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Outline of the lectures
Part I: Newtonian simulations of accretion discs (M. Čemeljić)

• Lect. 1: General introduction to accretion and types of objects where accretion is important, jets, Linux shell 
commands, text editors, ecology of computing 

• Lect. 2: Accretion energetics, spherical (Bondi) accretion, stationary thin accretion disc, fluid eqs, (M)HD eqs, 
viscosity, resistivity, turbulence, MRI, Alfven waves, code PLUTO, structure of the code, hands-on installation and 
testing, visualization with gnuplot

• Lect. 3: Shakura-Sunyaev 1973 disc, initial and boundary conditions for Orszag-Tang test problem in PLUTO in 2D 
and 3D, visualization in 2D and 3D with Paraview & VisIt

• Lect. 4: KK 3D solution for thin disc in HD, Vertically averaged solutions for thin disc, setup and running of 2.5D 
HD KK disc in PLUTO, analysis of the results from 2.5D runs with Paraview and Python

• Lect. 5: Euler equations, Finite difference, volume and elements methods, Godunov’s scheme, Riemann problem,  
CFL condition, Magnetized thin KK disc, setup and running of 2.5D disc in MHD in PLUTO, visualization of 
magnetic field lines with Paraview.

• Lect. 6: Approximate Riemann solvers, reconstruction methods, MHD numerics, astrophysical jets, simulations of 
jets from disc as a b.c. and with the disc evolution included, streamlines in Paraview in 2D and 3D

• Lect. 7: Different modules in PLUTO, cooling, radiative transfer, hot discs, post-processing of the results, DUSTER,  
 Python script for analysis

• Lect. 8: Pseudo-Newtonian potential and its use in numerical simulations of a disk or torus around black hole or 
naked singularity, star-planet simulations, running jobs on a linux cluster

• Part II: General relativity simulations of accretion discs (obligatory for Geoplanet students) by Debora 
Lančová (6 lectures)+1 lecture on Cosmological simulations by Tomasz Krajewski
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Outline,  Lect. 1: Introduction to accretion

-General intro on lectures, literature, well-being…

-What is accretion and why do we need it?

- History of accretion, disks, jets

- Observational material on accretion, cosmic magnetic fields 

- Roche equipotential surfaces, PyAstro package

- Motivation and examples of accr. disk simulations

- Intro to Linux, shell commands, text editors

- Ecology of computing
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General intro on lectures and literature 
Lectures time is Mondays 13:30-15:30 CET, on-site for residents in Warsaw, online on Zoom. Attendance of 70% is 
expected. Exam by preparing a report on chosen simulation setup and  discussion of that report with the lecturer. 

Literature for this course:
● Books:

Frank, King & Raine, „Accretion power in astrophysics”

Kato, Fukue & Mineshige, „Black-Hole Accretion Disks: Towards a New Paradigm”

M. Čemeljić lecture scripts from the Silesian University in Opava, (2022), “Thin accretion disks” part I: Basic concepts and 
solutions, Part II: Numerical simulations

User manual of PLUTO code, available in PLUTO/Doc/userguide.pdf directory

Linux booklet “Linux Pocket Guide”, D.J.Barrett, O’Reilly Media

Douglas Adams, “The Hitchhiker’s Guide to the Galaxy”

● Journal papers:     

Shakura & Sunyaev, 1973, “Black holes in binary systems”, A&A, 24, 337

Novikov & Thorne, 1973, general relativistic disk

Pringle, 1981, “Accretion discs in astrophysics”, ARAA, 19, 137

M. Čemeljić, 2019, "Atlas" of numerical solutions for star-disk magnetospheric interaction,

A&A, 624, A31

Čemeljić, Klużniak, Parthasarathy, 2023, „Magnetically threaded accretion disks in resistive

magnetohydrodynamic simulations and asymptotic expansion”, A&A 678, A57

Zhu & Stone, 2018, „Global Evolution of an Accretion Disk with a Net Vertical Field: Coronal

Accretion, Flux Transport, and Disk Winds”, ApJ, 867, 34

B. Mishra, 2016, .”Strongly magnetized accretion discs: structure and accretion from global

magnetohydrodynamic simulation”, MNRAS 492, 1855
Mishra, Čemeljić, Varela & Falanga, 2023, “Auroras on Planets around Pulsars”, ApJL, 959, L13 (SPI choice)

-On-line resources:

Abramowicz & Straub, “Accretion discs”, Scholarpedia article: http://www.scholarpedia.org/article/Accretion_discs
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Advice on computer system, monitor,... 
Use Linux. Full stop. The Microsoft Corporation is today the largest user of Linux. I 
am echoing the Richard (Matthew) Stallman’s (rms) vocation:
“THERE IS NO SYSTEM BUT GNU AND LINUX IS ONE OF IT'S KERNELS.” 
rms created GNU (Gnu’s not Unix) GNU/Linux, a Unix-like operating system made up of different OS 
components and services that create the Linux OS. He created Emacs, the GNU C Compiler, and the 
GNU Debugger, and is one of initial initiators of the open source movement for software to be distributed 
in such a way that its users have the freedom to use, study, distribute, and modify that software. The four 
fundamental freedoms for free software are, by him:

● THE FREEDOM TO RUN THE PROGRAM AS YOU WISH, FOR ANY PURPOSE.
● THE FREEDOM TO STUDY HOW THE PROGRAM WORKS, AND CHANGE IT SO IT DOES YOUR 

COMPUTING AS YOU WISH.
● THE FREEDOM TO REDISTRIBUTE COPIES SO YOU CAN HELP YOUR NEIGHBOR.
●  THE FREEDOM TO DISTRIBUTE COPIES OF YOUR MODIFIED VERSIONS TO OTHERS. 

His explanation of the term GNU/Linux: Linux is the kernel: the program in the system that allocates the 
machine's resources to the other programs that you run. The kernel is an essential part of an operating system, 
but useless by itself; it can only function in the context of a complete operating system. Linux is normally used 
in combination with the GNU operating system: the whole system is basically GNU with Linux added, or 
GNU/Linux. All the so-called “Linux” distributions are really distributions of GNU/Linux.

rms ultimate geek stature in open source community is such that you can find lots of misinformation on 
him, but also many funny comments like: “Richard Stallman is giving a talk at Microsoft campus. If the 
world ends today, you know why.”

● Numerical simulations are a time-consuming work, requiring hours and hours of sitting in front of the 
screen. Please take care of appropriate dimensions and position of monitor, desktop settings (not black 
on white, it is too tiresome for eyes) and seat position, and remember to regularly exercise. You will 
appreciate it after 20-some years. Remember also to spend enough time with (good) living beings, 
possibly humans. You will appreciate it immediately.
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How we arrived to accretion
Historically, accretion was first considered as a relevant process in the close binaries: after 
collecting a wealth of spectrographic data by Struve and collaborators, it became obvious 
that simple models of stellar stability are insufficient to explain the spectral features. 
Theoretical curves were smoothed by the simplifications, and observational curves were not 
smooth at all! Introducing more physical processes into astrophysics of stars was called 
“Struve revolution” by Daniel Popper in 1970 (not Karl Popper of the philosophy of Science!).

To explain the spectral features and the energy and angular momentum evolution in the 
“peculiar stars”-which mostly showed to be close binaries, astronomers around the middle of 
XX century had to include the streams of matter, gas rings, Roche’s equipotential surfaces, 
and finally Huang (1963) included a thick disk. Gradually, with increase in quality of data, 
similar concepts were introduced in the objects on other scales, like active galactic nuclei 
(AGNs), quasars, and centers of clusters of galaxies. Gravity was back, astrophysics of 
accretion could start!
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Herbig-Haro (HH) objects (big one is 
NGC1999) and  young stellar objects 
(YSOs) envelopes of which T-Tauri with 
the Burnham’s nebula HH255 were the 
prototype examples of complicated 
environment, with streams of matter, gas 
envelopes and outflows, which show that 
simple models fail. We needed better 
theory of star formation to explain such 
observations.



Roche equipotential surfaces 

● Roche surfaces usually emerge 
when we are dealing with close 
binaries.

● French matematician Edouard 
Albert Roche (1820-1883) 
discussed the problem of 
equipotential surfaces in the 
context of stability of the orbits of 
small planetary satellites in 1849.

● Physical model is of the small 
test mass m moving in the 
gravitational fields of two 
massive points. There is no 
gravitational back-reaction from 
m to M1 and M2.
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Roche equipotential surfaces 

● Because of tidal forces, with close binaries we usually can work in this 
approximation.

