmetric fluid flow through an accretion disk. The solution has been obtained
through a systematic expansion in the small parameter € = H /R (the ratio of disk
thickness to its radial dimension) of the equations of viscous hydrodynamics. The
equation of state was assumed to be polytropic. For all values o < 0.685 of the
viscosity parameter, we find significant backflow in the midplane of the disk occurin
at all radii larger than a certain value; however, in the inner regions of the disk the
fluid always flows toward the accreting object. The region of backflow is separated
from the region of inflow by a surface flaring outwards from a circular locus of

stagnation points situated in the midplane of the disk.
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The work in KK0O paper, which
exists only in arXiv version, is
actually a PhD thesis of David
Kita from 1995 at Madison
University, USA. It is a general
solution obtained similarly to
Regev’s, but without assumptions
he used at the inner disk radius. It
is a 3D, axisymmetric, purely HD
solution.

David Kita’s Thesis is not
available online, it is only in hard
copy in the library in USA and an
example in CAMK, Warsaw-but
arXiv paper is actually very
similar to the Thesis, all the
formalism is copied in the paper.

Paper in arXiv is with figures
given at the end, I rearranged it
and made a more handy version
with figures positioned in their
places in the text. You can
download it from my orange
webpage:
http://web.tiara.sinica.edu.tw/~miki/
PostPrez/KKOOmikiversion.pdf
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« We will go through the process of deriving asymptotic matched solutions in, again
sometimes painful, detail. It is a very instructive example, and it could be of use for other
similar work.

« Motivation of KKOO paper is to find the solutions which would show that the backflow,
which appeared also in other solutions except Urpin and Regev, is not of a thermal
origin. Urpin included thermal effects but made the simplification of zero net angular
momentum flow in the disk (equivalently, his self-similar solution is valid asymptotically
for large radii). KK chose the opposite route—neglect thermal effects, but include the
inner boundary condition. They were able to find a global solution. They show how the
backflow is fed by the inflowing fluid.

* An interesting note: Narayan & Yi (1995) went beyond the one-dimensional solutions by

numerically constructing axisymmetric ADF solutions which factorize the three-dimensional
equations, i.e., solutions of the type f (r, 0) = R(r)®(0). Solutions in KKO0O are not factorizable.
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Magnetic Kluzniak-Kita disk solution (MKK)

* Not to repeat the lengthy derivations twice, we will do the magnetic version, and outline
the HD solutions by setting B=0. It is interesting that both are non-published work,
present only in arXiv, referees did not appreciate the contributions, yet. KKOO paper has

a decent following and garnered 60-some citations until now...more than many
“published” papers, so it will stay in arXiv domain. The more recent magnetic
generalization is still in push for publication. DISCLAIMER: in 2023 we finally got the
part of the magnetic version published (and within it, the non-magnetic) in A&A! The
complete one I present here is a rewrite of rejected version, not yet published. Referee
did not appreciate our effort. (S)he thought it useless. True? Envy? I see our solution as
maths: nobody did it yet, so it should be published, someone might improve on it, not
wasting time on rederiving it-it took us quite some time to get it cleaned, more than less,
of errors. It is 75 equations in 16 pages, beat that!

« HD solutions can be obtained since the set of HD equations is closed. For the magnetic
case it is not the case, and only some general conditions can be obtained. I verify, with
help of numerical simulations both the HD and non-ideal MHD solutions.
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Magnetic Kluzniak-Kita disk solution (MKK)

irner disk middie disk outer|disk
0.1 AU 1AU 10 AU

Fig. 1. Illustration of the reach of the inner, middle and outer
disk regions in the case of Young Stellar Objects. In the inner-
most disk region the disk is in the ideal MHD regime. Further
away from the star, in the middle disk region, the Ohmic resis-
tivity adds to the viscous dissipation. In the outer disk, which
we do not analyze here, other resistive terms prevail in the in-
duction equation. Radial extension of the physical domain in our
simulations is indicated with the horizontal thick black solid line.

We search for the quasi-stationary state
solutions, assuming that all the heating is
radiated away from the disk. This is why the
dissipative viscous and resistive terms are not
present in the energy equation, nor are the
cooling terms. We still solve the equations in
the non-ideal MHD regime, because of the
viscous terms in the momentum equation, and
the Ohmic resistive term in the induction
equation. We are solving viscous and resistive
MHD equations (in the cgs units):

V-B=0, (1)

2‘§+V-(ﬁ\f)=0= (2)

%]?+V><(B><v+nm.f)20: (3)
8§:+v.{pw+<P+B8;TB)I—%—T}=p9= (4)
%erV-KE%—P%—BS;TB)V—%]:PQ'V: (5)

where p, P, v and B are the density, pressure, velocity and
magnetic field, respectively. The symbols 7, and 7T rep-
resent the Ohmic resistivity and the viscous stress tensor,
respectively, with 7 = 5T, where 1 is the dynamic viscosity
and T is the strain tensor.

The gravity acceleration is g = —V®,, with the grav-
itational potential of the star with mass M, equal to
®, = —GM,/R. The total energy density £ = P/(vy —
1)+ p(v-v)/2, and the electric current is given by the Am-
pere’s law J = V x B/4w. We assume the ideal gas with
an adiabatic index v = 5/3 and polytropic index n = 3/2,
(y=141/n).
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To compare the magnitude of the different terms in the equations, they have to be written in
normalized units. We will repeat what was done in Regev (1983): all the variables are written in the
Taylor expansion, with the coefficient of expansion given by the characteristic ratio of disk height
to the radius, €= H/R<< 1. For a variable X we have then X=X +eX +&’X +&’X +... and we can

compare the terms of the same order in € for each variable.

In the case of a viscous HD disk (B = 0), the equations can be solved inside the disk (KK00). One
can assume that the disk density decreases smoothly to zero towards the disk surface, which greatly
simplifies the solution. In the case with a stellar magnetic field, the disk solution is connected with
the magnetosphere of a star-disk system, through the coronal magnetic field. Reconnection and
outflows complicate the solution in the magnetosphere, together with a back-reaction from the disk.

In a magnetic case, we can obtain only the most general conditions for the disk magnetic field from
the equations.

We will be searching for the rotationally invariant stationary solutions, so that stationarity, 0/0t = 0,
and axial symmetry d/0¢ = 0 both hold. [In some cases we write 0/0x=0_for simplification.]
Another assumption is that the structure of the disk is symmetric under reflection about the z=0
midplane. From this follows that physical quantities such as Q, p, P, n, u=v, and c_ are even
functions of z, while v=v_is odd under reflections through the equatorial plane. When we expand an
even/odd function (e.g. Q) in powers of €< 1, we require each term in the expansion (e.g. Q. ;i =
0, 1, 2,...) to be independently even/odd. This means that e.g. for Q=0 +£Q +£°Q +€’Q _+..., when
we have Q=even, all the terms [including € in (¢ )] should be even=> £Q =0= =0 and so on
for all the odd terms. This is generalized in Rebusco et al. (2009).



Magnetic Kluzniak-Kita disk solution (MKK)

¢l = cs/¢s = ¢ /(eRSY). Twiddles denote characteristic val-
ues of the variables, and primes the scaled variables. Fur-

ther, O = Q/Q, Q = Qg = \/GM,/R3, ' = r/R, 2/ =
z/(eR), vl = v,/ = v,./(eRQ), v\ = v,/é = v./(eRQ),
v, = Vy/ (RQ). The magnetic field we normalize with the
Alfvén speed vy = é/m as a characteristic speed, and
p' = p/p. Then we have B’ = B/B = B/(t%+\/47p), and B
is the normalization for all the magnetic field components:
B, = B,/B, B, = B./B, B,,= B,/B.

The beta plasma parameter [ = Fyas/Pmag =
STTPgaS/BQ. With P = F,.s we can write 2 = yP/p =

5

VBB? /(87p) = vBv3 /2, so that 3 /éZ = 2/(vf).

The viscosity scales with the sound speed as a char-
acteristic velocity and the height of the disk H, so that

the normalization for the kinetic viscosity is vy, = ¢sH =
e2R?Q, and then 7 = pin, = pe2R2Q. Then 1’ = n/n =
n/(pe>R?QY). For the resistivity we choose the normaliza-
tion with the Alfvén speed as a characteristic speed, so that

hn = UaH = eRva. Then 77, = /T = T/ (eR0A) =
Thn A‘(‘B/z /(&,FR) — Tlm AI:B/Q /({:EREQ)
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We work in the cylindrical coordinates (r, @, z). The normalization is defined with the following
equations: e= & /(RQ) = H/R < 1, so that & = eR(), and then
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We illustrate the asymptotic approximation method in detail by deriving all the terms through the
second order in the continuity equation. Other equations are derived by following the same method.

The continuity equation is:

dp B
E—FV{;}V)—O. (7)

In the stationary case dyp = 0. With the condition of axial

symmetry J,(pv) = 0:

1 :
;(‘)T_(-rpfur) + 0.(pv,) = 0. (8)

The normalized equation, with the terms in the order of a
small parameter e:

I 1, ~ ~ =~ 1 . -~
i Ec’)rr (r'Rpp'eQRv.) + Ec‘)‘zr (ppeQRv) = 0. (9)

Dividing through pf) and removing the primes, we can
write:

€. |
;c’)r(-rp?)r) + 0, (pv,) = 0. (10)
With the expansion in € in each quantity:

€. ‘ ‘
;d?.[-r(pg +epi+€Elpr+ ... )(vro + €vpp + epy + ... )]

+0,[(po + €pr + € pa+ .. ) (Va0 + €U,y + €40 +...)] = 0. (11)

Now we can write the terms in the different orders in e.

Order €

d
% (Povz0) =0 = v,0 =0, (12)

Since pg is an even function, and v, is odd with respect to
z, at the disk equatorial plane this product is pgv.o = 0.
Since it does not depend on z, and py # 0, we conclude
that v,o = 0 throughout the disk.

Order €!:

In the first order in € it is:

10 e,

—— (rpovrg) + = v,1) =0 = v, =0. 13

- E)-r( PoVr0) 02 (Pov21) 1 (13)
. See the next slide for this. i

Since v, = 0 (KKO00), we have 9,(pov.1) = 0 = pov. =

const along z. Since v, is odd with respect to z, following

the same argumentation as above in the zeroth order term

in €, we conclude that v.; = 0 everywhere.

Order €2

In the second order in e:

ldi (rpove1) + ; (pov=2) = 0. (14)

ror A

Finding the solution for v,; will give us the vertical depen-
dence of v,».

The same procedure is carried in each of the following
equations.
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MKK-radial momentum

In HD case, from vertical symmetry and also
parity consideration, Q. =0, and here we

Radial momentum: Order € .
obtain u =v_=0.

I's “ _%XZ . . .
5 Oy Ov,. 9 1 [ z 2] 2 1 JB,¢ 1 0 v,
€EVp— +ev,— — Qr = 1+E ( ) —2rQ20$) = . Ty =~ . . 21

or 0z 2 r R0 3,00 " 0z * po 0z "o 0z (21)

i i 2
2, dc + il 2B, ({B"" e ;{B"" _ 52& Since v, = 0, from the vertical symmetry €2; = 0 follows,
or Ip or 0z r as shown in KKO00 for the HD disk, see also Appendix A
21082 & 9§ v, e v, in 'Rejbuscq et {11. (2(?09) for a more formal derivatiF)Il. **f“lf
————+ — 2nr 5 + - 5 n 5 (19) this is maintained in the MHD case, we can write, with
or poz \ ' 0z

~NBp O pr or oo = O:
+EQ 9, ( E)?)z) J2nv,. 20| 10 ( ) -
—— | n— — €0 — ——(rv, .
p 0z Tor pr?  3p or | or an( P ° 0. (22)
262 0 | v,
3por T2 ) Order €2
For an ideal gas with the polytropic index n, if adiabatic 3y 2 92 5 5
: oY — 3po z dcs ( dv,.
index v = 5/3, we have n = 3/2. 2 pp Qs = ﬂ_4 +tnpp 0 _ 2 1
2 r or 0z 0z
Order €°: 2 OB, 0B, 0B, B?
- —— | Bro—; 4 Byt 4 By (23)
Qo =132 (20) v or 0z 0z r
1 0B2
ﬁf-'lJé 6?" '

***In Rebusco et al. (2009) is given a non-axisymmetric solution. It is obtained with help of Gegenbauer (or hyper-
spherical) equation and its solutions are known in terms of combinations of the associated Legendre functions (also known as
Gegenbauer polynomials), with use of Wolfram Mathematica 6 software. As mentioned above, there is also given a general
discussion of egs.for the first order in angular velocity, I copy it in the next slide:



Rebusco et al.(2009), Appendix A 143

In the previous order the explicit form of the viscosity 1 was not needed, but now the situation is not as comfortable.

Following Shakura and Sunyaevlg], we posit the following form of the (¢, r) viscous stress tensor component . 1 0 ( 8?10) (17
— aPisgaly = S—iam | T
|T¢r| = ()IP[), (25) Ao 0z a2
where a is an adimensional parameter. This gives ug 8 (7290) - ii (73 a0, ) (15
d€l 2 4 53 72 ar po Oz Oz
—\|=aP = = 30y (26)
tion is vertically dependent, i.e., the vertical distribution of stress is ;i.SSlllIled to follow
We now substitute this 7 together with the polytropic relation, 2 = r 5/2 and use
ion [I2)) in equations (IZILS). which become, after some straightforward algebra
2 3 4 02w 2 O, i,
S S - S @) = 0 (27) APPENDIX A: THE VANISHING OF €, AND ug
Q:T“pg/xrg 62(3;?1) _ 2:_;123(25?1) —p — O (28)
Rewriting the first order equations (27) and (28) with the definitions U = ug and V = 2r(2; gives
20\ 4 9/3] 02U 2\ U
‘ '.-"3,00/‘ — |5 )z +V=0 (A1)
3 Oz 3 0z
2
2a 3 2/3 o0°V 20 ov B A
2ot ey () 25— U =0, (A2)
3 0z 3 0z
. . . 2/3 : .
Substituting now the zeroth order solution ,(JU/ = (h%? — 22)/(5r3) and rearranging leads to
=
Dz a .
Ui = 5 Vst g V = O (A3)
E
Dz e
V.. — h2 _ 2 V. — h2 _ 2 U= ﬂ (*ﬂbl)

where the subscripts z denote here the differentiation with respect to z and a = 15/(2a) is a constant.
Using now Q(z) = (h? — 22)®/2 as an integrating factor for the first two terms in both of the above equations, we see

that
a% (Q%) = —a(h? =232V (A5)
% (Q%—Z) = a(h® - 2?)3? U, (A6)

Multiplying the first equation by U, the second by V, adding and integrating over the domain [—h, hl, gives, after

dropping the integrated parts,
h 2 2
oU oV
/_h (E) —+ (E) Q(z)dz = 0 (A7)

Because Q(z) # 0, except at z = +h and the functions U,V are bound, they must be equal to constants. Thus, it
follows from equations (A3[A4), that U = V = 0, except perhaps at z = +h. However, since they are bound and
constant in all the domain, they (and hence uy and £2,) must be zero identically.
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MKK-azimuthal momentum

Azimuthal momentum:

P D a0 00 €D (L 0\ 0 (o0
g ) Frugs = mat(rigs )+ (ng;

21 (ezBr 9B; | p,%Pe +ezB"aB’”)
vBT dr 0z T
(24)
Order ¢
e, )y
_9 25
0 dz (7?0 dz ) (25)
consistent with Eq. (20).
Order €':
Polro d 2 - i oLy il DB@U
r2 or ( QU) 0z (T?U 0z * f:,,-ﬁ ?‘BZU 0z (26)
Since v,.g = £2; = 0, we obtain that:
B, 220 _ (27)
0z
Order €2:
Potr1 d 9 2 (‘)B@U (‘)Btpl BrfJBtpU
Q) = — | B- B.,—
. o ( U) B ( 0o, + Do - + .

V19 (a 9N 9 (9
2o \" M ) Tz \h e )

Vertical momentum:

v, v, z g f2\2 —3/2
Uy —— p,— = —— |1+ € | —
“ or T 0z rd |: te (?) ]
o0 : z ; 2
. n:‘)c5 N 2ﬁ 1 (r_ B, (HZBZ . B. c)‘Bz) B lﬁ 1 (%B
dz  ~@p ar 0z ~Ep Oz

+E (_3' v L €2 - Jv- 5
p oz U 0z pr (}r (}r (29)

2¢ 0 |ndy 2 dv.
3pdz [? aor (? ! 1')] Sp 0z ( )

£ € (}i -
pr (}? (}z

Order ¢":
e 1 1 9B
[}:—i_!—nfpbﬂ— _f 0 (3[})

T Oz r}rf} po Oz

From Egs. (16), (22) and (27), with B.o = f(r) it fol-
lows that B,, = f(r) and B,, = f(r). With B2 =
B2, + B2, + B2 it gives 0. B3 = 0 = 0.By. For a disk in
the vertical equilibrium, components of the magnetic field
do not contribute in the zeroth order in e to the vertical
gradient of the magnetic field.

We remain with the vertical hydrostatic equilibrium
equation identical to the purely HD case:
z e,
— = —-n—. 31
- dz (31)
This is consistent with the demand that, for a quasi-
stationary disk, the lowest order in € of the magnetic field
components does not contribute to the solution:

B,gs = B.g = Btp(} =0 = By=010. (32)
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1. . . . . .
Order ¢ We review already obtained results with the vanishing com-
2 [, OB. 2 e i .
v {an—dzl (}—z( 0 1)] { - (v ] ponents of B, , when magnetic field influences the solution
'L a (33) . . .
2 ;3 (.,.m.,. f);fl) 0. only in the higher orders in . Then Egs. (14), (23) and (28)
ror oz
With B.o — By — 0 we obtain: become the same as in a HD case:
) ) 3 c) ( di.r.,.l) , .
= |7 T, Mo : 34 10 o)
iz { “or ( 1)] 0z (34) — (?‘pf}i,-'-,.l} + ,— {pf}i,-'zg} =10
r o
2, 3pp 2° dc? f) v,
Order ¢?: ‘ | ‘ 2rpoflpfly = 2R — T npo 0 (?Ff} y 1)
0B 0B.1 B 9B B 0B.o B OB, 2 9 ar 9z 0z
r0——F rl——(m — 20— — zZl—F/—
. ':}‘) o }(}z ) 0z PoUr1 d ( 20) ) o ]_ J 3 Iy + 9 d )5
+ 50 (B} + 2By Bs) + 5% [?3_1 (;? (H,l)] (35) ror 0 2 or o ar 0z o oz )
B 2_ L2 20 .o 1 (_} v (38}
(mov=e) + 352 (5, )~ rar ™" 5; )

In the disk solution in Hoshi (1977) and KKO00, those equa-
tions were solved by assuming that the disk density de-
0B:1 0 (36) creases !;uwardf-; the surface, py — 0. If, il]E'itL':Eld: we supply

’ ) at the disk surface a value at the boundary with the coronal
density peq, we obtain:

If now we use Eq. (17) with B, = 0, giving

0z

we obtain: It was my addition to this

30 53 5 22 1 OB’ NS S 3/2 derivation, nobody needed it
= = 2npy= (eqts) 0 =(p) +— ., before. Feels good! 39
5 7 = 2o (Cotsa) + 12 92 | 73 02 P0 (-ﬂ:,d + F3 ) : g (39)
'} 20 (md 20 .o ‘ ‘ o
- f— (nov=2) + 3917 o (rve) | + 3792\ where h is the disk semi-thickness. The pressure and sound

speed now become:

2 2y 2/2 r 2 2
(37) _ (3, h 2 R L T B Ul
P(} = | Pea + B3 » Cs) = 3 Ped + 53 )

1 d oI
ror T iz
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MKK-HD and MHD solutions

The Hoshi (1977) solution is recovered by setting p.q = 0,
for the boundary at the disk maximal height.

In our case, since i o r, we can write, with the pro-
portionality constant A’, h = h'r. Assuming the corona at
the surface of the disk to be in the hydrostatic equilibrium,
with peg o (ﬁ'cr}f?‘)m we can write:

lng B E pﬁjf'ﬂ _I_ h.’QTZ - .32 B E k:ppc[_} + h-"ﬁ B z'.Z
0™ g |\ Fed B3 3 r 5  5rd

(41)

with (2 = 1/(5k,peo + h'?), where k, is the proportionality
constant, and p.y ~ 0.0l 1s the ratio between the initial
corona and disk density.

Now we can continue with the rest of equations.

Magnetic field solenoidality (V -B = 0):

Order ¢

Sfj =0 = B,y = f(r) or B, =0.
Order €'

3 (el + S5 =0

Order €2:

ror rBa)+ 52 =0



MKK-MHD solutions

Radial induction equation:

du, JB. Jv- JB,
B.—+v,—— —B,— —v
0= 0z + o 0z "0z ® 0z
+ (.)T}Ill (.)B'f' (.)T}Ill (.}BZ
— —€
,},ﬁ dz 0z 0z Or (42)
. 9 [92B, 9°B,
— —€ :
T\ 25\ 022 “Gron
Order ”:
anmﬂ E}Br'ﬂ E}EBY'U .
dz 0z + o5~ 0. (43)

If we multiply this with B.j, the first term equals zero
because of Eq. (22), and we remain with the second term:

0?B,o
T:"mﬂBzﬂalT = 0. (44)

If all the zeroth-order magnetic field components are zero,
B,y = 0 and we remain with

0=0. (45)

Order ¢!:

Bz(} avv'l + i% (3?']‘:.10 aBr'l + anml E}Br'ﬂ
i

Jz dz Oz dz 0Oz

Mo OB 2 92 B,4 9B,
- = 1l [ m P 46
9z or )J“\/Tg (” 0Tz T (46)

0’ B.
—7?1;10.7.0) = 0.

drdz

With the components of By, vanishing, we remain with:

d ()B,l - -
E (”“‘“ 0= )_D' (47)

Order €2
v, v, 0B, O
0= B.y v 2—|-Jle“ri l—I—I,-‘T.l(. I—BT.()(:I—z
0z dz 0z 0z
.y ‘:—}fgv'[’} + _ f}T}mf} E)fgv'ﬁ + lf:jh."/._-'ml f}fgr'l
Jz r}rﬁ dz 0z dz 0z
+E}T}1112 E)Bv'['} - anml E)Bzﬂ' - lf}"/._-'mﬂ E}le
dz 0Oz dr Or dz  Or
N 2 9?B, N 9?B,1 J°B
"}ffj? Mo (.')le Ml (.'}2,'2 N0 } (}.Z

0? B
Tl s S or (}z '

Without the components of By, we remain with:
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(48)

Jz dz 0Oz 0z

0= -'le‘l:-:;}ii + % (D’f?mf} (:-)B"'E + E}lenl E}Brl
F] L.

B E}T]‘m(} 0B f}gBr.g + (}I B, B JB.o
f}z E_)?_ Tmo 32?2 Mnl—F & ) 2 Mo (:'}?'327

Jz

)
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MKK-MHD solutions

Azimuthal induction equation:

0=erB, (,}n r?ﬂ(}B +ef)B, +rB.— 0%t Q(},Bz
dr ar }z dz

» OB, oB, 5 Ov v,
—e2u, Pl SR - A - Y
CUrThr T e T e, T Pep;
2 (CEB@:‘ O 300 OB, | O 0B, )

8 r or | or or 0z 0z

N r 0B, c”B ° L 3 02 B, 0 . E}QBQ,
1 : ; c E— .
g y .3 T or r2 Jr? )z2

Order ¢":
0B 0B
?‘Q(}(.z“:[}:}(.zr}:ﬂj
0z 0z

in agreement with Eq. (16).

Order ¢':
<) 0B, 1B,
?Br(].( 0 ?ﬂ(}( D-I-?‘ﬂ(}(.—l
ar dr 0z
(}nmf} ()B‘Pﬂ' lf} ‘B‘F‘ﬂ'
= + mi ™ 5 5 = D:
~8 ( dz Oz 0 0z2
which, with vanishing components of By, becomes:
?'n(].():BZI = 0
dz

This confirms Eq. (36).

(50)

(51)

(52)

(53)

Order ¢2:
0=r fl.B,.l c}.ﬂg s c}:Br.l ., Bzﬂc}ﬂg e (}:BZQ
dr  Or dr dz dz
2 l‘:'}nnll B‘B‘Pﬂ f}nmf} (}B‘Pl ("}2 B‘P]-
:-}rlfj} ( dz 0Oz * dz dz + Timo 0z2 (54)
2B
11 (}ZQ )
Without the vanishing components of By it becomes:
1B, d01 B, B
?‘( ; L (, 0 +?‘Q(}(, L +?‘ﬂ(}( ; 2
dr  Or ar Jz
2 ("}T?qu} E}B‘F‘l (}2 —0. {55)
B\ 0z 0z @ M7z -
Vertical induction equation:
1. B, B ., B, B,
0= : - : +Br'i_vr'(. 1"z‘:.—
r T ar ar ar
B dv, 2 [ OnwmOB. Ony, 0B,
= e —_
Or ~G\ T or or  or 0z (56)

ordz  Or?

2 {edB. 10B, O*°B, 0°B.
+7:-'n1 = T =TT - + -
~B\ T Or r or



Order -

SBI‘"D 82 Brﬂ lrEhri'mﬂl SBPD
ml :ﬂ.
” “(r o T oraz | T Tor o2

giving, with B = 0:

+
r dr Or

(Bzﬂl aBzﬂl
Ur1

v
) + B X

_ l'::h':"nll'i aBzﬂl _ lELBJ“I _ l'E;'j";"nﬂ l91}5‘}1’*[}!
VN As| or Or 0z or Oz

Hmo (aBzD 3_8,-1) aZB 1
+ = Hml

r

ar ar
aBrl’! 4+ l’e':}z-BJ'"l'll
RGN r rd z

With vanishing components of By:

d ( B, )
Hmo +

ar 0z

Hmo aBrl

= ().
r or

ordz
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MKK-MHD solutions

(57)

(58)

(59)

(60)

Order €2:

1 3: 2 SB 0
_(T-".ZZBTD — Url le - "-"TZBZD) + Brﬂ - + "-’ZZ—T
r ar ar

aT-"rZ aBzﬂl a?—"r 1 lE;'JB:Z 1
- Bz — tUvp——— | — Bz — t U —/
( “ar Ty ) ( Yar T oy

_ i l"-:)]rirmﬂl aBrZ lE}-le +3T31111 aB}"l
A Aa o \ 0z or or \ 0z

_aBzﬂ 4+ annﬂ r‘:}-Br"ﬂl n jr."'111[') aBrZ _ r‘:}-le {ﬁl)
or ar Oz r dr or
11 aB]‘" aBz 111 aBl"‘ 82 B]"‘
+n ! ! - 0 + T2 ﬂl Thuﬂl 2
r or ar ro dr ordz
+ 0°B,, 3’ B, & B., 9?B.,
j";"1111 ?rr?z ??1112 3?32 ??1110 j 3 j";"1111 arz
which with vanishing components of By becomes:
1 - B.
0= —vB:1 — B.r1— Ou ! - "'--111"2u
r ar ar
. i anmﬂ aBrZ _ ale
-\ ~B| or 0z r
(62)

r or ar dr 0z

111 l,:—)-B‘]"' 'E;'Bz a 111 aBT
+?’? n( 2 1) + 1 1

nnll lE}-Brl azBPZ azBrl aZle
. r??“ i) araz m 1l 3?32 Hmo r?rz
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MKK-MHD solutions

Energy equation:

. 2 2 w2 /2
E4R2522np'ur%? .3R2£!2np'uzé;j; 0020, 3;;
Jua o2 /2
2 ~2 A 2 ~2
FEPUL U —— ar + epiiv, 3~ +e"priuy ar
. . L\ 2]73/2
+[ pﬂlzﬁ'z + 022l } |+ €2 ( ”
: (63)
2,
_ %B- (20, B, + eQrB,)
T

+-ﬁia—i (€20, B2 + €20, B.B, + eQrB,B,)

Vi 2 (BB + B4 OB, B.)

Order ¢:

8 aBzD aB"D
= 03 —(QrB,oB.o) = B B.g—= =0,
LA‘@ (QorBoB:0) v + Dz 92
which, with the first term vanishing by Eq. (16), confirms

the Eq. (27).

Order ¢':
Bpn Brﬂ + aBrﬂl + é}-le + an a-Bg.:l
2y or 0z dz (64)
OB . B .
B, £ B.,—/—& =0.
+ 5o By + 92 0

With Eq. 17, we can write:

B, B, B, B,
Brﬂ(a guﬁ__quﬂ)_'_ana el +lea L :U {65)

ar 2r i)z iz

Order €2:

9
= [rﬂn (BroBo1 + B Boo }}

‘|’a£ ['UrlBrDBzﬂl + Tﬁﬁ (Bzszn -+ BZIBQGI {66)
=

E-EDBJFDBQGI +

+B.0Bya ) + 10 BBy | =0,

which with d, B,y = 0 can be recast into:

ar
ar [T“n (BroBg1 + Brchpﬂl}i|

d i i
+B..0— v Brg + 1 QoBo2 + 228, )| =0,
az b ¥
In all three orders in e, with By = 0 with i = (r, @, z) we
obtain identities 0—0, confirming that our assumptions and
results are in agreement with the energy equation.