●  Lagrange in 1772 showed the existence of 5 points (Lagrange points L
1
-L

5
), 

where forces from M1 and M2 are balanced.
● If we solve the equations in (x,y,z) put along the line connecting M1 and M2, 

perpendicular to it in the plane of the paper and vertical out of the paper,
we obtain, with μ and 1-μ being the masses expressed in total mass 
parts μ=M1+M2 and distances r1 and r2 in the units of the masses 
M1 and M2 distance:

● Constant C is defined by the initial conditions.
● The velocity v=0 defines a surface at which velocities are >0 or 

<0, real or imaginary, and C defines from which side of this 
surface the mass m is moving.
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Roche equipotential surfaces 

● Jacobi found that v2=V-C, where

● It shows that we can use the same approach for close binaries, even when 
there are flows between them, or they are filling their respective “Roche 
lobes”, so that the solution
gives us the equipotential
surfaces, U is the potential:

● We have v2=-2U-C 
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Astronomy packages

● If you need some routine for astrophysical use, it is very probable someone else 
also needed it. There is a pile of general routines from last decades in Numerical 
Recipes. Astro routines nowadays you can find in python, and many, many are 
available in IDL, a quite expensive proprietary software used when TRexes were 
lingering around. As a Open Source promoter I would not mention it, but:
There is Open source initiative version of IDL, called GDL, which has most-but 
not all, e.g. they lacked contour plots at my last look at it about decade ago -
functionality of IDL. For simpler graphics or most of computations it usually works, 
give it a try. ”G” in GDL is from Gnu…, so it is distributed with major linuxen, or can 
easily be installed. If you inherited someone’s IDL routines for data handling, it is 
very probable they will run as they are in GDL, for plotting, you might need to fiddle 
a bit.

● If you are lucky, your needed code might be already translated to python, and 
available in Github or similar. One such library is PyAstronomy-currently at 0.23 
beta edition, but growing, so best is you browse for it and find the current wersion, it 
will for certain grow steadily, and is probably already partially translated to the next 
“must know” code for the next generations of students (Julia? Or simply “oh Ailadin, 
could you please plot for me…”?). I show how simple it is:
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Roche surfaces in PyAstronomy 
11

This is a complete code 
for plotting Roche 
equipotential surfaces in 
PyAstronomy.



Roche surfaces in PyAstronomy 
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You run it in Python in 
terminal and get the result in a 
pop-up window.



Observations of jets
We did not see accretion disks 100 years ago, but we knew jets. We know about jets for more 

than 100 years-M87 was the first jet to be observed, by Heber Curtis at Lick Observatory. He first 
noticed this “curious straight ray” in 1918 on photographic plates. The first visual observation of 
M87’s 5,000-light-year-long jet was made by Otto Struve through the 100-inch telescope at 
Mount Wilson. It was thought too dim for amateurs, but Barbara Wilson sighted it during the 
1991 Texas Star Party through her 20-inch reflector (*disclaimer, many others saw it before, but 
not reported. If you ever looked through a 0.6m Dobsonian, you know!). It is a typical elliptical 
galaxy in Virgo, resembling an unresolved globular cluster or the head of a comet.

M87 (NGC 4486, Virgo A) is a giant 
galaxy at 55 million light-years from us, 
measuring  120,000 light-years across, 
with 100 billions of stars and mass about 
2 trillion solar masses. Only in the era of 
Hubble Space Telescope (HST) we 
obtained well resolved disk (dust and 
gas, not accretion disk!) and jet optical 
observations. In the case of M87, with 
Event Horizon Telescope (EHT) 
collaboration we recently got very, very 
close to the central supermassive black 
hole (SMBH).



Observations of jets

Stellar jets followed in HH objects in 1950's. Here also only HST provided well resolved disk 
and jet observations. In the ALMA era, we got even closer-a team from ASIAA, Taiwan recently 
measured a rotating disk and jet in HH212. Resolution of the observation is down to 8 AU! The 
angular momentum carried by a jet is so small that it must be launched from the region well inside 
 the disk, about 0.05 AU from the star. This matches with the  magnetospheric jet launching.



Observations of jet movement

We know well how the jets are moving through space, but we do not yet know how 
they form. It is obvious that from the disk, but how? How they get collimated, how 
the knots form?

NASA HST/Wide Field and Planetary Camera 2.



Detailed observations of jet and disk

Stellar outflows in the case of massive young stars comply more to the magnetocentrifugal 
outflow launching, where the outflow is launched from the disk surface. Here is a recent ALMA 
image for Orion KL Source 1, and measured velocities. In the right panel the color shows the 
motion of the gas: red shows gas moving away from us, blue shows gas moving toward us. The 
disk is shown in green (Hirota et al., 2017).

Spectacular ALMA image of the HL Tau protoplanetary disk, 
with the planet trajectories carved-out, is another example of 
what we can expect from the new instruments (ALMA, 2014). A 
million years young star with a disk of more than three Neptune 
orbits radius, is located at 450 ly from us. It came as a large 
surprise that such a young star would already show signs of 
planet formation. Such observations will force numerical 
simulations to be much more detailed, it is not enough any more 
to just get a stable disk!



Disks & jets paradigm
It was observed that jets always go in pair with the disk and that the jet speed is always about the 
escape velocity from the central object.

Orion nebula with its disks and jets.

Models of accretion process followed not only the collapse of the material, but also the mechanism of the 
extraction of the angular momentum from the system. The highly collimated jets can hardly be explained 
without the action of the magnetic field. Such jets affect the interstellar environment, mixing the material 
and expelling the magnetic field into it. In the case of active galactic nuclei (AGN)  jets, the material and 
magnetic field are expelled into the intergalactic space.



Magnetic field between galaxis, voids

This could be part of the answer to the fact that between 
the clusters of galaxies we observe voids with less 
galaxies than average. If there is a magnetic field in the 
voids, how it formed? Such galaxies dis not have enough 
time from their formation to rotate around their axis to 
produce a working dynamo.



Two different scales

In the cases of YSO and AGN jets we have similar objects at two very different scales, stellar 
and extragalactic, which are about 100 000 times different. Are the processes also similar? We 
still do not know, our simulations are not detailed enough to explain the details in 
observations.

Reality ver. simulations 100 000 AU=1.6 ly  Hercules A, disk and jet in the galaxy with SMBH.



Accretion disk around young stellar objects (YSOs)

What is needed for the model of a disk around 
young star? It is important also because of the 
 planet formation.

In the 1970-ties Shakura & Sunyaev 
computed the hydrodynamical model, in 
which dissipation is needed for the transport 
of angular momentum.

Viscosity causes the angular momentum to be 
transported outwards during the infall of 
matter, because of the internal friction in the 
flow.

Further computations showed that such discs 
would not be stable. Also, such a mechanism 
can not explain highly collimated jets.



Objects in which we observe disks and jets
In a brief summary, objects in which we observe disks and jets are:
-Active galactic nuclei (AGN), with a supermassive black hole in the center are the largest 
objects launching jets.
Stellar jets we observe from:

– Young stellar objects with accretion disks (protoplanetary disks).

– Neutron stars or black holes with accretion disk, usually in binary systems with matter 
from other, larger star.

– White dwarfs with accretion disk in double systems of white dwarf with a larger star or 
a neutron star.

Artistic rendering (credit: STScI)of the cataclysmic variable 
(CV) star. White dwarf inside the disk of matter infalling 
from a normal star of slightly sub-solar mass. 

Jets from SMBH in the center of Hercules A. 
Composite of HST and VLA radio telescope.



Accretion disks and jets
-Accretion disk forms during the gravitational collapse of matter.
 

Until the middle of 20th ct. gravity was included in the star formation models 
only as an attractive force pulling the matter inwards. The problem of decrease 
of the initial angular momentum was not solved: from J = R x  mv for 
R_1>>R_2, for J,m=const,  v_2>>v_1. 
We know that Sun-like stars are rotating much slower than it would follow 
from the angular momentum of the initial protostellar cloud. Without some 
mechanism enabling the decrease of angular momentum, they would explode! 
The following facts help to start understanding:

• During the evolution from a pre-stellar core to protostar, the angular momentum decreases for 
about 4 orders of magnitude. The spin-up of a star is probably prevented by the magnetic 
interaction between the star and the disk.

• The angular momentum can be extracted from the system in different ways:
-stellar winds, -violent outbursts, -stable outflows/jets, -accretion column onto the star. 
     Solar corona                               FU Ori (ESO)



Magnetic fields in the universe

• We still do not know what is the origin of the magnetic field in the 
universe. Most of the mechanisms, like magnetic dynamo in galaxies or 
stars, can only increase the already existing field, but can not create it.

• One of proposed mechanism is Weibel instability, discovered in 1959, 
which causes magnetic field creation in the homogenous plasma with 
two oppositely directed particles  (e.g. if there are regions of different 
temperature in the plasma). Because of the movement of particles, 
generated is the electromagnetic field.

• There are many other models, with phase transitions, quantum effects 
etc.

• Magnetic fields are observed from the atomic to cosmological scales, 
with strengths from nano-Gauss (10^-9) to 10^15 Gauss.