E-EHB]"‘D Bcpl +
(67)



MKK-MHD solutions o1

» We list now the solutions. Far away from the star, where we expect a small effect of the magnetic field, solutions in
the simulations should not differ much from the HD solutions. Closer to the star, the magnetic field influence
increases and the change in results will be larger. Higher order terms in the MHD solution may differ from those in
KKOO0.

® Uy = Up = U = () = ¢y = pp = 0, as found in HD
case.

we readily obtain Qy = r—%/2. This solution is valid equally
in the HD and MHD cases.

e By = 0 and also By = 0, with ¢ = (r, p, z). Magnetic
field influences the disk only in the higher orders in a small
parameter e.

e J.B.; = 0, vertical dependence of the leading component
of the magnetic field in the vertical direction is f(r) only.

e Vertical hydrostatic equilibrium condition gives the same
solutions for the lowest order in e for the density (see
Eq. 39), pressure and the sound speed as in the HD solu-
tion. The difference from KKO0 is that now the disk surface
boundary condition is not vacuum, but a corona with the
density peq(r) at the disk interface. The zeroth order profile
of density, pressure, and the sound speed are:

973 h2 — 2737
po(r,2) = |peg (1) + —g5—|

."l }?2 - 22 d;z
R PR i

5} 2/3 h? — 22
csolr, z) = \/E [;}Ea (r) + =3 |- (68)

Clearly, po(r, h) = peal(r).
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Fig. 2. Capture

MKK-HD and MHD numerical solutions
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of our hydrodynamic simulation after t—=100
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Fig. 3. Illustration of the quasi-stationarity of our solution ir
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Fig. 4. Captures of our magnetic simulation after t=—=80 stellar
rotations (top panel), and a zoom closer to the star (bottom
panel) to better show the accretion column. Colors and vectors
have the same meaning as in Fig. 2. Note the different scale of
the poloidal velocity (arrows below the panels). A sample of the
poloidal magnetic field lines is shown with the solid lines.
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Fig. 5. Hlustration of the quasi-stationarity in our magnetic
case solutions, in the same units as in Fig. 3. Top panel: the



MKK- analytical expressions from the numerical solutions

We can write the results in our simulations as simple
functions obtained in KKO00, with coefficients of propor-
tionality we find from our simulations:

ey ., 273/2
e = 1= )] ®

ka i -
o (r2) = =73 [1 n ((._,24}2} , (70)
Z Z N >
va(r,2) = Z0,(r,2) = ka s |14 (G2)°
k - "o k
;1@(;13}:%1 Ez:;_"u: __{?2,
r y e

Magnetic field components are proportional to r =2, as
expected for the dipole stellar field, and depend linearly on

height above the disk midplane:

ks kg kq -
B.(r, z) = F—%ﬂ«: B.(r z) = F—{ﬂc B,(r,z) = r—{g (71)

In the case of B,., the linear dependence is a consequence
of the boundary condition at the disk equatorial plane,
where the magnetic field components are reflected, with the
change in sign of the component tangential to the bound-
ary. This means that the radial magnetic field component
B, — 0 at the equatorial plane, and is slowly increasing
above (and below) that plane, in the densest parts of the

disk. ] = @ {1 ) (@%)Q]z: (72)

3
1/2

T (7, 2) = ko /7 {1 B (ng)j
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Fig. A.1. Difference between our numerical solutions and ana-
lytical expressions, in percentage of the value in the simulations.
Our analytical solution is mostly inside the 10% margin every-
where inside the thin disk region, below the thick white solid line
demarcating h = 0.1r dependence, where h is the disk height.
Close to the star and aceretion column footpoint, our simula-
tions are in the ideal MHD regime, so the analytical expressions
fail there. It is also failing close to the outer boundary, where
the material is fed into the disk by the amount based on the
analytical solution in purely HD approach.
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MKK- analytical expressions from the numerical solutions

Table 1. The proportionality coefficients in our simulations with

B.=0.5 kG and 1 kG.

B(kG) 0.5 1
coef. R—=6|R=15 R—=6 | R=15
k1ilk1o 0.9 1.210.29
koilkao -0.01 | -0.006 +1.2 x 10~%/—2.9 x 10~?
k3 —265x 107%  —4.4x1073-3.6 x 107°
k4 0.255 0.255
ksilkso  -0.69 | -0.41 -1.25
keilkeo  -0.35 | -0.15 -0.29 | -0.19
kzilkzo  -2.8]-1.1 -8.2|-1.18
ks 5.8 x 1073 8. x 1073
ko 0.01 0.01
C1 J. 5.
G2 0.5 0.5
C8 D. 6.8
G 6. 4.5

Using this table, we can “prescribe” the disk-it will fairly well describe the disk, as we saw in the
previous slide.

*  We could plug in any other disk model and compare with simulations or other computation result
* We write such a script, for comparison of solutions.

* I supply a template in mc_razlikaANnum.py, it can easily be modified. We test it with one of the results
from simulations.



Accretion disk simulations

First numerical solution of (HD) accretion disk was by Prendergast & Burbidge (1968) (no pics!)
*Analytical solution was given by Shakura & Sunyaev (1973), with alpha-viscosity prescription.
 From that time to the 1990-ies many developments and models, with different approximations.

In Kluzniak & Kita (2000) was given a solution of the HD disk in the full 3D. It was
obtained by the method of asymptotic approximation (Taylor expansion).

In 2009, numerical simulations of star-disk magnetospheric interaction were done in 2D-
axisymmetric simulations, by Romanova et al. (2009, 2013, with non-public code), Zanni &
Ferreira (2009, 2013, with modification of a publicly available code PLUTO v. 3.0).

*Development of disk simulations in the direction of MRI in the disk (Flock et al.), but nothing
much in star-disk magnetospheric simulations for a decade.

*In Cemelji¢ et al. (2017) and Cemelji¢ (2019, “Atlas” paper), the first repeating of Zanni et al.
(2009, 2013) axi-symmetric viscous & resistive MHD simulations in 2D with PLUTO code, v.4.1.
The results are similar to Romanova et al., obtained with their (non-public) code with entropy
conservation, not energy.

In “Atlas” paper I performed a parameter study to investigate the influence of different
parameters. This publication, especially its Appendix, is used here as a guide through setup and
numerical methods.



Normalization in the code

Code works in the normalized units. For translating into other units,
one needs to multiply with the corresponding scaling factors. When
using Cooling, one needs to define units in definitions.h subroutine.

Table A.1. Typical values and scaling for different central objects.

YSOs WDs NSs
M, (M) 0.5 1 1.4
R, 2R, 5000 km 10 km
P, 4.6d 6.1s 0.46 ms
B, (G) 500 5% 10° 10®
pg (gem™)  12x 10710 94x107° 4.6x107°
vy (kms™1) 218 5150 136 000

MyMzyr™)  57x1077 19x107° 1077
By (G) 200 S5x 104 293 x 10’




Equations solved by the code

g—f +V - (pov)=0

*Code I used in “Atlas” is PLUTO (v.4.1) by dpv B.B BB

Mignone et al. (2007, 2012). We will do r +V- [PU” + (P + ?)I T an T] = P9
it in v.4.4.3(=4.4.patch3) IE B.B (v-B)B

« If the disk is to reach the quasi-stationary ot V- [(E P+ Q7 )” T 4x

state, the Ohmic and viscous heating in the

energy equation should be balanced with the L+ V. T JxB/dr —v - T|=pg-v- u—-\A,_-—f
source term. In such a case, we effectively heating terms | cooling
neglect the dissipative terms in the energy OB

equation-this is equal to the assumption that ~ gr tVX(Bxvtanl)=0

all the heat is radiated away from the disk. the gravity acceleration is g = '—V(Dg, where the gravitational

potential of the star with mass M, 1s equal to @, = —GM,/R.

: : . , , Then ggr = —1.0/R? in the code units.
*Viscosity and resistivity are still affecting the

solution, in the equation of motion and in the gk B - B) (u-B) B‘
—_— u p—

+V-

4
+V - [ X-Bidr="u"- 1| = pg - u — Aol
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. . . (E +. P+
induction equation. ot



Practical part: init.c file, Hydro-dynamical star-disk setup

The 1nitial disk was set with the initial density t In the corona, density and pressure are:
a self-similar profile and the aspect ratio e: 1 /(y—1)
c = P{:{J(Rt fR) B

—1[R, 2 R 1/(y=1) S
Pd = Pdo z 5 ~(1-XE - vy—1GM, (R, y/(y=1)
ye? | R ¥y —1) Rsin6 P = peo
R R
o s 5.\ R 7 - L v o
POV | R T I - Y ‘ Viscosity tensor is given by Landau-Lifshitz def:
Th ' ag r 2
e pressure was 7= |(Vo) + (Vo) = 3(V-0) |, (A.7)
Py = Ezpdﬂ 12 (P_d)? _ with the dynamic viscosity i, = pv, given with
= Ky =
Pdo
2 ) 2/GM, GM, r
52 = = “(F)].— - —
- Pd{JUER* {E R_,., B (] B 552) R, ‘} 2y 3P cs(Mlz=0 + S( = p )‘ 1'GM*’ (A.8)
€ S50 R 2/ Rsinf where v, is the kinematic viscosity. The magnetic diffusivity was

assumed proportional to the viscosity, with the free parameter

The initial disk velocity profile is, following KK0O:

32 1) GM, 3w
Vpg = — 10——na ~Al5- 1/ —, Vm = —Qm—,
€2 tan? 6 Rsin” 6 2 ry
5¢2 0 GM,
i e —eaA R 7 (A.10)
5¢2 tdrrﬂ Rsin#

11 64
A——f(1+ﬁfr) (A.11)

where



Practical part: results in Hydro-dynamical star-disk simulations

t=280.00 P, 107! 107" ———— : ; .
11072
a
103
=]1]
=)
PEPERa I R - R _4 :
"IO . L I I I

o 20 40 60 80 100

10§ g /R,

Ideally, this is what we wish to obtain. Computational bc

and a zoom closer to the star after 80 stellar rotations. Ir. . Time
color is shown the density, and vectors show velocity, with Time dependence of the mass and _
the different normalization in the disk and stellar wind. angular momentum fluxes in the various

components in our simulations.



Star-disk simulations setup

The Kluzniak-Kita (2000) analytical solution
is purely HD.

We will start with the HD disk, and then add
the magnetic field.

Stellar surface is a rotating boundary around
the origin of the spherical computational
domain. In the non-magnetic setup, it is just

a simple setup with “absorption” of the flow
atop the stellar surface-we assume the star to
be a (differentially) rotating magnetized
rotator.

The initial corona is a non-rotating corona in a

hydrostatic balance with the 100 times denser
disk below it. After short relaxation, lasting
for the few stellar rotations, corona starts
rotating, following the disk.
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Logarithmic grid in a star-disk simulations setup

Pluto44usgui.pdf

202.59¢
by reversing the spacing in the 1- grid.

31 | (320F151)

In practice, the mesh spacing in the 1+ grid is obtained

Index voox
» Quick Start 6
» Introduction 11

Note: The interval should not include the origin when using a logarithmic grid.

* Problem Header Fi... 17
» Makefile Selection... 27

~Runtime initializat... 29

In CYLINDRICAL or SPHERICAL coordinates, a radial logarithmic grid has the advantage of pre-
Th: [ﬁnfg BTOCi o - serving the cell aspect ratio at any distance from the origin. In addition, the condition to obtain
The [Solver] Block 34 approximately squared cells (aspect ratio ~ 1) is Ar; ~ riA¢ where Ar; = ry (e2¢ — 1) is the
The [Boundary] BL... 35 radial spacing of the first active computational zone. This condition can be be used to determine
U= SR AL 2 either the number of points in the radial direction or the endpoint:
The [Chombo HD... 38
The [Particles] Bl... 38
The {Parametlrs] ... 39 108;10 "R = N, 10%10 w .

- Initial and Boundar... 40 rL 2-A¢

~Inital Conditions: ... 40

R Beware that non-uniform grids may introduce extra dissipation in the algorithm. Changes in the grid
Specifying Temp... 43

«Initial Conditions:... 45 spacing are correctly accounted for when RECONSTRUCTION is set to either LINEAR, PARABOLIC or

Assigning Initial ... 47 WENQS3.
~User-defined Bou... 48




Resolution needed in a setup

Resolution in my production runs is Rx9=[217x100] grid cells in 8=[0,1/2], with a
logarithmic grid spacing in the radial direction. For testing | also use Rx9=[109x50]
grid cells, which gives gqualitatively correct results.

The accretion column is well resolved if a rule of thumb is satisfied that there is
at least that many grid cells how many there is independent variables (5 in HD
case, 8 in MHD case in our setups: density, pressure, 3 components of v and B).

Star rotates at about 1/10 of the breakup rotational velocity.

| did also 9=[0,11] cases in Rx9=[217x200] grid cells, as well as Rx9=[109x100] grid
cells. Now there is no need to define the equatorial boundary condition, the simulation self-
consistently computes across the domain. This case usually leads to an asymmetry with
respect to the equatorial plane-I will show more on this in the last lecture.

76,157-05




I pluto.ini (ini)

X1-grid 1 1.0 109 1+ 30.

X2-grid 1 0.0 50 u 1.570796 &

X3-grid 1 0.0 1 u 1.0 X1-beg
X1-end
X2-beg
X2-end
X3-beg

Levels 4 X3-end

Ref ratio 22222

Regrid_interval 2 2 2 2 yservar

Refine thresh 0.3 dbl

Tag buffer size 3 flt

Block factor 8 vtk

Max_grid size 64 Eﬁgms

Fill _ratio 0.75 ppm
png
log
analysis

CFL 0.4

CFL_max_var 1.2

tstop 628.3185 ALPHAM

first_dt l.e-6 MU
TEMPF
RHOC
RD
EPS

Solver hll OMG

ALPHAV
DFLOOR

Star-disk: pluto.ini

pluto.ini (Modified) (ini)

6

6

.283185 -1 single file
1.0 -1 single file
.283185 -1 single file
1.0 -1

-6.279 -1
-1.0 -1

1.0 -1

100

1.0 1

3 nu num Te

userdef
userdef
axisymmetric
eqtsymmetric
outflow
outflow



I A definitions.h (c)

Star-disk: definitions.h

MHD

SPHERICAL
VECTOR

NO

LINEAR
RK2

NO

IDEAL

NO
CONSTRAINED_TRANSPORT
YES

NO
EXPLICIT
NO

NO
EXPLICIT
NO

NO

I A definitions.h (c)

NO

YES
MULTID
YES

YES
ARITHMETIC
VANLEER_LIM




Star-disk: init.c

I A init.c (c) Row 1 Col 1 2:55 Ctrl-K H for help

void Init (double *v, double x1, double x2, double x3)

double coeff, eps2, pc, rcyl;
double br,bth;

double lambda;

double xhi2, Rco;

I A init.c (c) void Init (double *v, double x1, double x2, double x3) Row 36 Col 1 2:56 Ctrl-K H for help
rcyl=x1*sin(x2);
eps2=g_inputParam[EPS]*g_inputParam[EPS];
coeff=2./5./eps2*(1./x1-(1.-5./2.%eps2)/rcyl);
lambda=11./5./(1.+64./25.*g_inputParam[ALPHAV]*g_inputParam[ALPHAV]);

v[RHO]
v[PRS]

¢g_inputParam[RHOC] *pow(x1,-3./2.);
/5.*g_inputParam[RHOC]*pow(x1,-5./2.);

pc=v[PRS];

v[vXx1]
vvx2]
v[VX3]

Vv[PRS]=eps2*pow(coeff,5./2.);

if (v[PRS] >= pc && rcyl > g_inputParam[RD])
v[RHO] = pow(coeff,3./2.);
v[VX1l] = -g_inputParam[ALPHAV]/sin(x2)*eps2*( -
*Llambda*g_inputParam[ALPHAV]*g_inputParam[ALPHAV]
-lambda*(5.-1./(eps2*tan(x2)*tan(x2))))/sqrt(recyl);
v[VX3] = (sqrt(l.-5./2.*%eps2)+2./3.%eps2
*g_inputParam[ALPHAV]*g_inputParam[ALPHAV]
*Lambda*(1.-6./(5.*eps2*tan(x2)*tan(x2))))/sqrt(rcyl);
v[TRC] = ;

else

v[PRS]=2./5.*g_inputParam[RHOC]*pow(x1,-5./2.);
v[TRC] = ;




Star-disk: paraview

o= 4n
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Summary of the Lect. 4

Approximate, vertically averaged solutions for thin disc
Kluzniak-Kita 3D solution for thin disc
Setup of 2.5D HD KK disc in PLUTO

Analysis of the results with Paraview

M. Cemeljié, Numerical simulations of accretion discs, Winter Semester 2024/2025



Outline, Lect.5 : Numerics essentials and magnetic KK disc

Riemann problem, Finite difference, Godunov’s method,
volume and elements methods, CFL condition, RK2, RK3, ...

Setup and running of 2.5D MHD KK disc in PLUTO

Analysis of the results from 2.5D magnetic runs with
Paraview and Python

Eleuterio F. Toro

NENEIIRNIES

and Numerical
Methods for
Fluid Dynamic

A Practical Introduction

@ Springer

MARIO VI'ETRI

_'Z-FOUNDATIONS ;;i?_;,,}’
R\
__\Hi;;IGH ENM‘E‘RGY
”“ASTROP\HYSICS

M. Cemeljié, Numerical simulations of accretion discs, Winter Semester 2024/2025




169
Primitive and conservative variables

In the computational fluid dynamics (CFD) we speak about primitive and consrvative variables and
approximate Riemann solvers all the time, what is it about? I follow the Eleuterio Toro book here:
E.F. Toro. Riemann Solvers and Numerical Methods for Fluid Dynamics. 2009

We consider the time—dependent Euler equations: a system of non—linear hyperbolic conservation
laws that govern the dynamics of a compressible material, such as gases or liquids at high pressures,
for which the effects of body forces, viscous stresses and heat flux are neglected.

We have a freedom in choosing a set of variables to describe the flow. Usual choice are
a) primitive variables: p(X, y, z, t) = density or mass density, p(X, y, z, t) =pressure,

the velocity vector V = (u, v, w) where u,v,w(X, y, z, t) are X,y,z—components of velocity,
respectively

b) conserved variables: the mass density p, the momentum components p(u,v,w), where u,v,w are
the x,y, z momentum components, respectively, and the total energy per unit mass E.The conserved
quantities result naturally from the application of the fundamental laws of conservation of mass,

Newton’s Second Law and the law of conservation of energy. Computationally, there are some
advantages in expressing the governing equations in terms of the conserved variables. This gives
rise to a large class of numerical methods called conservative methods.

We next state the equations in terms of the conserved variables under the assumption that the
quantities involved are sufficiently smooth to allow for the operation of differentiation to be defined.
Later we remove this smoothness constraint to allow for solutions containing discontinuities, such as
shock waves.
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Euler equations

The five governing conservation laws are

pt + (pu)e + (pv)y + (pw). =0, (1.1)
(pu)e + (pu” +p)o + (puv)y + (puw), =0, (1.2)
(pv)e + (puv)s + (pv* +p)y + (prw). =0, (1.3)
(pw); + (puw), + (pvw), + (pw? +p). =0, (1.4)
Ey + [w(E +p)le + [v(E +p)]y + [w(E +p)|: =0 (1.5)
Here E is the total energy per unit volume
E:p(le—l—e), (1.6)

2

where
1 1 1

SVI=5VeV = o(u' + v +w?)
is the specific kinetic energy and e is the specific internal energy. One generally

refers to the full system (1.1)-(1.5) as the Euler equations, although strictly
speaking the Euler equations are just (1.2)—(1.4).

The conservation laws (1.1)—(1.5) can be written more compact by defining a column vector U of
conserved variables and flux vectors F(U), G(U), H(U) in the X, y and z directions, respectively.
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Euler equations

We have now

U, +FU), +G(U),+H(U), =0, (1.7)
with L ) 3
p pu \
pu pu’ + p
U= |gio| . F= PUV :
pw PUW
| B | | u(E +p) |
’ (1.8)
[ v ] [ pw
PUV PUW
G=| pv°+p | ,H= pPVW
pUW pwz +p
| v(E+p) ] (w(E+p) |

The flux vectors F = F(U), G = G(U), H = H(U) are functions of the conserved variable vector U.
Any system of the PDE’s written like eq. 1.7 is called a system of conservation laws.The
differential formulation assumes smooth solutions, that is, partial derivatives are assumed to exist.
There are other ways of expressing conservation laws in which the smoothness assumption is
relaxed to include discontinuous solutions.
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Euler equations

In egs. 1.1-1.5 we have more unknowns than equations. Relation (1.6) defines the total energy E
in terms of the velocity vector V from equations (1.1)—(1.5) and a new variable e, the specific
Internal energy. We need relation defining e in terms of other quantities, like pressure and density,
as a closure condition. If we add more physical effects to the basic equations (1.1)—(1.5), other
variables, e.g. temperature, might enter the equations. Here we are only interested in p—v—T
systems, where we can relate the variables by the thermal equation of state T=T (p, v) .

We could also have p = p(T, v) or v=v(T, p).

For thermally ideal gases we have T=pv/R, with R constant depending on the particular gas. We
consider gases obeying the ideal thermal EOS pV = nRT, where R is the universal gas constant
R=8.134x103 J/kilomole/K and T is measured in K(elvins).

The initial-value problem for the special case of the linear advection equation is given with
PDE: ag+au:; =0, — oL gL e, #30.
(2.32)
IC: wlz:0) = ugle) 5

where a is a constant wave propagation speed. The initial data at time t = 0 is a function of x
alone and is denoted by u_0 (x).



Finite difference ver. Finite volume method 173

Finite difference method: numerical technique for solving

differential equations by approximating derivatives with finite 4 _
differences. The spatial domain (and time domain in time- )
dependent problems) is discretized, or broken into a finite number /-.—
of intervals, and the values of the solution at the end points of the p

intervals are approximated by solving algebraic equations

|::
B
R
|::
oL
lk:h:
|::
S
o
L

containing finite differences and values from nearby points. In a » m ' .
consequence, ordinary differential equations (ODE) or partial IR
differential equations (PDE), which may be nonlinear, are B

converted into a system of linear equations that can be solved by B oo
matrix algebra techniques. X X1 Xp X3 X3 X5 Xg >

Control volume

Finite volume method: the name refers to the small volume J Q i l 0 l_

. . . . . A

surrounding each node point on a mesh. Volume integrals in a L who |
partial differential equation that contain a divergence term are = ¢ G fro@e e 1 Ay
converted to surface integrals, using the divergence theorem. vl [ wl = vl
These terms are then evaluated as fluxes at the surfaces of Vigs Vi, A

. . . . i Vil
each finite volume. Because the flux entering a volume is - ? R . S S, SR I
identical to the flux exiting the neighbor volume, finite . v
volume methods are conservative. Finite volume method is 1T ¢ 1 © 1

easily formulated to allow for unstructured meshes. o S



Godunov’s scheme 174

This is a conservative finite volume method which solves exact or approximate Riemann
problems at each inter-cell boundary. In its basic form (1959), Godunov's method is first
order accurate in both space and time, yet can be used as a base scheme for developing
higher-order methods. U(x) is approximated by U_ijk . This is the piece-wise constant
approximation where the whole cell is assumed to have constant values for each variable in
the vector of conserved quantities.

At the interface between each cell we then have a discontinuity, a left and right state, Ur and
UL, with corresponding left and right fluxes from which we need to produce a single vector of
fluxes. This is what is referred to as the Riemann problem. In one dimension, it consists of
two fluids with different but constant states separated by an imaginary membrane. The
membrane is then removed and the system evolves in time. We are then interested in what the
fluxes are at the location of this membrane at some later time after the system begins to
evolve.



Finite elements methods 175

Finite element method: a large system is subdivided into simpler parts called finite elements.
A mesh is constructed for the object: the numerical domain for the solution, which has a
finite number of points. With a given boundary values, this finally results in a system of
algebraic equations. The method approximates the unknown function over the domain. The
simple equations that model these finite elements are then assembled into a larger system of
equations that models the entire problem. The solution is approximated by minimizing an
associated error function via the calculus of variations.




Riemann problem

176

Riemann problem is a special problem where

PDE:

1C:

U +au, =0.

u(z,0) = ug(x) =

> (2.40)

up, if v <0,
ur if . > 0,

With two constant values u_L (left) and u_R (right), as shown in Fig.2.2.below.

A Ug (X)

ur

L]

i —

x=0

The initial data has a discontinuity at x = 0.
IVP (2.40) is the simplest initial-value
problem. The trivial case would be

foru L=u_R.

Fig. 2.2. Illustration of the initial data for the Riemann problem. At the initial
time the data consists of two constant states separated by a discontinuity at x =0
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Riemann problem

We expect any point on the initial profile to propagate a distance d = at in time t. In particular, we
expect the initial discontinuity at x = O to propagate a distance d = at in time t. The particular
characteristic curve x = at will then separate those characteristic curves to the left, on which the

solution takes on the value u_L, from those curves to the right, on which the solution takes on the
value u_R ; see Fig. 2.3.

A ..
Characteristic Xx-at=0  Tpe solution of the Riemann problem can be
X -at<0 ‘_/ represented in the x—t plane. Through any
point x_0 on the x—axis we can draw a
characteristic. For the constant a, these are
up x-at>0 all parallel to each other. For the solution of
u the Riemann problem the characteristic
R passing through x = 0 is the only one across
. which the solution changes.
0

Fig. 2.3. Illustration of the solution of the Riemann problem in the x—t plane for
the linear advection equation with positive characteristic speed a

The solution of the Riemann problem (2.40) is simply

up, if x —at <0,

u(@t)=ulz—at) =y "~ w>o

(2.41)
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Riemann problem

We had the simplest PDE of hyperbolic type, the linear advection, with constant wave propagation
speed. If we extend the analysis to sets of m hyperbolic PDEs of the form

U, +AU, =0, (2.42)
where the coefficient matrix A is constant, with the assumption of hyperbolicity A has m real
eigenvalues A _i and m linearly independent eigenvectors Kt ,i=1,...,m,

We study the Riemann problem for the hyperbolic, constant coefficient
system (2.42). This is the special IVP

PDEs: U;+ AU, =0, —-co<z<oo,t>0,

U z<0. | (2.54)

Ur x>0

IC: U@ﬁ%ﬂﬂwm_{

/

and is a generalisation of the IVP (2.32). We assume that the system is strictly
hyperbolic and we order the real and distinct eigenvalues as

AM <A <. < Ay (2.55)
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The structure of the solution of the Riemann problem (2.54) in the x—t plane is depicted in Fig. 2.4.

It consists of m waves emanating from the origin, one for each eigenvalue A _i . Each wave i carries
a jump discontinuity in U propagating with speed A _i . Naturally, the solution to the left of the A_1 —

wave is simply the initial data U _L and to the right of the A m —-wave isU R.

The task is to find the solution in the wedge between the A_1 and A_m waves. As the eigenvectors

Ki, ..., KM"are linearly independent, we can expand the data U L , constant left state, and U R,
constant right state, as linear combinations of the set Kt , . .., K™,
At A
A i A
k 2 m-1
I A
Left data U . Right data U R
4 - X

0

Fig. 2.4. Structure of the solution of the Riemann problem for a general m x m
linear hyperbolic system with constant coefficients



Riemann problem

UL=) oK"Y, Urp=)» pK", (2.56)
i=1 i=1
with constant coefficients «;, 3;, for ¢« = 1,...,m. Formally, the solution of

the IVP (2.54) is given by (2.53) in terms of the initial data wgo)(x) for the
characteristic variables and the right eigenvectors K(¥. Note that each of the
expansions in (2.56) is a special case of (2.53). In terms of the characteristic
variables we have m scalar Riemann problems for the PDEs

4 —|— AZE —_ ) (257)
with initial data obtained by comparing (2.56) with (2.53), that is
() Jaitax <0, 9 5
w,  (z) = {ﬁz fr>0 (2.58)
for i =1, ..., m. From the previous results, see equation (2.50), we know that
the solutions of these scalar Riemann problems are given by
(0) a; ifx — N\t <0,
wi(x,t) =w, ' (x — \jt) = . 2.5
wil®, 1) = wi (@ = Ait) {@ if 2 — A\t > 0. (2.59)

For a given point (x,t) there is an eigenvalue A\; such that A\; < T < A1y,

that is x — \;t > 0 V2 such that ¢ < I. We can thus write the final solution to
the Riemann problem (2.54) in terms of the original variables as

m I
Uz,t) = > oKD+ ) K, (2.60)
i=I1+1 =1

where the integer I = I(x,t) is the maximum value of the sub—index i for
which x — \;t > 0.