Strengths of cosmic magnetic fields

Initially non-existing or very small cosmic magnetic field increased during the evolution of 
stars and galaxies. Turbulence  enables the dynamo effect during the rotation of gases and 
the field is increased locally.

-At the Earth surface magnetic field strength is about 0.3 Gauss (SI:  0.3x10^-4 T).
-At the Solar surface it is 1 Gauss, YSOs up to hundreds of Gauss
-White dwarfs 10 000-million Gauss.
-At neutron stars in some close biaries (millisecond pulsars) 100 million (10^8) to 10^12 
Gauss, and 10^15 Gauss on NSs with extremal magnetic field.
-In the galaxies it is 10 μ (10x10^-6) Gauss, in the intergalactic space 1 μGauss.

How do we measure the magnetic field?
-in the lab: with magnetometer, measuring of the magnetic force.
-in the universe: synchrotron radiation (produced by he electrons moving in the magnetic 
field); partial polarization of light when it passes through the dust oriented uniformly in the 
magnetic field; Faraday rotation (1845, first proof of the connection between light and 
electromagnetism) change of the polarisation plane; Zeeman effect, splitting of the spectral 
lines in the magnetic field; indirect method-measuring the angle beween the direction of 
the radiation intensity change and the direction of the magnetic field to infer the field 
strength.



Simulations you will learn to do: Hydro-dynamical (HD) star-disk simulations

Time dependence of the mass and 
angular momentum fluxes in the various 
components in our simulations.

Computational box and a zoom closer to the star after 80 
stellar rotations. In color is shown the density, and vectors 
show velocity, with the different normalization in the disk
and stellar wind.



Star-disk magnetospheric interaction
(SDMI) simulations

Time dependence of the mass and 
angular momentum fluxes in the various 
components in our simulations with 
marked the time interval in which the 
average for the quasi-stationarity is 
computed.

јaxout

ј(R>Rcor)

ј(R<cor)

Computational box and a zoom closer to the star after 80 
stellar rotations, to visualize the accretion column and the 
magnetic field lines (white solid lines) connected to the disk 
beyond the corotation radius Rcor=2.92 Rs. In color is 
shown the density, and vectors show velocity, with the 
different normalization in the disk, column and stellar wind.



Motivation for such simulations: stellar rotation rates
● Solar mass young stars show a large dispersion of rotation rates. When they reach the main sequence, 

they rotate with very different rotational velocities: from less then 10 km/s to more than 200 km/s. In a 
later evolution, after few billion years, most of them rotates with rotational velocity of few km/s; 
dispersion in rotation drops to only a few percents.

● For solar mass stars, spin-down is thought to be mainly because of a braking effect of magnetically 
driven winds. As the wind moves away from the star, its angular velocity decreases. The magnetic 
field of the star interacts with the wind, which slows the stellar rotation. As a result, angular 
momentum is transferred from the star to the wind, and the star's rate of rotation gradually decreases. 
Skumanich's Law (1972) states that, for a Main Sequence star on time scale of several hundred Myrs, 
angular velocity of a star decreases as Ω~1/√t.

● To obtain a full picture about torques in the system, both wind braking and star-disk interaction have 
to be considered. My simulations give an input on star-disk interaction.

● Goal is to find scaling laws for exchange of angular momentum between the star and surrounding.

● Idea is to predict the global stellar torque, which will then be used in stellar evolution models. For this, 
we need to be able to determine torques of stars of different masses and at different evolutionary 
stages. We will focus on the early evolutionary phases.

● I also investigated the influence of magnetic field geometry on the transport of angular momentum 
between the star and the environment. For this, a parameter study was needed, determining the torque 
in the system:
- changing the rotation rates from 2-10 days, accretion rates from 10^-9 to 
10^-6 solar mass/year, with mass outflow of about 1/10 of the accretion rate.
-all this with various strengths and geometry of magnetic field.  



Another important motivation: jet launching mechanism
● In a part of the parameter space, there is a continuous launching of an axial jet from the star-

disk magnetosphere. I found that one has to wait until few hundreds of rotations of the star.
● The axial jet and the conical outflow are launched after the relaxation from the initial 

conditions. They are similar to the results in Romanova et al. (2009) and Zanni & Ferreira 
(2013).

Zoom into the launching 
region.



Magnetospheric launching of conical outflow and axial jet

Color shows momentum in the MHD simulation in the young stellar object with conical 
outflow and axial jet, lines are the magnetic field lines. Right panel is a zoom into the left 
panel close to the star, to show the closest vicinity of the star.

conical outflow

axial jet



The asymmetric jet launching (with A. Kotek)
With A. Kotek in her MS Thesis at theWarsaw Uni. we took another look at the solutions with the jet 
launching in the full meridional plane, with Rxϑ=[217x200] grid cells in ϑ=[0,π]. We obtained the 
asymmetric jets launched from the star-disk magnetosphere.

Initial setup in a full meridional plane. Asymmetric jet launched from the 
magnetosphere.



The asymmetric jet launching in 3D simulations

• In the full 3D simulations I also obtain asymmetric jets. To be continued... maybe 
some of you will do it.
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Basic Linux shell commands

man <command> -displays the manual page for a given command.

ls -lists the current working directory

cd  -changes the current working directory

pwd -prints the user’s current working directory

cp <old>  <new> -copies a file <old> to <new>

mkdir <name> -creates a new directory <name>

mv <old> <new> -moves (renames) a file or directory <old> to <new>

rm <name> -removes (deletes) a file <name>, use with care, it is irreversible

* (asterisk) -matches characters in a filename, so *.txt matches all files ending in .txt

grep -selects lines in all files that match patterns, very useful

Text editors: beware, some editors add metacharacters to text or rearrange the start and end of lines, 
which can break your code. Use whatever you feel comfortable with for everyday work, but learn some 
basics of terminal editors, because e.g. on clusters you might not be able to use display remotely

Terminal text editors: “vi”, “vim”, many linuxen come with “nano”, in CAMK we use archaic (but 
capable enough) “joe”.
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Text editors

Text editors: beware, some editors add meta-characters to text or rearrange the start and end of lines, 
which can break your code. Use whatever you feel comfortable with for everyday work, but learn some 
basics of terminal editors, because e.g. on clusters you might not be able to use display remotely

Terminal text editors: “vi”, “vim”, many linuxen come with “nano”, in CAMK we use archaic (but 
capable enough) “joe”.



Computer use in astronomy continues to increase, and so also its impact on the 
environment. To minimize the effects, astronomers should avoid interpreted scripting 
languages such as Python, and favor the optimal use of energy-efficient workstations.  

 

ArXiv:2009.11295; Nature Astronomy vol.4, 819 (2020)
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Ecology of computing



Carbon footprint of 
astronomy and computing

• Comparison of the average Human 
production of CO2 (red line) with 
other activities, such as telescope 
operation, the emission of an 
average astronomer, and finishing a 
(four year) PhD.

• The emission of carbon while 
running a workstation is 
comparable to the world’s per-
capita average.
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Carbon footprint of computing

• The relation between the time-to-solution and the 
carbon footprint of the calculations is not linear. 
When running a single core, a supercomputer-used 
to capacity-produces less carbon than a 
workstation. More cores result in better 
performance, at the cost of producing more carbon. 

• Similar performance as a single GPU is reached 
when running 1000 cores, but when the number 
of cores is further increased, the performance 
continues to grow at an enormous cost in carbon 
production.

• When running a million cores, the emission by 
supercomputer by far exceeds air travel and 
approaches the carbon footprint of launching a 
rocket into space.
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Ecological impact of computing language 
• Results were obtained with the 

assumption that astrophysicists invest 
in full code optimization that uses the 
hardware optimally.

• In practice, most effort is generally 
invested into solving the research 
question; designing, writing, and 
running the code is not the primary 
concern, if the result is obtained 
reasonably fast. This is why 
inefficient (and slow) scripting 
languages as Python flourish.

• According to the Astronomical 
Source Code Library,  43% of the ∼
code is written in Python, 7 % Java, 
IDL and Mathematica. Only 18%, 
17% and 16% of codes are written in 
Fortran, C and C++ respectively.

• Python and Java are also less efficient 
in terms of energy per operation than 
compiled languages, which explains 
the offset away from the dotted curve.

• Among 27 tested languages, only Perl 
and Lua are slower than Python-
popularity of Python should be 
confronted with the ecological 
consequences.
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How to improve?

• Runtime performance of Python can be improved using numba or NumPy libraries, which offer pre-
compiled code for common operations-it leads to an enormous increase in speed and reduced carbon 
emission. However, these libraries are rarely adopted for reducing carbon emission or runtime with 
more than an order of magnitude.

• NumPy, for example, is mostly used for its advanced array handling and support functions. Using these 
will reduce runtime and, therefore, also carbon emission, but optimization is generally stopped as soon 
as the calculation runs within an unconsciously determined reasonable amount of time, such as the 
coffee-refill time-scale or a holiday weekend. We even teach Python to students, but without realizing 
the ecological impact.