180

The Riemann problem can be
solved exactly in some cases. A
common test problem for
computational fluid codes is the
Sod shock tube problem, Sod
(1978), a specific case of the
Riemann problem which has a
semi-analytical solution. You
started PLUTO learning with
this problem. However, such
methods are usually time
consuming, and if they have to
be computed at every cell
interface for every time step, it
becomes impractical. It is much
easier, and usually nearly as
effective to use an approximate
solution.
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Courant-Friedrichs-Levy condition: Richard Courant, Kurt Friedrichs, and Hans Lewy
described it in their 1928 paper.

If a wave is moving across a discrete spatial grid and we want to compute its amplitude at
discrete time steps of equal duration, this duration must be less than the time for the wave to
travel to neighbor grid points. If we decrease the grid point separation, the upper limit for the

time step also decreases. ow y ow
ot oxr
* Inthe 1D case, for a quantity w The CFL condition then the dimensionless number C is the
Courant number, u is the velocity u At
the time step and length intervals C= Az < Clnax

are At and AX. The value of Cmax changes with the method discretization-it also depends if
the method is explicit or implicit. If explicit (time-marching) solver is used then typically Cmax
= 1. Implicit (matrix) solvers are usually less sensitive to numerical instability and so larger
values of Cmax may be tolerated.

« |In 2D: uy At uy At

C = + o 3.
Ax Ay —

e InnD:

general CFL condition for the n-dimensional case

C = At (i :ﬁ) £ G

i=1




Runge-Kutta 2" and higher orders 182

Euler's method and the improved Euler's method are the simplest examples of a whole family
of numerical methods to approximate the solutions of differential equations called Runge-
Kutta methods. A numerical technique (year ~1900) used to solve an ordinary differential
equation of the form dy/dx=1(x,y), y(Xo0)=yo

Euler’s method is the first member of RK-solvers family: yi+1=yi+{(xi,yi)h with y(xo0)=yo it is
h=xi+1—xi, from the Taylor series, dy/dx=f(x,y), we have

yi+1=yi + f(xi,yi)(xi+1—xi) + 1/2!f'(x1,yi)(Xi+1—xi)? + 1/3"(x1,yi)(Xi+1—Xi)3 +...

so that Euler’s method can be considered a Runge-Kutta 1* order method.
The second order would, obviously, include one more term of the Taylor series:
yi+1=yi+f(Xi,yi)h+1/2!f'(xi,yi)h?

Slope at right endpoint 1100}
_1 ; :___ﬁr-"lj .1||.-.|||le,}, 1000 | Midpoint
X
e “Ralston

(X7, v(x7)) o o0

1 . g 800 [
Secant line £

. 700 [

Analytical
. 600 [
Slope at left endpoint Euler/
(‘1' 0, VX ﬂ)) v r —. ﬁ No Vixg!! %00, 100 200 300 400 500

Time, t (sec)

Comparison of the solutions for a particular problem.
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The higher orders are approximating and simplifying
the steps, where possible.

RK3: To approximate the solution of dy/dx=1(x,y), y(X0)=yo

compute xi=Xo+h, ki=f(xo,yo0), ke=f(x0+h,yo+hk1), ks=f[x0+h/2, yo+h(ki+k2)/4]
y1=y0+h(ki+k2+4ks)/6, then y(x1)~y:

It uses the improved Euler method to find an approximate midpoint of the secant line and
then takes a weighted average of the slopes at the left and right endpoints and the midpoint. If
f(x,y) is a function of x alone, f(x), solving the differential equation dy/dx=f(x) is just
evaluating the integral [f(x)dx and then explored what coefficients could be set to zero. In this
case, the third order Runge-Kutta method is the same as Simpson's rule for numerical
approximation of integral.



Runge-Kutta 4™ order, RK4 184

The 4™ order, RK4 is most efficient and most used one for the higher orders. It is accurate up
to seven digits after the decimal point in some cases. In the worst case, it is accurate up to two
digits after the decimal point.

y' = f(t,y)

y(to) = a

Define h to be the time step size and #; = {, + ¢h. Then the following formula
H"“ —

'Z"I = hi('fa '”T'r')

: h JIq'[
;l"J = } f; e -!,,l' e
> 1] ( + 5 w; + 2)

h k
ks = hf (t,- I3 5’ w; + 52)

;1..1 - hf(fi + h, R ;‘73)

1
Wiyl = Wi + g(ﬂ‘-l + 2ko + 2k3 + ky)

computes an approximate solution, that is w; ~ y(t;).
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Magnetic Kluzniak-Kita disk solution (MKK)

inner disk

middle disk outer|disk

(.1AU 1AU 10AU

Fig. 1. Illustration of the reach of the inner, middle and outer
disk regions in the case of Young Stellar Objects. In the inner-
most disk region the disk is in the ideal MHD regime. Further
away from the star, in the middle disk region, the Ohmic resis-
tivity adds to the viscous dissipation. In the outer disk, which
we do not analyze here, other resistive terms prevail in the in-
duction equation. Radial extension of the physical domain in our

simulations is indicated with the horizontal thick black solid line.

We work with Ohmic resistivity; in the YSOs
disk this is valid only in the inner par of the
disk.

o
— + V. =(
ot (pv)
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Ta, V- P — |- — - =
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oE :
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ot 8 4

+V- meXB:\/flJr—n-t :Pg'”_,._ﬁ_,

heating terms cooling

oB
E+V><(B><u+nm,])=0

We search for the quasi-stationary state solutions, assuming that all the heating is radiated away from
the disk. This is why in the “Atlas”and following papers, done with PLUTO v.4.1 the dissipative
viscous and resistive terms are not present in the energy equation, nor are the cooling terms. We still
solve the equations in the non-ideal MHD regime, because of the viscous terms in the momentum
equation, and the Ohmic resistive term in the induction equation. You will be solving viscous and
resistive MHD equations with all the terms and with the cooling source term.



Example of a solution with 500 Gauss
t=70.0P,
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5 10 15 20
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Star-disk magnetospheric interaction
(SDMI) simulations

t -_ 80. OP*
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100*—
Computational box and a zoom closer to the star after 80

stellar rotations, to visualize the accretion column and the
magnetic field lines (white solid lines), connected to the disk
beyond the corotation radius Rcor=2.92 Rs. In color is
shown the density, and vectors show velocity, with the
different normalization in the disk, column and stellar wind.
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Time dependence of the mass and
angular momentum fluxes in the various
components in our simulations with
marked the time interval in which the
average for the quasi-stationarity is
computed.



Sim. b8 1="75P.

Types of solutions in “Atlas”

Sim. di2 t= 73l

* 4 different cases if we consider the position of
Rcor in the case with conical outflow.

* In general, faster stellar rotation prevents the
accretion column formation.

* In the bottom panels resistivity dm=0.1 and
(2s=0.1, a conical outflow is formed.




Star-disk simulations with magnetic field

t= 0. OP*

—107!

1072

10-3

log1o(p)

10~

1073

* We add the magnetic field to the HD solution

« Stellar surface is a rotating boundary condition
at the origin of the spherical computational
domain. We assume the star to be a magnetized
rotator. The initially non-rotating corona is in a
hydrostatic balance.




Numerical methods in PLUTO for star-disk interaction

I already showed, and will show again where is definition of each of the setup entries in
the code, here is an example of what you can usually read in the description of a setup:

-Simulations were performed using the second-order piecewise linear reconstruction.

-Van Leer limiter, which is more diffusive and enhances stability, is used in density and
magnetic field and a minmod (monotonized central differences) limiter in pressure and velocity.

-An approximate Roe solver (hlld in the pluto options) was used, with a modification in the
flag_shock subroutine: flags were set to switch to more diffusive hll solver when the internal
energy was lower than 1% of the total energy, instead of switching in the presence of shocks.

-The second-order time-stepping (RK2) was employed.
-V - B = 0 was maintained by the constrained transport method.

-The magnetic field was evolved with the split-field option, so that only changes from the initial
stellar magnetic field were evolved in time. This means that in the final results, one has to add
magnetic dipole (or other initial field) to the solution from the code.

-The power-law cooling is introduced to account for the disk dissipative heating. Physically it is
good enough to represent bremsstrahlung. There are other cooling functions in PLUTO, one can
also import a table of values, not necessarily a function.



Setup of magnetic runs-changes in pluto.ini and definitions.h

pluto.ini (Modified)(ini) Row 27 Col 19 1:29 Ctrl-K H for help

Solver

[Boundary]

X1-beg
X1-end
X2-beg
X2-end
X3-beg
X3-end

[Static Grid Output]

uservar
dbl

flt

vtk

tab
dbl.h5
ppm

png

log
analysis

[Chombo HDF5 output]

Checkpoint_interval
Plot_interval

[Parameters]

ALPHAM

MU

I A definitions.h (c) Row 1 Col 1 1:30 Ctrl-K H for help

PHYSICS MHD
DIMENSIONS
COMPONENTS
GEOMETRY SPHERICAL
BODY_FORCE VECTOR
FORCED_TURB NO
COOLING NO
RECONSTRUCTION LINEAR
TIME_STEPPING RK2
DIMENSIONAL_SPLITTING NO
NTRACER

USER_DEF_PARAMETERS

EOS IDEAL
ENTROPY_SWITCH NO
DIVE_CONTROL CONSTRAINED_TRANSPORT
BACKGROUND_FIELD YES
AMBIPOLAR_DIFFUSION NO
RESISTIVITY NO
HALL_MHD NO
THERMAL_CONDUCTION NO
VISCOSITY EXPLICIT
ROTATING_FRAME NO
ALPHAM

MU

TEMPF

RHOC

RD

EPS



Setup of magnetic dipole and multipoles in init.c

I A init.c (c) void UserDefBoundary (const Data *d, RBox *box, int side, Row 146 Col 1 4:22 Ctrl-K H for helg

void BackgroundField (double x1, double x2, double x3, double *B@)

*g_inputParam[MU]*cos(x2)/(x1*x1*x1);
g_inputParam[MU]*sin(x2)/(x1*x1*x1);

*g_inputParam[MU]*cos(x2)/(x1*x1*x1);
g_inputParam[MU]*sin(x2)/(x1*x1*x1);




Visualization of Bp lines with Paraview
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Analysis with paraview
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Python script for visualization
mc_veloclect.py , python ver.3.5 and newer.

Density in logarithmic color grading.

Vectors of velocity. Remember to show normalization, I normalize to Keplerian velocity
at the stellar equator (R=1).

Magnetic field lines-plots with A¢ isocontours-they are parallel to Bp field lines.
Magnetic field lines could be plotted also with Bp streamlines, but I did not do it here.

t= 0. IP*

~1.0
;r.s
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Summary of the Lect. 5

Riemann problem, Finite difference, Godunov’s method, volume and elements
methods, CFL condition, RK2, RK3,; ...

Setup and running of 2.5D MHD KK disc in PLUTO

Analysis of the results from 2.5D magnetic runs with
Paraview

Python script for visualization

M. Cemeljié, Numerical simulations of accretion discs, Winter Semester 2024/2025



Outline, Lect.6 : Continuation of numerics essentials, 197

astrophysical jets

Approximate Riemann solvers: HLL, HLLC, HLLD
Reconstruction methods, MHD numerics

Astrophysical jets, simulations of jets from disc as a b.c. and with the disc
evolution included

Streamlines in Paraview in 2D and 3D

M. Cemeljié, Numerical simulations of accretion discs, Winter Semester 2024/2025



Riemann problem

198

We had the figure with waves and eigenvalues, which is used in publications to illustrate the

Riemann problem and approximate Riemann solvers:

A, M2

[eft data U o

g,

1

Right data U

0

= X

Fig. 2.4. Structure of the solution of the Riemann problem for a general m X m
linear hyperbolic system with constant coefficients



Approximate Riemann solvers 199
FROM PHD THESIS OF D. ABARCA, CAMK, (2021). One strategy for coming up with approximate
Riemann solvers is to approximate the solution by the superposition of a number of waves moving
left and right after the system begins to evolve in time. A two-wave solution which uses the
maximum and minimum velocity signals was proposed by Harten et al. (1983) hereby referred to
as the HLL Riemann solver. If the maximum and minimum signal velocities (or maximum left and
right moving signal speeds), Sr and St , respectively, can be computed (there are a number of
ways to do this), then the HLL Riemann solver gives, for left and right fluxes,

4

Fr 0 < St
SpF; — S F S;Sp(Up — U
Frpp = < R LtFr 4+ S.Sr(Ug L) S, <0< Sh
Sr—SL
Fr Sr <0

If the minimum signal velocity, St is positive, this means all waves should be moving to the right
and so one can use the flux corresponding to the left side of the interface. If the maximum signal
velocity is negative, then the opposite is true and all waves move to the left, so we take the flux
from the right. The intermediate case takes a combination of fluxes weighted by the wavespeeds
with the addition of a term that computes the overlap of the left and right conserved guantities.

HLL is used extensively due to its simplicity while still producing meaningful results, but many
other Riemann solvers exist. There is a third type of wave in ordinary hydrodynamics which HLL
does not consider: the contact discontinuity corresponding to a jump in density without a
corresponding jump in pressure. HLL is unable to provide satisfactory solutions when the contact
discontinuity becomes important and a three wave Riemann solver was proposed by Toro (2009)
(HLLC) which includes it. In MHD and GRMHD one also has to consider Alfvén and magnetosonic
waves. These wave speeds can be used in the HLL or HLLC Riemann solvers but more accuracy
IS achieved by considering even more intermediate states as in the HLLD Riemann solver (Miyoshi
and Kusano 2005) which assumes a five wave solution at the interface.
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Reconstruction methods

Godunov method is zeroth order accurate in space. We can do better by moving from a piecewise
constant approximation for a flux U to a piece-wise linear approximation. It is difficult to compute
the fluxes as function of the conserved quantities; easier is to use a different set of variables, the
primitives, P. They are usually naturally well-defined quantities such as density, velocity, and
internal energy, with straightforward, analytical expressions for F(P) and U(P). But we must also
perform the inversion from conserved to primitive variables, P(U). In ordinary HD it is easy, but with
additional physics, it gets very complicated. In GRMHD is it necessary to perform the inversion
Numerically, e.g. with a Newton-Rhapson method.

If F(P), U(P), and P(U) can be computed, we can reconstruct the primitive variables at the cell
interfaces. When computing slopes APi/AX, not to introduce new maxima and minima into the
approximate solution of U (and, consequently, P), which would cause the instability of the
numerical scheme, with spurious oscillations in the solution which would grow in time, we need
to use a total variation diminishing (TVD) scheme. Usually it is done with a slope limiter which
adjusts the computed slopes to prevent the formation of new maxima and minima.

* One such scheme is the generalized minmod van Leer (1979) slope limiter, which produces a
modified slope.