• The carbon footprint of computational astrophysics can be reduced substantially by running on GPUs, 
but the development time of such code still requires major investments in time and expertise. 

• As an alternative, one could run concurrently using multiple cores, rather than a single thread. It is 
even better to port the code to a supercomputer and share the resources.

•  Best for the environment is to abandon Python for a more environmentally friendly (compiled) 
programming language. 

• Even better is to use other interesting strongly-typed languages with characteristics similar to Python, 
such as Alice, Julia, Rust, and Swift. They offer the flexibility of Python but with the performance of 
compiled C++. 

• Educators may want to reconsider teaching Python to University students. There are plenty 
environmentally friendly alternatives.
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Summary of the Lect. 1 

• General introduction to this lectures, Linux

• General intro to accretion history, observations

• Roche equipotential surfaces, PyAstronomy package

• Motivation and examples for accr.disk simulations, cosmic magnetic fields

• Linux shell commands, terminal editors

• Ecology of computing
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Outline,  Lect. 2: More detailed introduction to accretion

• Energetics of accretion, Eddington limit, spherical (Bondi) accretion

• Thin accretion disc, fluid & (M)HD eqs.

• Viscosity, resistivity, Alfven waves

• Code PLUTO, structure of the code, initial and boundary conditions

• Hands-on installation and testing, visualization with gnuplot, 
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Energetics of accretion

When I said that with accretion gravity made a comeback, I should say 
that it made it with a boom! - accretion is by far the most efficient way of 
extracting energy out of the matter we know: it yields about 10 times more 
than nuclear fusion!

We can show it in a back-of-the-envelope calculation for the luminosity of 
the disk acquired by the infall of material from the large distance onto a 
central object:
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Energetics of accretion
● In the literature, one can find various numbers for the efficiency of 

accretion, I list some below, but what is meant by “efficiency”? 
It is the power available at given mass accretion rate Ṁ onto an object of 
radius R: P=Ṁ GM/R . This power is usually dissipated (through radiation) 
away, otherwise there will be no accretion-e.g. heat would push the matter 
away.

● Efficiency of pair annihilation: η=1

● Efficiency of Nuclear (H) fusion: η~10^{-4}

●  Accretion efficiency η : Earth: 10^{-9}, Sun: 10^{-6}, 
White Dwarf: 10^{-4}, Neutron star: 10^{-1}

● Accretion efficiency η=GM/(Rc^2) onto black hole (no hard surface) 
depends on the details of accretion flow and spin of BH:

● 0.057< η <0.42 for thin accretion disk
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Eddington limit
What is the maximum luminosity at which matter still can be accreted?
(This means that gravitational force on a chunk of fluid still just exceeds 
the radiation pressure)

● Simplest case is radial accretion onto a mass point M. If medium is fully 
ionised gas of electrons and protons, and we assume Compton scattering
with the simplest radiation pressure and

from F
rad

=F
g
 we get that

● Some Eddington luminosities: solar mass NS
          supermassive BH

● Eddington mass accretion rate: 

● Usually it is said that the accretion is not possible if L>L
Edd 

but there are

cases when it is not true, and they are very interesting cases of 
supernovae and non-spherical accretion cases in disks and jets.
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 Spherical (Bondi) accretion-fast forward
H. Bondi (1952): an analytic solution for the spherically symmetric, steady-state accretion 
flow of an infinite gas cloud onto a point mass, in the Newtonian approach. It is spherical 
accretion onto a compact object traveling through the interstellar medium. It is generally used 
in the context of neutron star and black hole accretion.
Such model was later extended, to be applied from the study of star and planet formation to 
cosmology.
The derivation is not a simple one, Wikipedia answer: a rough estimate goes from the 
accretion rate Ṁ≃πR2vρ where ρ is the ambient density, v is the object’s velocity, and R is 
the Bondi radius, which comes from setting escape velocity equal to the sound speed and 
solving for radius. It represents the boundary between subsonic and supersonic infall, and it 
is R=2GM/c

s
2. Inserted into Ṁ it gives  Ṁ≃πρG2M2/c

s
3 . More detailed version is below.

● Bondi considered adiabatic (p~ργ)  accretion of gas. Far from central mass, gas elements 
move in dependence of their thermal energy only, so that with gas temperature T

inf
 with 

sound speed c
s 
we can say that at some critical distance from the central mass r

cr
 the escape 

velocity is equal to the speed velocity: r
cr
=2GM/c

s
2

For r<r
cr 

material falls freely onto the central mass, and for the density above the radius r
cr,

 
ρinf we can write the infalling mass Ṁ=4πG2M2ρinf/cs

2

Hydrostatic equilibrium gives ρ~r -3/2  (with γ=5/3) and temperature

T~1/r^[3(γ-1)/2]. Infalling gas reaches speed of sound at distance r
s
 from the center.  We 

find r
s
=GM/c

s
2 (5-3γ)/4 .  Even more in details is on the next 6 pages, I give it if you’d ever 

need it, but here we do not need it, we go for the disk.
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 Accretion disk
Let us take another view on accretion: material point orbiting around a 
center of mass interacts with its surrounding, transferring part of its energy 
and angular momentum.

● Consequence of such scenario is slowly spiral-in of the mass point.
Energy which can be extracted is equal to the bonding energy of the 
smallest orbit: E

acr
=GMm/R , see the back of the envelope calculation.

● The derivation of the basics of accretion  process can  be given within 
General Physics terminology, as follows.

-We consider rotating volume of gas with angular momentum L in cylindrical 
coordinates (R,φ,z), with z parallel to the axis of rotation.

-We further assume that distribution of L between the gas particles is 
much slower than radiation transfer and rotation=L of the particle with 
mass m remains constant, but its kinetic and internal energy are 
distributed to other particles by collisions, shocks and radiation.

-For the constant L the minimal energy is for the circular orbit=>we 
obtain the thin disk in which particles rotate with vφ=RΩ(R),we can write, 
with potential Φ: Fg=ma=mvφ

2/R=-dΦ/dR=Fcf.
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 Accretion disk

● If there is a process counteracting the spread of particles (as viscosity), 
energy spreads through the system by heat, and escapes from the system 
by radiation.

● As a consequence, mass particle will orbit at smaller R, we can understand 
this as transformation of the orbital energy into radiation energy.

• With the gas surface density S(R,t) and radial velocity v
r
(R,t), we observe the 

element of gas with inner radius R and outer R+ΔR. Mass of such ring is 
Δm=2πR·ΔR·S, angular momentum L=Rxp, where for angle of 90°between 
R and p we can write L=Rmvφ, and in fact we can write, with L=mR2Ω, 
that the angular momentum of such ring is  2πRΔRSR2Ω. Change of mass of 
such a ring is equal to the fluxes in and out from the neighboring rings 
(positive sign is away from the center): ∂/∂t(Δm)=flux(R )-flux(R+ΔR)=

=[with ΔR→0, 3rd term=0 and f(x+Δx)-f(x)=Δx∂f(x)/∂x]= -ΔR∂(2πRSvr)/∂R
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 Accretion disk

● Now we can write ∂/∂t(Δm)/ΔR=-∂/∂R(2πRSvr) and since

Δm/ΔR=2πRS, so we stay, after divide by 2π, with
∂/∂t(RS)=-∂/∂R(RSvr), ∂R/∂t=vr and we can write further

vrS+R∂S/∂t=-vrS-R∂/∂R(Svr). Since ∂/∂R(RSvr)=vrS+R∂/∂R(Svr)

we can write: R∂S/∂t+∂/∂R(RSvr)=-vrS=0, since we are interested 
only in the change of mass.

● The same we can do for conservation of the angular momentum of 
such a ring, but adding the term for transfer of angular momentum 
between the rings, because of viscous torques, ΔR∂G/∂R:
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 Accretion disk

• In the linear approximation, first two terms are -ΔR∂(2πvrRSR2Ω)/∂R

and we have:

• Again we discard constant 1st l.h.s and 2nd r.h.s. terms and write
∂R/∂t=vr to get: 
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 Viscosity

       Two neighbor rings in the disk.

• Now we will find the torque of two neighbor rings. The speed of chaotic 
motion in the gas is ῡ, and λ is the characteristic scale, which is also the 
mean free path. After exchange, element A will (in average) have torque from 
the position R-λ/2, and element in B from R+λ/2. Material in chaotic 
movement does not transfer matter (in average =0), only the steady flow can.

• Transferred mass is ∂m/∂t=Hρῡ, where H is the disk height in z direction. 
• For the accretion process essential is the difference in transported torques, 

and there is transport of torque because of chaotic motions. This is viscous 
torque.

• Observer in point P, rotating with  Ω(R ) sees fluid in R-λ/2 moving with 
speed
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 Viscosity

● This gives the average flow of angular momentum by the unit angle directed 
outwards:

and inwards:

● Torque on the outer ring by the inner ring is equal to total outwards torque.
In the first approximation we have:

• =[first two terms in { } give -Rλ∂Ω/∂R, 3rd and 4th after λ/2→0 give
-λ/2Ω(R )  ]=-λρῡHR2∂Ω/∂R.
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 Viscosity, and back to the disk

• For the whole ring we multiply the obtained result with 2πR, and with the 
surface density ρH=S [from ρ=m/V, S=m/A we divide with H, we have
S/H=m/(AH), r.h.s.=ρ] we obtain that the torque of the outer to the inner 
ring  

• (- inner torque to the outer ring)  is G(R )=2πRνSR2∂Ω/∂R,
where ν= λῡ is the kinematic viscosity coefficient.

• We had G=G(R,t), and with R∂Ω/∂R=A we have G(R )=2πRνSAR, where
νSA is a viscous force per unit angle.

• Now we can insert the obtained viscosity in the disk equations. We insert G
into the equation we obtained from angular momentum conservation:

• We divide with R and together with R∂S/∂t+∂/∂R(RSvr)=0 we can 
eliminate vr.
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 Viscosity, and back to the disk

• The first equation, after division with R, we can rewrite as:

• We write R∂S/∂t+∂/∂R(RSvr)=0 as ∂(Rsvr)/∂R=-R∂S/∂t and we have

• In the first approximation L is a constant vector, and since R2Ω is 
proportional to its length, we can discard the 1st term.   
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 Viscosity, and back to the disk eqs.

● We obtain: 

• Inserting it into R∂S/∂t+∂/∂R(RSvr)=0 we

have:

• With F
g
=F

cf
, potential of point mass M is

mv2/R=GMm/R2 and vφ=ΩR, G=gravity

const., Keplerian Ω=(GM/R3)1/2 and
dΩ/dR=-3/2(GM/R5)1/2 and     →
This is the diffusion equation for the
surface density S: mass diffuses
inwards, angular momentum outwards.

• Diffusion timescale is tvisc=R2/ν. 
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 Viscosity, general discussion 

● We obtained the solution for S. In general, ν depends on local conditions in 
the disk, and ν=ν(S,R,t) so that we obtained nonlinear diffusion eq. for S.

● If ν depends on R only, eq. is linear in S, even for the power of R
(it was clear already in 1920-ies, Jeffreys 1924, Weizsacker in 1948).

● Most of the mass moves towards the center, losing energy and torque. A
tail of matter moves towards larger R to conserve the angular momentum.
Matter from the initial ring arrives to the center, and total angular
momentum is transported to large radii by a very small mass, compared to
the disk mass. The disk slowly spreads outwards.

● In 1973 Shakura & Sunyaev gave a solution, parameterizing viscosity
as ν=αcsH, where α<1 is a coefficient describing “turbulent viscosity”.

Usually ν~LV, where L is characteristic scale, and v characteristic 
velocity of the turbulent eddies-so we assumed L~H of the disk, 
and V~cs (turbulence is usually assumed to be subsonic).

In astrophysics we are usually dealing with large Reynolds numbers Re, 
defined through Re=LV/ν, simply because of large L.
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 Viscosity, general discussion 

• Re measures ratio of inertial to viscous forces, so in the disc we usually 
have proportionality with vφ

2/R 

• For Re<<1 viscous forces are dominating, and with Re>>1 they are 
unimportant. In accretion discs usually Re>>1011 and we can not get much 
lower.

• Clue of the problem is exactly in so large Re: from experiments we know that 
fluids have some critical value Re

c
, at which the velocity becomes chaotic, so 

we have turbulence. Typical Re
c
=103, so we can conclude that disc material 

is turbulent.
• There were many works on turbulence, but we still do not have the full 

understanding of the mechanism in accretion disks. Currently accepted 
paradigm is the one by Balbus & Hawley (1992), where magneto-rotational 
(MRI) turbulence is invoked.

• Mathematically, viscous process is a diffusion process (of matter and angular 
momentum), this is the basics for our description.  We will see it in the 
following equations.

   

 

55



Fluid equations
56

We will now make a general intro to (M)HD equations-for the first read I suggest 
J.D.Jackson “Classical electrodynamics”, 10th chapter (up to the 3rd edition, later removed, 
probably as too specialized).



Fluid equations
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Fluid equations
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Alfven waves
59

Alfven is my hero in writing of a 
short, impactful article!



 Simulation ver. computation

● Computation is actually an evaluation: you plug the numbers in a known algorithm and 
obtain the result. For this, you need to know the analytical expression. You still can use a 
(human?) calculator with a slide ruler, or mechanical or electrical or electronic calculator or, 
today, computer to actually obtain numbers and plot e.g. trajectory of a bullet, but you do 
know the equation for the solution.

● Simulation is needed when you do not know a simple equation for the solution. You set the 
governing equations, e.g. differential equations, and use a numerical method to find the 
solutions. This is usually done in time steps, and we obtain the solution to some precision. 
We do not know the analytical expression for the solution, we just have numbers. We can 
interpolate some power law and write the equation afterwards, but this will be only an 
approximation, without physical  understanding of the outcome. Then we usually hand-
wave the solution. More stirring of the air usually means less of physical understanding. 

● Why PLUTO? I used other codes, but PLUTO is constantly evolving (and is used in variety 
of problems) and the development is followed in the manual-which is not so often the case 
in the coding world. The version 4.4.2. just changed to 4.4.3. in September 2024. PLUTO 
user manual gives chance to students to go through the-still steep-learning curve of the 
numerical simulations in the shortest possible time. Check also Doxygen html files in 
PLUTO/Doc.
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 PLUTO documentation, templates and test examples
I HOPE YOU MANAGED TO DOWNLOAD THE CODE AND DO THE FIRST TEST. WE WILL 
BRIEFLY GO THROUGH THE STEPS.

● PLUTO is freely available. Source files of the code are downloadable from 
http://plutocode.ph.unito.it/

● After unpacking, the source code is in PLUTO directory. In PLUTO/Doc
is the manual, userguide.pdf. Follow the “Quick start” at the beginning
of the document to install and test the code. Produce the gnuplot 
output specified in the manual, to verify if the setup works.

● The code comes with templates of subroutines which are usually changed. 
They are given  in the PLUTO/Src/Templates

● Test examples, under /PLUTO/Test_Problems, are basic versions of 
setups used in previous versions of the code, during the developments of 
the setups for simulations presented In publications by various groups. It 
is a good library of examples for faster start of one’s own project.

● I will provide the setup for HD and MHD accretion disk for this lectures.
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 PLUTO physics modules, equations
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 PLUTO physics modules, equations
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 PLUTO physics modules, equations
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 PLUTO physics modules, equations
68



 PLUTO physics modules, equations
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 Shell variable setup, aliases

● We follow the “Quick start” from the beginning of the 
PLUTO/Doc/userguide.pdf

● Instead of every time after login repeating
 export PLUTO_DIR=/home/user/PLUTO # in bash shell
Create in .bash_aliases (or .bashrc) a shell variable with path to PLUTO:

   export PLUTO_DIR="/home/miki/PLUTO"

● Also, it is useful to create an alias (shortcut) for running the setup.py, e.g.:
alias pls='python $PLUTO_DIR/setup.py'

● For runs on multiple processors on laptop, useful is alias like:
alias plutorun6='mpirun -np 6 ./pluto'
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System setup
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Hands-on introduction: PLUTO/setup.py
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Hands-on introduction: 
PLUTO/Config/Linux.mpicc.defs
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 Test problem: Sod shock tube in 1D 74



 Files for setup and their modifications
● The PLUTO original source will not be changed, for our simulations we just 

append to it our version of some files in a pre-compiling step.
● The changed version of a file in the work directory (for which I suggest the 

name /home/Pluto and plz do it so, that I could easier help you, navigating 
you to the routines where you should check for errors) has, by default in 
PLUTO, priority to the original version in PLUTO/Src directory.

● The files to be copied into the work directory from the working version into a 
new setup are init.c, pluto.ini, definitions.h, (+userdef_output.c, 
res_eta.c, visc_nu.c for the accretion disk setup).

● The file definitions.h is the only *.h file changed in the work directory. All the 
other *.h files are to be changed directly in PLUTO/Src directory.

● In the file pluto.ini are defined the grid, solvers and run parameters. 
● Most of the entries in definitions.h are done through the python 

environment during the setup of the run, but some entries are to be done by 
hand editing the definitions.h file, prior to compilation.