« Another scheme, the minmod slope limiter, is actually a one-parameter mix between the more
diffusive van Leer scheme (van Leer 1974) and the more accurate (but less stable) monotized
central scheme (van Leer 1977).

Slope-limiters have the additional function of preserving large discontinuities in the fluid across

cell interfaces. Numerical schemes which include these limiters are refereed to as shock
capturing schemes.
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MHD numerics

*With Maxwell’'s equations we often have to depart from the conservation laws which are holding

for fluids. The best example is the V - B = 0 condition, which imposes additional constraint on B.

*To solve this issue and prevent increase in non-physical component of the magnetic field, various
methods were invented.

*The simplest way was to simply remove the unphysical component by using the Helmholtz
theorem, saying that any vector field B’ can be written as a sum of the curl and gradient of two

other fields: B’= V X A+V . If we take the gradient of this expression, we obtain the Poisson
equation V - B’ = V2¢ , which we can solve for ¢, giving us a divergence-free field

B=B’-V$=V X A. The solution is neat, but we need to solve the Poisson equation often, which
comes with a large computational cost. There are many methods for approximating this, but the
Idea is similar-this are the “divergence cleaning” methods.

«Another, more precise, or actually exact method, is the Constrained Transport (CT) method,
(Evans&Hawley, 1988) which keeps the V - B constant...but you have to start withthe V - B =0
field-which is not always true or easy. It involves computing the induced electric field € = v x B at
four locations for

the each component of B around every point and evolving B with a finite difference in €. Any
round-off errors are canceled out, so we stay with divergence-less B.

For this computation a staggered grid was originally used, with B computed in the center of the
cell faces, and the four values of € in the cell corners. So one needs two grids.

Later in Toth (2000) flux-interpolated constrained transport (flux-CT) method, the values of B and
v are computed at cell centers and then interpolated to the cell faces, where the field is evolved
and then interpolated back to the cell centers.



Jet launching and propagation

We are still searching for the way to
explain not only how the stars are
slowed down, but also to the tightly
related mechanism: how astrophysical
jets are launched and collimated.

For the jet propagation and
collimation, we do not need the
launching part, we just assume they
are launched, input some surface as a
b.c. and follow the flow. But we have
to be careful about some characteristic
surfaces in such flows when settting
them. This is a good example.
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Figure 1. Initial conditions in our simulations, with marked inner-Z bound-
ary regions of mterest for the setup of boundary conditions. To avoid
reflection from the outer-R boundary, we actually set our computational
box three times larger in R-direction, and then analyse results only in the
R x Z = (128 x 256) gnd cells = ([0, 50] x [6, 106])Ry portion of the
domain. If not stated otherwise, all the results in this paper are shown at such
resolution. In all the plots, the density 1s shown in a logarithmic colour scale,
and the three critical surfaces are plotted in dashed, solid and dotted lines,
for fastmagnetosonic, Alfvén and slow magnetosonic waves, respectively.
Labels A, B, C and D mark portions of the inner-Z boundary where the
flow is superfast magnetosonic, super-Alfvénic, supersonic and subsonic,
respectively.



Jet propagation

Results strongly depend on resistivity.
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Figure 3. Illustration of the effect of resisuvity on the density in the outflow. Top panels: in the left-hand panel, the quasi-stationary state solutions in the

ideal-MHD case are shown, and in the middle and right-hand panels, solutions with large and very large resistivity, n = 10 and 100 are shown. Solutions with



Jet launching
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Paraview streamlines

In 2D you use a line to seed the streamlines, in 3D, better is to use a point source and a

sphere around it-you can move the sphere around and choose the set of streamlines which
you want to show.
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Summary of the Lect. 6

Approximate Riemann solvers: HLL, HLLC, HLLD

Reconstruction methods, MHD numerics

Astrophysical jets, simulations of jets from disc as a b.c. and with the
disc evolution included.

Streamlines in Paraview in 2D and 3D

M. Cemeljié, Numerical simulations of accretion discs, Winter Semester 2024/2025
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Outline, Lect.7 : PLUTO modules, post-processing of the results

Different modules in PLUTO, cooling versus radiative transfer
Hot discs

Post-processing of the results, DUSTER

Python script for analysis

M. Cemeljié, Numerical simulations of accretion discs, Winter Semester 2024/2025



PLUTO physics modules, equations
6.1 The HD Module

The HD module may be used to solve the Euler or the Navier-Stokes equations of classical fluid dynam-
ics. The relevant source files and definitions for this module can be found in the Src/HD directory.
With the HD module, PLUTO evolves in time following system of conservation laws:

p pv g 0
0
5 m + V. muv + pl = | —pVP® +pg (6.1)
Ey + p® (Bt +p+ pP)v m-g

where p is the mass density, m = pv is the momentum density, v is the velocity, p is the thermal pressure
and FE; is the total energy density:
2
m
By =pe+ —. 6.2
+ = pe+ 2 (6.2)
An equation of state provides the closure pe = pe(p, p).
The source term on the right includes contributions from body forces and is written in terms of the

(time-independent) gravitational potential ® and and the acceleration vector g (45.4).



PLUTO physics modules, equations
6.2 The MHD Module

The MHD module is suitable for the solution of ideal or resistive (non-relativistic) magnetohydrody-
namical equations. Source and definition files are located inside the Src/MHD directory.
With the MHD module, PLUTO solves the following system of conservation laws:

dp

V- = 0
5 + (pv)
B>\1"

om + V'[mUBBJrI(er)] = —pVe+tpg
ot 2
o (6.4)
o + V x(cE) =0

2
a(EtaJ;P‘I’) + V.[(%%-ﬂe—l-p-l-ﬂ@)v—&—cExB] = m-g

where p is the mass density, m = pv is the momentum density, v is the velocity, p is the gas (thermal)
pressure, B is the magnetic fiel and E; is the total energy density:
m? B?
E =pe+ — + — . .

t=pet ot (6.5)
where an additional equation of state provides the closure pe = pe(p, p) (see Chapter. The source term
on the right includes contributions from body forces and is written in terms of the (time-independent)
gravitational potential ® and and the acceleration vector g (see {5.4).

In the third of Eq. (6.4), E is the electric field defined by the expression

J
cE=-vxB+1.J+ xB (chva) (6.6)
ne

C

where the first term is the convective term, the second term is the resistive term (7 denotes the resistivity
tensor. see 48.2) while the third term is the Hall term (48.1). Note that the speed of licht ¢ never enters



PLUTO physics modules, equations

6.3 The RHD Module

The RHD module implements the equations of special relativistic fluid dynamics in 1, 2 or 3 dimensions.
Velocities are always assumed to be expressed in units of the speed of light. The special relativistic
module comes with 2 different equations of state, and it also works in curvilinear coordinates. Gravity
in Newtonian approximation can also be incorporated. The relevant source files and definitions for this
module can be found in the Src/RHD directory.

The special relativistic module evolves the conservative set U of state variables

T
U = (D‘ miy, Mz, My, Et)

where D is the laboratory density, m.1 .2 .3 are the momentum components, E; is the total energy
(including contribution from the rest mass). The evolutionary conservative equations are

D Dv \' 0
% m | +V-| mov+pl = I,
Et m U'fg

where v is the velocity, p is the thermal pressure. Primitive variables V' always include the rest-mass
density p, three-velocity v = (v;1, V42, v;3) and pressure p. With PLUTO 4 4, the acceleration term f g 18
treated consistentlwith the formalism of [Tau48)|. If a is the acceleration vector,

o= p [Yv(v-a)+al. (6.12)



PLUTO physics modules, equations
6.4 The RMHD Module

The RMHD module implements the equations of (ideal) special relativistic magnetohydrodynamics in
1,2 or 3 dimensions. Velocities are always assumed to be expressed in units of the speed of light. Source
and definition files are located inside the Src/RMHD directory.

The RMHD module solves the following system of conservation laws:

[ D)

ot E,

\ B

+V-

(

\

Do
?ﬁt'}f?'v'v — bb + Ip,
m

vB — Bv

)

/

C

\

(6.13)

where D is the laboratory density, m is the momentum density, E is the total energy (including contri-

bution from the rest mass) while f is an acceleration term (see|6.

6.3).
Primitive variables are similar to the RHD module but they:ajso contain the magnetic field, V' =

(p,v,p, B). The relation between V and U is

D = P

m = wy?v—b’b

Et _ ,U},t,},Q . bl’JbU — D

s

L
b =

Pt = P
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Y-
B/~ +~(v-B)v
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BQ/’}’Q + (’U . B)?
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PLUTO physics modules, equations

A note on public vs. non-public modules.

Besides the official code release, a few modules have not yet been made available with the standard
public version, as they are still under active development or testing stage. In other circumstances, a
private module may have been implemented under specific collaboration policies, which do not grant
its public distribution. These non-offical modules include:

e Lagrangian Particle Module
(Developers: B. Vaidya [bvaidya@iiti.ac.in], D. Mukherjee [dipanjan@iucaa.in]);

e Dust Module
(Developers: A. Mignone [mignone@to.infn.it], M. Flock [flock@mpia.de]);

e Relativistic Resistive MHD
(Developers: A. Mignone [mignone@to.infn.it], G. Mattia [mattia@mpia.de]);

Distribution, private sharing and usage of these modules is permitted only in the form of a collabora-
tion between our partner institutions network, requiring co-authorship from at least one of the module

developers.
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6.5 The Resistive RMHD (ResRMHD) Module

Note: This module is not part of the public code release, see “Terms & Conditions of Use” at the
beginning of this guide

The ResRMHD module deals with the non-ideal relativistic MHD equations using the approaches
discussed in [MMBD19]. Source and definition files are located inside the Src/ResRMHD directory.
The set of resistive relativistic equations arising from the time and space split of the covariant are, in

vectorial form,
oD

—— - (Dv) =0,

5 + V- (Dv) =0,

om

ﬁJrV-(wuu%—pH—T):U,

o0&

- -m =0, 6.14
8t+v m =0, (6.14)
0B

— E =0,

8t+V>< 0,

OE

W—VXB——J,

where | is the identity matrix and the fluid conserved variables are the density D = pvy as measured in
the laboratory frame, the total momentum density m = wyu + E x B, and the total energy density

E = ’UJ’}’Q —p+ Pem. (6.15)

In the expressions above, w = € + p is the specific enthalpy and Pgn = (E* 4+ B?)/2 denotes the EM

energy density. Finally, __ __
T=—-EE- BB+ i(E*+ B?)l (6.16)
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7. Equation of State

In the current implementation, PLUTO describes a thermally ideal gas obeying the thermal Equation of
State (EOS)

My [

where p is the pressure, n is the total particle number density, kg is the Boltzmann constant, 7" is the tem-
perature, p is the density, m,, is the atomic mass unit and p is the mean molecular weight. The thermal
EOS describes the thermodynamic state of a plasma in terms of its pressure p, density p, temperature
T and chemical composition p. Eq. is written in CGS physical units. Using code units for p and p
while leaving temperature in Kelvin, the thermal EOS is conveniently re-expressed as

T "L 2

-2 = =Lk (where k= Mt -”U) (7.2)

K p kp

where K is the KELVIN macro which depends explictly on the value of UNIT_VELOCITY.

p
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8. Nonideal Effects

In this chapter we give an overview of the code capabilities for treating dissipative (or diffusion) terms
which, at present, include

e Hall MHD (MHD), described in 8.1

e Resistivity (MHD), described in §8.2

e Thermal conduction (HD, MHD), described in §8.3

e Viscosity (HD, MHD), described in §8.4

Each modules can be individually turned on from the physics sub-menus accessible via the Python
script.



9. Optically Thin Cooling

PLUTO can include time-dependent optically thin radiative losses in a fractional step formalism in
which the hydrodynamical evolution and the source step are solved separately using operator splitting.
This preserves 2" 4 order accuracy in time if both the advection and source steps are at least 2 order
accurate. During the cooling source step, specifically, PLUTO solves the internal energy and chemical
reaction network equations

;*)[I.off) = —A(nT.X)

, (9.1)
X

= = sx.7)

where A is a cooling (or heating) term, X is an array of fractional abundances (typically ion or molecule
number fractions) and S is a reaction source term. The right-hand side of Equations is implemented
in the function Sre/Cooling/<COOLING>/radiat.c of each corresponding cooling module, except for the
POWER_LAW cooling where integration is performed analytically. The user can select one among several
different cooling module by setting the COOLING flag during the python script:

* POWER_LAW: power-law cooling, see

* TABULATED: only the equation for the internal energy with a tabulated cooling function A(T) is
provided. No chemical network, see

* SNEg: cooling function for atomic hydrogen, X = {Xy;}, including ionization, recombination
and collisionally excited emission lines, =

* H2_COOL: cooling function for atomic and molecular and atomic hydrogen, X = { X g0, Xgr. Xgir},
including ionization, recombination and collisionally excited emission lines, §9.4]

* MINEqg: cooling function for atomic and molecular and atomic hydrogen treating the time-depender
ionization state of the plasma, X = {Xy. Xp., Xeo, Xy, Xye, Xo. Xg}, see

Cooling modules are implemented inside the Src/Cooling directory and require three dimensional
constants to be correctly initialized. Dimensional constants are essential to scale data values to cgs

physical units as explained in

Other variables are introduced to control crucial parameters such as the maximum allowed cooling
rate in each time step, or the cutoff temperature:

* gmaxCoolingRate: limit the time step so that the maximum fractional thermal losses cannot
exceed g_maxCoolingRate. In general 0 <g_maxCoolingRate< 1; the defaultis 0.1.

* gminCoolingTemp: sets the cut-off temperature below which cooling is artificially set to 0.



9.1 Power-Law Cooling

Power-law cooling is the most simple form of cooling, where the loss term in the internal energy equa-
tion becomes:
A= a,.p°T" (9.2)

There are no new species when this form of cooling is selected. When an ideal equation of state is used,
the source step becomes
d ; e
d—? = —(T — 1)ap* *p* (.Elu.)
and since density is not affected during this step, integration is done analytically:

ny o v -
b (") — AC(1 — n)} for a#£1l ©93)
p"exp (—CAt) for =1
where €' = (I' — 1)a, p>~*(Ku)* is a constant.
The default power law accounts for bremsstrahlung cooling by solving

dﬁcp,\a Qpy 2 = d;() 2 f{I_J
—F = (T-1 —p=. v/ T (R — = = 9.4
(itc—#‘_\i E’ )|U-2 ?n'ir p(,H.ﬁ E’ \') = fﬂ Io MII'I p ( )

with p, t and p given in code units and
I'—1 poLo
(kgpump)3'2 o3
where pg, vy and Ly are the reference density, velocity and length defined in and ay, = 2 10727

in expressed in c.g.s. units. The implementation of this cooling step, with a = 1/2, can be found under
Src/Cooling/Power_Law/cooling.c.