● In the file init.c is defined the physics setup.
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 Test problem: Sod shock tube in 1D
Detailed Description from Doxygen file: The Sod shock tube problem is one of the most used benchmark for 
shock-capturing schemes. It is a one-dimensional problem with initial condition given by a discontinuity 
separating two constant states:

The evolved structured at t=0.2 is shown in the panels below and consists of a left-going rarefaction wave, a 
right-going contact discontinutity and a right-going shock wave. The results shown here were carried 
with PARABOLIC interpolation, CHARACTERISIC_TRACING time stepping and the two_shock Riemann 
solver on 400 zones (configuration #04).
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 Test problem: Sod shock tube in 1D

Typing in terminal:
gnuplot> plot "data.0001.dbl" bin array=400:400:400 form="%double" ind 0
You should obtain:
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Summary of the Lect. 2

• Energetics of accretion, Eddington limit, spherical (Bondi) accretion

• Thin accretion disc, fluid & (M)HD eqs.

• Viscosity, resistivity, Alfven waves

• Code PLUTO, structure of the code, initial and boundary conditions

• Hands-on installation and testing, visualization with gnuplot, 
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Outline, Lect.3 : General solutions for thin disk

• Shakura-Sunyaev 1973 disc

• Initial and boundary conditions in PLUTO

• Setup and running of Orszag-Tang problem in 2D and 3D

• Visualization in 2D and 3D with Paraview
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General equations

•  We will go through (sometimes painful, but nobody said it is to be easy!) 
detail into the accretion disk equations.

• The obtained solution is still a starting point for explanation of the birth of 
stars and larger structures.

• Matter which we consider, when undergoing accretion, is gaseous, which 
means that interaction is by the collisions, not short distance forces. We use, 
as we did before, λ for the mean free path of the particles, ῡ for the mean 
velocity (velocities are measured in the comoving coordinates, and 
distributed following a Maxwell-Boltzmann distribution, which is dependent 
on the temperature, T), ρ for the mass density of gas. When observing the gas 
at scales L>>λ, we can consider it as a continuous fluid, with density, 
velocity and temperature defined in every point of the flow. The equations to 
describe such fluid are the equations of conservation of mass, momentum and 
energy.

• Conservation of mass:
Conservation of momentum follows from the force acting on a fluid element:

P is pressure, and the direction of ort vector n is outwards from the volume. 
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General equations

•  Force acting on the unit volume element of the gas is (-∇P), and its equation 
of motion we obtain from the 2nd Newton, multiplying it with the unit volume 
mass=density ρ and acceleration, so we can write:

• Acceleration is also with respect to the comoving coordinates,
not in the background rest system, so we have two parts in the velocity 
change in this equation: one is the change of velocity in the given point of 
space at a time interval dt: ∂v/∂tdt and another is the difference in velocities 
at two points of space, distanced r, through which the fluid flows during dt, 
what we can write as dr∇v, so we can write all together:

• When we insert it to the above equation of motion,
we obtain

• General equation of motion should add the source term for the external forces 
acting on the system, we obtain the Euler equation:  (E) 

• If we insert f=ρg for a gas in gravity field (g is the
gravity acceleration), f could contain contributions
from viscosity, external magnetic field etc.

81



General equations

•  Momentum of the fluid element is ρv, conservation of the momentum is:

• For a stationary flow ∂ρ/∂t=0, so also the last derivative equals zero, so  
with E we have: (A)

• From is

• For the accretion onto spherical object of mass M, we choose spherical 
coordinates (r,ϑ,φ), radial component of the equation (A) is (G=grav. const)

• where []=2rv
r
+r2∂vr/∂r so we have

                                                        (B)
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General equations

•  From the continuity equation we have, for the stationary case with ∂P/∂t=0
that ∂ρ/∂t+∇(ρvr)=0. For any vector A radial part is

 so we have  which means that r2v
r
=const.

Since (-ρvr) is inflow mass flux, this const must be related to mass flux,

• i.e. the accretion rate Ṁ=4πrρ(-vr), since r2·(inflow flux)=const=Ṁ/4π,

for the whole sphere is 4πr2Ṁ·(inflow flux).

Now we insert r2v
r
= - Ṁ/4πρ into eq.(B) from the previous slide to obtain

v
r
=-Ṁ/4πρr2, which in the limit r→0 gives v

r
=0  and for the stationary 

spherical accretion we stay with
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General equations

•  Energy conservation:
The gas element energy is a sum of kinetic term 1/2ρv2 (by unit volume)
and internal (thermal) energy ϵρ (ϵ is specific energy-by mass unit, 
dependent on temperature T). From the equipartition of energy we know that 
each degree of fredom has average energy of 1/2kT, so for mono-atomic gas 
we have only 3 translational directions and we can write ϵ=3/2kT.

• Energy conservation equation we write similar to mass conservation,
plus adding source terms, depending on physics we include in our model, 
now instead of ρ we conserve the kinetic and internal energy, and in the 
spatial derivative we will have work done by the pressure, Pv:

                                                   =0  and for a stationary case:

On the r.h.s. we can add the losses (so, - sign!) by radiation, heat etc. as
the source terms inside -∇( ).
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Perturbative solutions for the disk

•  Now we move to the perturbation method-we will compute the perturbation 
in relation to the hydrostatic balance. We had

and with v=0 in the hydrostatic case we stay only with
                          ∇P=f

 
• For the ideal gas, which we can assume everywhere except degenerate gas in 

some dense objects or near the centres of the normal stars, we have

• with m
H
~m

proton
 is the hydrogen atom mass, and μ is the average molecular 

mass in units of m
H
, so that for completely ionized hydrogen it is μ=0.5 

and for neutral hydrogen μ=1.
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Perturbative solutions for the disk

•  Now we assume a small shift in the density and pressure (ρ’, P’) from the 
initial balance values  (ρ0, P0):    ρ=ρ0+ρ’ ,  P=P0+P’ ,  v=v’

• Depending on the processes, perturbations can be isothermal or adiabatic.
• For adiabatic changes with γ=5/3 and isothermal with γ=1 we can write 

P/ργ = const=k, so we can write P
0
+P’= k(ρ0+ρ’)γ [set γ=1.05 in simuls!] 

• Linearizing the mass continuity eq.:
• with (ρ’)v→∇ 0 in the first approx.

• We do the same with Euler eq. to obtain:

• Since P∇
0
=f, and products of

second and higher orders are
neglected, we obtain ρ0∂v’/dt=- P’ . ∇

• We obtained two eqs.: (C)
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Perturbative solutions for the disk

•  From P
0
+P’= k(ρ0+ρ’)γ we see that P is a function of ρ only, so that we can 

write P’=(∇ ∂P/∂ρ)0∇ρ’, to the first order, where with a subscript 
0 
we 

assigned that we  evaluate the derivation for the equilibrium state.
• The second of the eqs. (C ) we can write now as:
• We act on it with :∇

• We act on the 1st eq.in (C ) with ∂/∂t:

• We subtract the two eqs.to obtain:

the wave equation! With ↑  as the sound speed, c
s
2, we can write
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Perturbative solutions for the disk

•  For P’ and v’ we obtain the equivalent equations, so we conclude that small 
perturbations around the hydrostatic equilibrium positions spread with the 
speed of sound.

• Depending on the kind of perturbation, we have two possibilities,
adiabatic

or isothermal:
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Stationary thin disk

•  Back in “Viscosity, and back to the disk eqs”, slide 25, we obtained the 
equation: (G is gravity const. here!)

• To continue, we need the viscosity. That the disk would be “stationary” and 
that viscosity would work, we need that the mass accretion rate Ṁ would be 
slow enough. Then we can set ∂/∂t=0 and from the mass conservation we can 
write Ṁ=2πRS(-vr) and from the angular momentum conservation we have 
RSVrR

2Ω=(G(R,t)+C)/(2π), with C=const. related to the angular momentum 
rate of the accreted matter. Star must rotate slower than the breakup rotation 
at the equator, so when approaching closer to the star, there is a region in the 
disk where the disk corotates with the star. Even closer to the star, our 
approximation breaks-here starts the discussion and departure from the simple 
estimates.
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Stationary thin disk

•  We had G=G(R,t), and with R∂Ω/∂R=A it was G(R )=2πRνSAR, where 
νSA is a viscous force per unit angle. After integration we have
-νS∂Ω/∂R=S(-vrΩ)+C/(2πR3)    (D), where C is a constant.

• Inside a ring at RA+b, the rotation of the disk approaches Keplerian, 
reaches ∂Ω/∂R=0, and increases until it reaches R~RA. We can 
write     (G is gravity constant now!).

• Closer than RA The thin disk approx. is not valid animore. To find C 
we insert R=RA+b and evaluate C=2πRA

3SvrΩ(RA+b)|R_A+b (now Ω() , 
not multiplying!), which gives, after inserting mass accretion rate Ṁ 
and Ω(RA+b), C=-Ṁ(GMR

A
)1/2 that          , exact to order O(b/R

A
). 

We insert it to eq. D to obtain

• Loss of energy because of viscosity is                                                        which is 
D(R)=g/(4π)∂Ω/∂R per unit disk
surface. Inserted back to (D) it it gives that    
D(R ) is independent of viscosity:
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Stationary thin disk

•  Now we can estimate the luminosity of a disk between R
1
 and R

2 
(2 is for 2 

disk sides: , 

• If we substitute x=R/R
A
, we obtain

• For R=R
1
 and R

2
→∞ we obtain the complete disk luminosity (G is gravity 

const):

• where we defined

• This means that half of the energy is radiated from the disk, and half is 
released very close to the central star, which takes the same amount like the 
whole disk! (which has a much, much larger surface). 
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Stationary thin disk

•  This was for radial direction, is it all consistent with the vertical direction? In 
the vertical, z direction, there is mainly no flow, we have the hydrostatic 
equilibrium:    which we get from the vertical component of

 Euler eq. (E), neglecting all the terms with velocities.
For the thin disk z<<R we have

• Since H||z we can write ∂P/∂z~P/H and z~H, and condition for a thin 
disk becomes H<<R. For P∝ρc

s
2 we have

which means that it has to be
c

s
<<(GM/R)1/2; additional condition for a thin disk: local Keplerian speed 

must be highly supersonic. Only with this satisfied, the approximation of thin 
disk can be used. - This is a strong condition for the inner workings of a disk, 
and tells us that the local orbiting speed will be close to the Keplerian speed.
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Stationary thin disk

•  The radial component of the Euler eq.is:
If we neglect the pressure term, because

• of  c
s
<<(GM/R)1/2, we have ρ-1∂P/∂R~cs

2/R in comparison to a larger 

gravitational term GM/R2, with Ṁ=4πrρ(-vr) and

                            we have

• Now we are slowly shifting to the Shakura & Sunyaev (1973) main
assumption: for any reasonable viscosity, the radial velocity vr is 
highly subsonic, while orbital velocity is highly supersonic and 
approximately Keplerian: with ν∝c

s
H we have vr∝ν/R~c

s
H/R<<c

s

• NOW WE HAVE ALL THE EQUATIONS FOR THE DISK STRUCTURE.
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Lynden-Bell on steady model disk

Usually cited 
before Shakura 
& Sunyaev 
disk is 
Lynden-Bell 
(1969) 
discussion of 
the origin of 
emission from 
galactic 
nuclei-”old 
quasars”, 
Schwarzschild 
mouth was 
still the term 
for the event 
horizon. 
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 Now we are in a better position to discuss the SS73 paper, which is one of the most cited papers on accretion disks (10657 
at noon Sunday 27th 02 2022, 12244 on 11.10.2024)



Shakura & Sunyaev viscous alpha disk

It got a reprint in A&A in 2009, and a review by Andrew King, which best describes its importance and why it was needed-it 
stem from  observational evidence, new X-ray astronomy was pending: The mere requirement that an object should produce 
X-rays at all was already challenging. It showed unambiguously that the accretion flow must itself be luminous, and so quite 
different from the cool protosolar disks studied in detail in the past.

In addition, tight constraints on sizes, geometry, and timescales flowed from the identification of many of the early sources 
as close binaries. This opened the possibility of showing that accretion on to a black hole or a neutron star was the only 
reasonable way of explaining a mass of data. The challenge for theorists was to supply a robust theory of these accretion 
flows that was easy to apply to observations.
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Shakura & Sunyaev viscous alpha disk
•  With the thin disk approximation, we can compute the structure of the disk. 

In practice, we are solving the 1D with only a radial dependence, as we 
decoupled it from the vertical, z-dependence, which is essentially written as a 
hydrostatic equilibrium and energy transport.

• In the radial direction, the disk structure enters only in the local energy 
dissipation rate D(R ).  

• From the hydrostatic eq. for isothermal structure we obtain the 
solution    where ρc  stands for the density at z=0.

• The central density of the disk we can approximate as ρ=S/H, H=ρcs/vφ.

cs
2=P/ρ, where P is a sum of gas and radiation pressure

with an assumption T(T,z)~T
c
(R,0). The central temperature T

c
 is determined 

by the relation between the vertical energy flux and the energy dissipation 
because of viscosity.

• Locally, using the thin disk approximation, we now have the vertical 
temperature gradient, so that for z=const surface we have radiated energy flux
(ϰ

R
 is the Rosseland mean opacity):   
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Shakura & Sunyaev viscous alpha disk
•  We assumed the optically thick disk: τ=ρHϰ

R
=Sϰ

R
>>1, so that the radiation 

is locally very close to the black body radiation. In the case with τ≤1 
radiation could directly exit the disk, and the equation for F(z) from the 
bottom of previous slide would not be valid any more.

• For the energetic balance must be F(H)-F(0)=D(R ), so that
which, with T

c
4>>T4(H) gives     .

• For the full set of eqs.we need the ϰR=ϰR(ρ,Tc) relation, and expression for

ν and its relation to S and Ṁ. This all amounts to 8 equations for 
ρ, S, H, Tc, cs, P, τ,ν in dependence of R, M and Ṁ ,with some 
parameter in the viscosity, which are describing the thin disk model: 
 

                                    +
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Shakura & Sunyaev viscous alpha disk

•  With “alpha viscosity” parameterization ν=αc
s
H

 
Shakura & Sunyaev (‘73)

gave the first solution. They used the Kramers’ law (6.6·1022 wrongly sometimes!!)

ϰR=5·1024ρTc
-7/2cm2/g and neglected the radiation pressure in eq.(4). Now 

the system of 8 eqs.can be solved. I give steps (from “Accretion power…”):

• First we simplify f4=1-(R
A
/R)1/2 and write whole r.h.s. of eq.5 as equal to D.  

Now with eq.6, ϰR and eq.2 we can write eq.5 as

4σT4/(3τ)=D= 4σT15/2/(3*5·1024ρS)=[ρ=S/H]=4σHT15/2/(15·1024S2)=
={H=csR

3/2/(GM)1/2 and from eqs. 3 and 4 (without rad pressure term) 
write

H=R3/2T1/2[kB/(GMμmp)]
1/2 }=4σR3/2T8[kB/(GMμmp)]

1/2/(15·1024S2), and from 

that obtain T8=15·1024S2D[kB/(GMμmp)]
1/2/(4σR3/2). We insert D back as the 

r.h.s of eq.5 and use eqs.7 and 8 (where finally ν=αc
s
H comes into 

game), to write the solution-I give the detailed derivation of solutions on 
the next slide, this is usually not shown in literature so I leave for you to 
type it down in Latex; then we can write vr 
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Shakura & Sunyaev viscous alpha disk

We usually find in the literature:

 

                                                        190

• It is important that α is nowhere coming with large power, so that any error because of 

our not knowing it, is less.   
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•  The Kramers’ law for ϰR is critical, because when it is not holding any more, 

our approximation breaks down, but until it holds, disk can extend far in R, of 
the order of Roche boundary for a more massive star.

• Mass in the disk is     , which is even in the 

very large disks negligible in comparison with the central object. This justifies 
the neglect of self-gravity of a disk, which is valid until ρ<<M/R3.  Only for a 
very small α, of the order of 10-10, this would not be fulfilled.

• The disk thickness in z-direction means that each element of the disc
surface radiates as a blackbody with a temperature T (R) given by equating 
the dissipation rate D(R) per unit face area to the blackbody flux: σT4=D(R )

• If we insert D from the bottom of slide 47:
•

                                   Ṁ
16

 = Ṁ /1016 g s-1, m
1
=M/Mʘ,R

9
=R

*
/109 cm etc. for  

                                          disk around WD (R
9
) & NS (R

6
). Note R

A
=R

*
 now!
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•  The low power of α in the equations is good for usefulness of α as a 
parameter, but it also means we cannot expect to learn the typical size of α by 
direct comparison of steady-state disc theory with observations. This is 
something what is troubling disk astrophysics until today. No free lunch!

• A good thing is that for α≤1 we obtained believable solutions, which are not 
too much off the models from observational data.

Where we expect the assumptions (Kramers’ opacity and the neglect of 
radiation pressure) to break down? We had ϰ

R
=τ/S=36 Ṁ

16
-1/2 m

1
1/4 R

10
3/4 f−2   

independent of α. We compare with other opacity sources-the major 
competitive opacity is electron scattering where ϰ

R
=σ

T
/m

p
~0.4cm2/g with 

Kramers’ opacity dominating for R>2.5×107 Ṁ
16

2/3 m
1

1/3f8/3 cm. This is smaller 
than the radius of a white dwarf for any reasonable Ṁ, so for the accretion 
discs in cataclysmic variables we expect Kramers’ opacity to dominate in 
most of the disc.

Shakura & Sunyaev viscous alpha disk 102



• In reasonable range we can rely on the results shown in the figure below for 
the physical regimes in steady α-discs around compact objects:
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• If the disk is concave, then the central, hot regions, could irradiate the more 
distant, colder parts of the disk with hard radiation, and the picture 
complicates-this would show in observations.

k indicates the direction of propagation of the radiation incident on the disc and n is the local 
inward-directed normal vector.