(_,‘ = dpy



9.2 Tabulated Cooling

The tabulated cooling module provides a way to solve the internal energy equation

I
[T,

A=n’A(T), with n= (9.5)

when the cooling /heating function A(7) is not known analytically but rather is available as a table

sampled at discrete (not necessarily equidistant) points, i.e., A; = A(Tj). In order to use this module,
the user must provide a two-column ascii files in the working directory named cooltable.dat of the form

a

T{9) Lambda {9)

with the temperature expressed in Kelvin and the cooling/heating function Ain ergs-cm’/s. An
example of such fil can be found in Src/Cooling/Tab/cooltable.dat. As usual, the dimensionalization is
done automatically by the cooling module, once UNIT_DENSITY, UNIT_LENGTH and UNIT_VELOCITY
have been defined in Init ().
Alternatively, the TABULATED cooling module can be used to provide a user-defined cooling func-
tion,
A=AV), (9.6)

where V is a vector primitive variables. The explicit dependence of A can be given by i) copying Src/-
Cooling/Tab/radiat.c into your local working directory and ii) make the appropriate changes.



10.3 The RADIATION Module

The RADIATION module couples the conservation laws of relativistic/nonrelativistic HD/MHD to a
system of frequency- and angle-averaged radiation transport equations computing the evolution of the
radiation energy density, E., and the three components of the radiation flux, F,. We normalize the
latter by ¢ insuch a way that all radiation fields are measured in energy density units. Assumptions and
implementation details are summarized in (relativistic version) and [MEFMZ21] (nonrelativistic
version).

In the nonrelativistic modules (HD /MHD), ignoring extra source terms (e.g., viscosity), the resulting
system of equations takes the form

p .
B ooV () = 0
T
3 B
am b V.|mv-BEB+||{p+ — . PVD + pg + G
ot 2
B ;
= bV x (cE) S
il 1 (10.6)
A Ey 4 pd) e
”:t,% v [(FU e A j’.l'l’) t + eE XB] = g el -V Fiy
i 2
14k,
bl - U.F, = -6t
o it
1aF,
—_ A [ —
T PVR @

(see Eq. ], whilein the relativistic mod ules (RHD/EMHD), the resulting system is

T

I e L]

m wetee — bb A g (e
.(I—j E; e m _ GV -V P, (107)
i B v~ Be 0

E, F. G

F. P, (]

isee Eq, ] A all cases, the components of the radiation pressure tensor, I, are defined as a function
of (E., F.) via the M1 closure by [LevB4] as
1 3¢ 347

_ £ -1
pii — }:,,.(T"‘&u | T“‘“J) . E= AT (10.8)

wheren = F_/|F .|, [ = |F.|/£., and 47 is the Kronecker delta. The radiation-matter interaction terms
(. @) are defined by boosting into the Eulerian frame their comoving values, given by
l:f:"u- G camavr = P [“-I:'E‘:I' "111‘1-1}- (4 ‘T}FI'] - (1009

Landiile oy

In this equation, & and o are the frequency-averaged absorption and scattering coefficients, respectively,
ap = 4ogp/v is the radiation constant, and 1"is the fluid's temperature.

The reduced speed of light, ¢, is introduced in the nonrelativistic equations to reduce the overhead
of the explicit integration of radiation transport terms. Additional speedup is achieved by splitting the
integration of radiation and MHD fields, applying substepping to integrate the radiation subsystem.
The computational cost can be minimized by the user by setting ¢/c to the smallest value that does not
alter the resulting dynamics (see [MEFMZT]).

Heating by external (e.g., stellar) sources of irradiation not included in the (£ F) radiation field
can be added as a user-defined source term depending on an extemal irradiation flux, Fy,, (see .



10.3.1 Using the module

The RADIATION module can be switched on by setting the RADIATION switch to ¥YES in the HD, MHD,
RHD, or RMHD sub-menus. The relativistic version is compatible with AMR. The nonrelativistic version
is compatible with the ROTAT ING_FRAME option and usual nonideal options suchas vIsCosITY, which
are applied during the HD/MHD step.

The radiation fields are initialized in Init () or InitDomain () using the indices ENR, FR1, FRZ,
and FR3 (see Table@k. Although these indices can be used in any coordinate system, an alternative
set can be used in curvilinear coordinates to avoid confusion (see columns 2-4 in Table|10.1). Boundary
conditions for (E,., F',) can be defined either in plute.ini, in which case they coincide with those assigned
to (p, v), or in UserDefBoundary () if theboundary is setas userder.

Three possible Riemann solvers can be selected for the explicit integration of radiation fluxes. The
solver for the radiation subsystem is defined independently from the HD/MHD solver by setting the
RadSclver tag in the [Solver] block of pluto.ini, as described in §4.4] All reconstruction methods avail-
able in PLUTO can be used. Additional integration options can be found in Tablegl

Index  Cylindrical Polar Spherical Quantity

ENR - - - radiation energy density
FR1 iFRR iFRR iFRR o1-radiation flux
FRZ iFRZ iFRPHI iFRTH ro-radiation fux
FR3 iFRPHI iFRZ iFRPHI ry-radiation fux

Table 10.1: Additional array indices used for labeling primitive variables in the RADIATION module,

External irradiation can be switched on by defining IRRADIATION as ¥ES in definitions.h. The diver-
gence of the irradiation flux, ¥V - Fy,,, must then be computed in a local file irradiation.c, stored in both
primitive and conserved fields using the index £IR. A template for this file is provided in Src/Radia-
tion/irradiation.c (see also the Disk-Planet test in Test_Problems/Radiation'Nonrelativistic/HD_Disk_Planet/).
The term V- Fy,, is only computed at startup if IRRADIATION_UPDATE is defined as MO in definitions.h;
otherwise, it is computed at each hydro step by default.
10.3.1.1 Constants and units

The RADIATION module depends on the following constants, which can be defined either in Init ()
or InitDomain () :

* gradiationCeonst (double, default: 1): the radiation constant, a g = 4ogg /e,

* g_idealGasConst (double, default: 1): the ideal gas constant, ¢, determining the gas tempera-
ture in code unitsas T = c;p/p.

In the nonrelativistic version, the following constants must also be specified:
* g_radC (double, default: 1): the speed of light, c.
* g_reducedC (double, default: 1): the reduced speed of light, ¢.

If constant opacities are used (see §10.3.1.2), they must be defined as follows:
* g_absorptionCoeff (double, default: 0): the absorption opacity, «.

* gscatteringCoeff (double, default: 0): the scattering opacity, o.



10.3.1.2 Opacities

The opacity coefficients x and o in Eq. (10.9) can be defined either as constants (see §10.3.1.1) or as user-
defined functions of the primitive fields. The latter option is selected by defining RADTATION_VAR_OPACITIES
as YES in definitions.h and defining in init.c a function UserDefOpacities () of the form

voild UserDefOpacities (double *v, double +abs, double xscat) ,

where *v is a pointer to a vector of primitive variables, while rabs and *scat are pointers used to store
the resulting absorption and scattering coefficients. As an example, Kramers’ opacity law x o« p T2
with & = () can be defined as follows:

#if RADIATION_VAR_OPACITIES
vold UserDefOpacities (double +v, double xabs, double +scat)
{

double T ;

T = GetTemperature (v[RHO],w[PRS]) ;

+*scat = 0.0 ;

*abs = v [RHO] * pow(T,-3.5) ;
}
#endif

N

In this example, the gas temperature is computed as T = ¢y p/p by means of the built-in function
GetTemperature ():

vold GetTemperature(double rho, double prs)

Another built-in function, particularly useful to define initial conditions in local thermal equilibrium, is
Blackbody ():

void Blackbody(double temperature) ,

which returns the value of ap T taking as input the value of 7'.

Note: To achieve good accuracy in both the optically thick and optically thin limits, the terms
between brackets in in Equation are commonly defined as [H. p(E, —arpT?), x RF?.], where
rp is the Planck-averaged absorption opacity and yr is the Rosseland-averaged total (absorp-
tion+scattering) opacity. To do this, « must be defined as xp, and & must be defined as xr — xp.



Hot discs

The simulations up to now were with cold thin discs. This is physically correct for proto-planetary discs
around YSOs, but if we rescale the results to the WD, NS or BH case, the disc is hot. With this year

interns during the Summer program in CAMK, I started preparing the seup for hot discs. The only
change is actually to change the polytropic index in PLUTO setup: by default, it is Y=5/3, which is for

adlabatlc pI‘OCESSQS. FOF I A init.c (Modified)(c) void Init (double *v, double x1, double x2, double x3)

isothermal it would be ouble coeff, eps2,

. double br,bth;
Y=1, and for hot discs we [EITSTSEp s

. double xhi2, Rco;
expect something between RREIL W,

pc, rcyl;

r

like Y=4/3. So, in init.c wejiESESEEtIFEIF
eps2=g_inputParam[EPS]*g_inputParam[EPS];
have to set such values,

by settingg gamma' coeff=(g_gamma-1.)/g_gamma/eps2*(1./x1-(1.-eps2*g_gamma/(g_gamma-1.))/rcyl);
lambda=11./5./(1.+64./25.%*g_inputParam[ALPHAV]*g_inputParam[ALPHAV]);

v[RHO]
V[PRS]
pc=v[PRS
v[vx1]

vVvX2] ;
vIVX3] ;

g_inputParam[RHOC]*pow(x1,-1./(g_gamma-1.));
(g_gamma-1.)/g_gamma*g_inputParam[RHOC]*pow(x1,-g_gamma/(g_gamma-1.));

r

r

LI L | ]

V[PRS]=eps2*pow(coeff,g_gamma/(g_gamma-1.));
if (v[PRS] >= pc && rcyl > g_inputParam[RD])
v[RHO] = pow(coeff,1./(g_gamma-1.));
Vv[PRS]=eps2*pow(coeff,g_gamma/(g_gamma-1.));
v[VX1] = -g_inputParam[ALPHAV]/sin(x2)*eps2*( - /
*Llambda*g_inputParam[ALPHAV]*g_inputParam[ALPHAV]
-lambda*(5.-1./(eps2*tan(x2)*tan(x2))))/sqrt(rcyl);
v[VX3] = (sqrt(l.-5./2.*eps2)+2./3.*eps2
*g_inputParam[ALPHAV]*g_inputParam[ALPHAV]
*Lambda*(1.-6./(5.*eps2*tan(x2)*tan(x2))))/sqrt(rcyl);
v[TRC] = ;

else
v[PRS]=(g_gamma-1.)/g_gamma*g_inputParam[RHOC]*pow(x1, -g_gamma/(g_gamma-1.));
v[TRC] = ;




“STARDUST”: Dusty disk in Young Stellar Objects

During a Summer Student Program, C. Turski wrote the Python script “DUSTER” for post-processing of
the quasi-stationary results in my star-disk solutions. He added the dust particles and computed their
movement in the disk-corona solution as a background. The results are used to model dust distribution in
the disk.

0.0 days 18.6 days
{1 g

102

?% 10-‘%;
10~#
=1 l 5 0 15 20 107 107
g 'R,
M, as Cs f
r=-—-@G 3 7 — Pgas (T _Ugab)
e Per
L. M. 30001‘—? . 1500K \* [L,,
8=0.4 02 wi B R = 0.0344% ot 1AL,

B P T — T,, Lo



224

Summary of the Lect. 7

Different modules in PLUTO, cooling versus radiative transfer
Hot discs

Post-processing of the results, DUSTER

Python script for analysis

M. Cemeljié, Numerical simulations of accretion discs, Winter Semester 2024/2025



Outline, Lect.8 : Pseudo-Newtonian potentials for BHs, NkS, Star-Planéf>
simulations setup

Pseudo-Newtonian potential and its use in numerical simulations of compact
objects

Simulations of thin disk or torus around a black hole in Paczynski-Wiita
potential

Simulations of thin disk around a naked singularity in pseudo-Newtonian
potential for Reissner-Nordstrom metric.

Star-planet simulations

Running jobs on a Linux cluster

M. Cemeljié, Numerical simulations of accretion discs, Winter Semester 2024/2025



Intro on compact objects 226

The name "black hole" is catchy, but misleading. These are not "holes", at least not
empty ones: in fact, it is a large mass gathered in some volume (not necessarily large
density). The escape velocity for these objects is greater than the speed of light!

The possibility of their existence is not news: we know that Romer in 1676 measured
the finite speed of light quite accurately by observing Jupiter's satellites - for this a
telescope was needed, the distances on earth are too small for primitive methods of
measuring the speed of light - unless we know optics, but then we will already have a
telescope... From the concept of the finite speed of light to the above-mentioned
escape velocity and the conclusion that objects of sufficiently large mass could retain
light is not far - this is how John Michell concluded in 1783: “If the semi-diameter of
a sphere of the same density as the Sun in the proportion of five hundred to one,
and by supposing light to be attracted by the same force in proportion to its [mass]
with other bodies, all light emitted from such a body would be made to return
towards it, by its own proper gravity.”

The first description as "dark stars" followed from the invisibility of such objects.
That inspiring description turned out to be physically incorrect: in Einstein's gravity,
the curvature of space-time causes the curvature of the path of a light ray that does not
change speed. But the fact that these objects are dark remains - John Wheeler called
such objects "black holes" in a lecture in 1968, and that name remains to this day.



Naked sigularities 227

Naked singularities are also not something new: the solutions of the equations from which
they "popped out" were published almost simultaneously with the Theory of Relativity (1916)
and Schwarzschild's solutions for a non-rotating black hole (1916). The first solution was by
Reissner (1916), who gave solutions for the electric charged, non-rotating black holes, and
soon others arrived, including Nordstrom (1918), so such objects are now called Reissner-
Nordstrém (RN) naked singularities.

The next step came only in the 1960s, with solutions for rotating, uncharged (Kerr 1963) and
charged (Kerr-Newman, 1965) black holes. Very fast rotating black holes can become naked
singularities and have no charge, which is more physically realistic - black holes are difficult
to charge electrically, it is generally accepted that they should be electrically neutral. This was
also the main reason why these solutions, although simple, are not better known, they
remained as an exercise for beginners - I performed them on a couple of pages for the exercise
of Christoffel symbols, I recommend them to doctoral students to refresh the General Theory
of Relativity — I suggest to do it on paper, without using Maple or similar computer packages.

The Reissner-Nordstrom solutions, which are relatively simple, are nevertheless useful
because they are mathematically identical in many properties to much more complicated
solutions for rotating objects. That's why we started to study them in a pseudo-Newtonian
approach, so that we can run simulations faster and do the first checks of ideas, which we can
then study in more detail in relativistic simulations, which are more demanding.



Schwarzschild metric (1916) for nonrotating BHs

The first exact solutions in GR

=
) 4P — 2 (d6? + s Pds?).

Reissner-Nordstrom metric for nonrotating charged
BHs,or, if Q>M, naked singularities (1916, 1918)

ds® = f(rde - %dr: — 2 (d6” + sin® 6dg¢?), (13)
Jir
2M @7 M M (14)

with f(r)=1-—+==1-2—+g¢g :
r i 1"'2

r

(@ is the electric charge of the gravitating body, and we define the
dimensionless charge parameter g = Q/M.



Pseudo-Newtonian potentials

In a classical Newtonian description, we can describe the mo-
tion of a test particle of unit mass in the orbital plane 8 = x/2
around a much larger point mass M as a motion in the central
gravitational potential ®(r) = —GM/r. The energy equation is:

E= %{uf+u§j+tll{r}. (1)

Introducing the effective potential U.z(r, L) = ©(r) + L*[(2r%),
we can write:

1
E — ~i; = Uea(r, L), (2)

where E, L and v, are the total energy, angular momentum and
radial velocity, respectively.

For the circular orbits, the condition (U /dr); = 0 is satis-
fied, so that we obtain the condition:
WD(r) L2
s ) = =0. (3)

ar r

Paczynski &Wiita (1980), for a non-rotating BH:

d 1 2

—|— |+ = =0. 10
dr(]—?Mﬁr)-IF ri s
Employing r/(r — 2M) = 2M/(r — 2M) + 1, we can write:

d 2M 2f d| 2M e

—_ 1 — —_— — 0 11
dr( +r—2M)+r3 :dr(r—EM]+ r to

Comparison with the Eq. 3 gives the pseudo-Newtonian potential

M
r—2M’
The Keplerian angular momentum £ = VMr?/(r — 2M) in the

PW potential is the same as in its exact Schwarzschild GR so-
lution, but the value of the Keplerian angular velocity is dif-

ferent: Qg pw =77?fix it/M/r[(r — 2GM/r), while in the
Schwarzschild solution it is the usual Newtonian Qg = GM/r3

Vew = — (12)

Kluzniak & Lee (2002), for a more exact rendering of PW:

GM
3?"(;

[1 - 63?"{; f'r]

O(r) =
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Fig. 2. Gas density in the simulation with ¢ = 1.5. Left panel: a snapshot result at t=20000 1,, where 1, = ry/c. The zero-gravity radius ry is
marked with the dashed half-circle and the radius, 4ry/3, at which test-particle £2 attains a maximum is marked with the straight black dashed line.
Right panel: a zoom into the inner region of the accretion flow, obtained as an average over the time interval of r € [19000, 21000] #,. Poloidal gas
velocity vectors are indicated with green arrows.
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Fig. 3. Lefi panel: the angular velocity €2 = v, /(rcos £), in the linear color grading at r = 200001, in our simulation with g = 1.5. The contour of
£ = 0.09/M within which the test-particle orbital frequency value of L3, at r/M = 4:;3 {3 15 located 15 shown with the white solid curve. Right
panel: £(r) in the equatorial plane for the RN metric with ¢ = 1.5 and 1.8, in solid (black) and dashed (blue) lines, respectively. The dotted (red)
line follows the Schwarzschild profile of £2M, and is given for comparison. Vertical lines in the corresponding styles indicate the radial positions
of {1, test-particle orbital values for g = 1.5 and g = 1.8. MW: does it make sense to indicate the location of ry as well? Maybe with black/blue

Sure, there are many such approximations, each good for its purpose-some characteristic distances or surfaces are
usually represented correctly in such pseudo-potentials.
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Fig. 4. Values of M and J computed in two co-latitudinal intervals as assigned in the legends, in dependence of radial distance from the origin
in the simulation from Fig. 2, obtained as an average over the time interval of t € [19000, 21000] t,. MW: Can’t the panels be of the same size?



Setup of different pseudo-Newtonian potentials: init.c

In the SDI setup, at the end of the init.c file, just set the BodyForcePotential instead of
BodyForceVector.

I A init.c (c) double BodyForcePotential(double x1, double x2, double x3)

return -( )* (exp( /x1) - );




Setup of different pseudo-Newtonian potentials: definitions.h 234

Also in the definitions.h file, just set the BodyForcePotential instead of BodyForceVector.

I A definitions.h (c)

MHD

SPHERICAL
POTENTIAL
POWER_LAW
LINEAR
RK2

NO

IDEAL

NO
DIV_CLEANING
YES

NO

EXPLICIT

NO

NO

EXPLICIT

NO

Joe's Own Editor 4.6 (utf-8) ** Type Ctrl-K Q to exit or




Setup of different pseudo-Newtonian potentials: pluto.ini 235

The magnetic field strength could be much smaller i I pluto.ini (Modified) (ini)
3 nu num Te
6.283 -1 single file
-1.0 -1 single file
6.283 -1 single file
-1.0 -1

-6.283 -1

-1.0 -1
-1.0 -1

Checkpoint_interval -1

Plot_interval 1.0

Nooohowoo
DA OHROOOOH
==
© o
~

1
|




Auroras are present on all planets: Mercury, Venus, Earth 236

We will simulate star-planet magnetospheric interaction for a practical reason: auroras are found
on most of the planets in the Solar system.

Mercury Venus

MAGNETOPAUSE

NORTH LOBE

MESSENGER
ORBIT

Mercury magnetic field is well measured thanks to ' .
Messenger probe. Its aurora is similar to Earth’s. [

Venus has smaller aurora towards Sun than Earth,

here I show a comparison.



Mars aurora 237

Even in the planets like Mars, which do not have significant magnetic field, we observe aurora, formed as a
result of interaction of particles-here mostly protons- from the solar wind shock where the planet moves
through the wind. It is most visible at the sunny side of the planet.

5000 km

237



Auroras on large gaseous planets 238

Aurora is observed also on Jupiter and Saturn. On the gas planets aurora is visible mostly in ultra-violet, so
e can observe it from outside our atmosphere.

Spots in aurora on Jupiter are
magnetically connected with its
satellites: the spot on the left side is
connected with Io, bottom two with

Ganymede and Europe. JWST’s capture of aurora on Jupiter

Saturn also features polar aurora:




Aurora on Uranus 239

HST observed auroras on Uranus: And Keck on Neptune:

16 Nov. 2011 29 Nov. 2011




Extrasolar and exoplanet auroras 240

*As for now, we have an observation of extrasolar aurora on a brown dwarf LSR J1835+3259, 18 lyrs from
us, in Lyra. There are more of similar objects which show characteristic spectral features which point to
aurora. Shown is an artist impression, not the real observation. It is reddish aurora, from more hydrogen in
the atmosphere, and about million times more intense, because of larger magnetic field.

*Such an aurora should also be of different nature, because there is no other star for producing the stellar
wind.

*A model for aurora requires a continuously replenished body of plasma within the magnetosphere. This
mass-loading can be achieved in multiple ways, including interaction with the interstellar medium, a
volcanically active orbiting planet or magnetic reconnection at the photosphere. Alternatively, an orbiting
planetary body embedded within the magnetosphere could provide magnetospheric interaction.

In the cases of exoplanets, we also expect auroras, and we can
use the same simulations and make the predictions for different
kinds of planets.

In the cases of planets around pulsars, which were actually the
first observed exoplanets, we can expect similar effects. Because
of much larger field involved, they could behave different from
usual planet aurora.

Here we try to make the first such model, by introducing
necessary modifications in our star-planet interaction setup.

CHUCK CARTER/ CRECE HALLIMAN § CALTECH



Numerical simulations of star-planet interaction 241

In a series of works by Varela et al. (e.g. A&A, 616,
A182, 2018; A&A 659, A10, 2022) are given numerical
simulations of planetary magnetospheric response in
extreme solar wind conditions, using the PLUTO code.

Such simulations are valid for Earth and exoplanets.

We use this setup as a template for the much larger
magnetic field of pulsar.

Exoplanet
magnetosphere

Bow Shock

Fig. 1. 3D view of a typical simulation setup. We show the density dis-

tribution (color scale), Earth magnetic field lines (red lines), and IMF

(vellow lines). The yellow arrows indicate the orientation of the IMF

(northward orientation). The dashed white line shows the beginning of

the simulation domain (the star 1s not included in the model).
Fig. 1. 3D view of the system. Density distribution (color scale), field
lines of the exoplanet magnetic field (red lines) and IMF (pink lines).
The arrows indicate the orientation of the IMF (Northward orientation).
Dashed white line shows the beginning of the simulation domain.




Numerical simulations of Sun-Mercury interaction 242

Similar study was also done for Mercury, where we have a wealth of data from Mariner 10
mission, which measured the dipole moment, and later Messenger mission, which provided more
precise measurements for the multipolar representation.

0 %) 240

/1

Mercury

S

\ Ny
\

”
0 60 120 180 0 80 160 240

Vr - B field lines
L O — — S\ stream lines

e U Plot surface

Fig. 2. Hermean magnetic field lines with the intensity imprinted on the

. . . ) . L. ) o field lines by a color scale for the reference case (A) and simulation Bx3
Fig. 1. 3D view of the system. Density distribution (color scale), field (C). Magnetic field intensity at the frontal plane X = 0.3Ry,. SW stream

lines of the Hermean magnetic field (red lines), IMF (pink lines) and lines (green). Inflow/outflow regions on the planet surface (blue/red).
solar wind stream lines (green lines). The arrows indicate the orientation Polar plot of the density distribution (displaced 0.1Ry; in Y direction)
of the Hermean and interplanetary magnetic fields (case Bz). Dashed for the reference case (B) and simulation Bx3 (D). Dashed pink curve
white line shows the beginning of the simulation domain. indicates the surface plotted in figures 3 and 4.




Numerical simulations with the NS-planet interaction 243

I show preliminary results in our simulations with NS parameters. We are increasing the stellar
magnetic field in the simulations-to accommodate for the large field we increase the density of the
interplanetary medium, local magnetic field strength near the planet and stellar wind velocity. We probe
for the different planetary surface boundary conditions (conducting, ferromagnetic) - this is potentially
interesting for the planetary study: planets around NS could have some extreme physical properties.

Conducting planet (B_planet=0):

Currents (yellow), Vsw(green), mag.field (red)
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For the conducting planet atmosphere case, electric current loops remain close to the planet
surface.



Numerical simulations with the NS-planet interaction 244

In the case of feromagnetic planet surface, results are different, currents point to an extended dipolar
electric field structure. Work is in progress to understand the possible auroral effects.

Currents ellow), Vsw(green), mag.field (red

Bsw—3 0, sz 1 e9

= 150000

gnetic_Field Magnitud

N

3D_Ma
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Equatorial view-Alfven “wings”:




1006 Seeh T ? 150

b —
Nsw / Mnorm
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Radio emission from non-magnetic planets

Conductor

Ferromagnetic

S0e-17

245

Left panels: Iso-volume of
Poynting flux divergence in
cases with non-magnetic
planet. Red lines are the
magnetic field lines and
green lines are the velocity
streamlines of stellar wind.
Right panels: Mag. power
in the same cases. A surface
with the maximum radiated
power is located in the nose
of the bow shock, because
of bending and compression

of inter-planetary magnetic
field.

El.mag. emission is 100
million times more intense
than in the Sun-Earth case.

We suggest that it could be
observable even with the
current instruments.



Star-planet: pluto.ini

b3 = e Terminal - miki@mikic:
File Edit View Terminal Tabs Help

pluto.ini (ini)

oo Ww
(oM o o)

Ref _ratio
Regrid _interval
Refine thresh
Tag _buffer_size
Block factor
Max_grid size
Fill ratio

OWhWONNLEA

CFL
CFL_max_var
tstop
first_dt




Star-planet: init.c

B o= < Terminal - miki@mikic: ~/Pluto442/RunEarth1
File Edit View Terminal Tabs Help

I A init.c (c)

oid Init (double *v, double x1, double x2, double x3)

int i, j, k;

double r, R, z, slp, slp2, slp3, vl, v2, v3, bbbl, bbb2, bbb3, bd, b f, gam, Mn, ddip;
double cqdr, cdip, coct, sixt, Tp, vs_p;

double beta, bx w, by w, bz w, vx w, vy w, vz w, va, bdip, in b, rd, pi, vs, bs;
double ddi, rho sw, B norm, P_norm, T _norm, r sw ¢, r_sc, r_in, in_s;

double AA, BB;

double xcl, xc2, xc3;




Star-planet: a good exercise for simulations and plots in 31348
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Running jobs on a Linux cluster 249

Usually Linux clusters and supercomputers use management and queuing system. I will describe two of
them, which work in a similar way. Think of them just as an expanded command for running your job.

- SLURM - a free one, became quite reliable so one does not need to pay for management, which could
come with a significant cost. After creating a slurm_job_file, execute sbatch slurm_job_file . Most often
used commands: sbatch, squeue, scancel.

- PBS — (Portable Batch System), there are Open (free) and Pro (not free) versions, also very similar is
its fork, TORQUE. After creating a PBS or TORQUE job script pbs_job_file, execute in terminal: gsub
pbs_job_file.

Most often used commands are: gsub, gstat, qdel, gmgr and xpbs, pbsjobs (located in /home/Tools/bin)
for additional detail about queued and running jobs.

"-’ () mlkI@ChUCk: fwn‘rkj'ChUCkfmiku.plurnfRUChINEWStart'l @ © © miki@gate:/tiarafara/data/miki/Pluto/Saclay/M3a3DRmax50
IA luto (Modified)(sh MPICH HOM Row 29 Col 1 4:54 Ctrl-K H for |
I A qpluto.sh (sh) LI e

cd

. /etc/profile.d/modules.sh
module purge
module load mpich

cd /work/chuck/miki/Pluto/RuchiNewStartl " ;! ;" ;
module purge _ NPROCS="uc -1 <
module add mpi/mvapich2-2.2-x86_64 fi

/bin/mpirun -machinefile - ./pluto -restart 42

srun --mpi=pmi2 ./pluto -restart 540



250

Summary of the Lect. 8

Pseudo-Newtonian potential and its use in numerical simulations of
compact objects

Simulations of thin disk or torus around a black hole in Paczynski-Wiita
potential

Simulations of thin disk around a naked singularity in pseudo-
Newtonian potential for Reissner-Nordstrom metric.

Star-planet simulations

Running jobs on a Linux cluster

M. Cemeljié, Numerical simulations of accretion discs, Winter Semester 2024/2025



M. Cemeljié, Numerical simulations of accretion discs, Winter Semester 2024/2025
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