• In low-mass X-ray binaries the disk is probably heated by irradiation by the central 
accretion source. If the accretor is a luminous star, we can have a similar effect.

• If the central source can be regarded as a point, its total radiative flux at disc radius
R is L

pt
/(4πR2), source with L

pt
 total luminosity. The flux We can write:

crossing the disc surface at this point is
 β is the albedo, the effective fraction of incident radiation
scattered from the surface without absorption, and ψ is the
angle between the local inward-directed disc normal and
the direction of the incident radiation. 
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• Since dH/dR, H/R are both <<1 for a thin disc

• With effective temperature T
pt
 resulting from irradiation by the point source and F from the 

previous slide,

T
e
 is the effective temperature of the central source, defined by L

pt
= 4πR

*
2σT

e
4,

with the characteristic source dimension R
*
. With H varying as R9/8, for the non-irradiated disk in the 

solutions for the disk, in a disc deriving all its luminosity from irradiation by a point source, one can 
show that H  R∝ 9/7, and the factor in square brackets in solution lies between 1/8 and 2/7, which we 
name g, (to add another g). The ratio H/R is roughly constant in a disc, so T

pt
 falls off as R−1/2 . For a 

large enough disc T
pt
 dominates the disk effective temperature, which goes as R−3/4. We obtain:

• If the central luminosity L
pt
 results from accretion, as in low-mass X-ray

binaries, we have L
pt
 = GM Ṁ /R

*
 where R

*
= 10 km for a neutron star, and

a similar value for a black hole. Then

• This means that even if the combination (H/R)g(1 − β) can be <10-3, the central source will dominate for a disc with a 

large enough ratio R/R
*
. In low-mass X-ray binaries R~106cm and outer disk radius is ~1010cm, so R/R

*
~104 and 

there will be a large range of surface temperatures in the disk.
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• Alpha viscosity does not give us predictive power. 
• Since ∂/∂R(R2Ω)=0 [Rayleigh criterion, stability against axisymmetric 

perturbations] and ∂Ω/∂R<0 . Most potential mechanisms are sensitive to 
the angular momentum gradient, so they work in such
a way that they are bringing angular momentum INWARDS. We need a 
mechanism sensitive to Ω. 

• If not alpha viscosity, then what? Currently Balbus-Hawley (magnetorotational, 
MRI) instability (1992), how it works?
If we imagine a straight magnetic field B line threading a rotating disc, 
magnetic tension tries to straighten line, there is imbalance between gravity 
and rotation which bends the line (figures in this and next 2 slides are from A. 
King’s lecture I found online). 
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• Vertical fieldline perturbed outwards, rotates faster than surroundings, so 
centrifugal force > gravity, so that kink increases. Line connects fast-moving 
(inner) matter with slower (outer) matter, and speeds latter up: outwards a.m. 
transport!

• For a too large mag. field, instability is supressed. Distorted fieldline stretched 
azimuthally by differential rotation, strength grows, pressure balance between flux 
tube and surroundings requires B2/8π+P

gas,in
=P

gas,out
 , so that gas pressure (and 

density) are lower inside tube;  buoyant (Parker) instability works, and  Flux tube rises 
above the disk, creating another vertical field, which closes the cycle, which can 
transport the angular momentum – this was shown to work in numerical simulations.
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• Another effect which will change the picture is when the disk becomes larger: 
Self-gravity of disk 108



2D test problem: Orszag-Tang



Orszag-Tang I.C. & B.C.

For each simulation we need to define initial and boundary conditions.

I introduce some numerical simulations terminology here in bold:

We set velocity and magnetic field in a 2D Cartesian coordinates, in a 
computational box with (x,y,0)=(256x256x0) grid cells and a physical domain 
x,y=[0,2*pi]
  
Velocity components: v = (-sin y, sin x, 0) 

  Magnetic field: B = (-sin y, sin 2x, 0) 

  Density: rho = 25/9

  Pressure: p    = 5/3



Orszag-Tang I.C. & B.C.



OT, standard test but not so standard results



OT, standard test but not so standard results



Hands-on introduction to setup files of PLUTO

• Guided tour through the source files:

-pluto.ini contains definition of:
 grid, solver, choice of boundary conditions, output steps, parameters.

-Definition of output formats.

-Output files, files to save for later analysis and eventual restart.

-definitions.h: macros setting.

-init.c: physical setup, equations for initial and boundary conditions.



Hands-on introduction: pluto.ini



Output formats & files to save

• In pluto.ini we defined which output

• data.xxxx.dbl files – viewing, processing with Python, idl etc. packages.
-also, for restart, together with restart.out.

• Data.xxxxdbl.h5 - hdf5 files-need to set the flag in /PLUTO/Config/*.defs file

• data.xxxx.vtk files – for viewing with Paraview, VisIt.

• Together with data.xxxx.dbl and .vtk files, always save also, in the same 
directory with the results, pluto.ini, definitions.h. init.c, grid.out, dbl.out, 
restart.out, to know which setup produced the files, and also for some analysis 
and plotting packages, which might need them.

• grid.out files defines the geometry, dbl.out lists the output variables 



Hands-on: 
definitions.h



Hands-on: pluto.ini
In PLUTO/Test_Problems/MHD/Orszag_Tang 
copy *_06* to pluto.ini (set vtk to + and e.g. 
change the output frequency in vtk output, so you 
would get 10 outputs, to see the evolution of run.) 
and definitions.h and try runs with different 
resolutions. It was 256x256, try 64x64 and 
1024x1024 and 2048x2048, and check the results. 
You will see the emergence of plasmoids in the 
vortex, for which the setup is different only in 
resolution. This is an example of qualitative 
difference in the results. No help of better 
algorithms here, the simulation has to be done 
with better resolution.



Hands-on introduction: 
init.c

Note that at the beginning of 
most of *.c files in PLUTO is a 
brief description about what it 
does. It is a very good practice, 
follow it. 



Visualization with Paraview



Summary of the Lect. 3
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Shakura-Sunyaev 1973 disc

Initial and boundary conditions in PLUTO

2D and 3D Orszag-Tang problem

Visualization in 2D and 3D with Paraview.

M. Čemeljić, Numerical simulations of accretion discs, Winter Semester 2024/2025



Outline, Lect.4 : Kluźniak-Kita solutions for thin disk

• KK 3D solution for thin disc in HD

• Vertically averaged solutions for thin disc

• Setup and running of 2.5D HD KK disc in PLUTO

• Analysis of the results from 2.5D runs with Paraview and Python
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Urpin solution

I was mentioning before the z-averaged 
solutions. Assumptions by Urpin are (𝕳=ηv): 

I noticed here we forgot to discuss on viscous 
tensor, of which the above eq.is a component:
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Urpin solution
Next he discusses the three zones of the disk, neglecting 
the closest one to the star:
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Urpin solution
Now we compute v

r
: we have from eq.4, because of vertical hydrostatic equilibrium
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Urpin solution
Next he discusses the three zones of the disk, neglecting 
the closest one to the star:

z
cr

, towards.
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Regev solution

• In Regev’s solution by expansion on a small parameter of H/R is proposed. 
On this, later similar solutions are developed.

• We will contrast his solution with the later ones, to better understand the 
development.
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Regev solution

• Boundary layer between the inner disk radius and stellar surface is 
important-there ΩK of the infalling material changes to Ω* in a very thin 
layer, compared to the disk extension in radius.

• As we obtained at slide 48, up to a half of the accretion luminosity is 
generated in this thin layer.

• In SS73, Pringle ‘81 and similar, dΩ/dr=0 is used at r=r
*
 boundary.

• Solutions by Regev, applied to a disk around a white dwarf relate to region  
(c) in SS73.

• He searches for steady, axisymmetric solutions, with ∂/∂t=∂/∂φ=0,
viscosity is present (only r-φ component of the viscous stress tensor is 
present, the rest is neglected), the disk is optically thick, with radiation 
transfer treated in the diffusion approximation.
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Regev solution

We are already familiar with the equations: 
momentum eq.in r and z directions (cylindrical 
coords), angular momentum (in r), mass 
continuity and energy eqs. Radiative energy 
fluxes in r and z directions are, with the 
assumptions from the bottom of previous slide:

We need to supply the equation of state for P 
and opacity  ϰR.

The constant mass flux through the disk is 
another requirement, which is a constraint for 
the solution:

130



Regev solution
We will not follow Regev solution in detail but just outline it, because we will repeat it related to KK solution:
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Regev solution

Equations 7-12 depend on the small parameter ε and other nondimensional constants, order of which is important 
for finding an approximate solution. The “method of matched asymptotic expansions” is used [Regev refers to it as 
“Bender & Orszag (1978, chapter 9) solution for differential eqs.which exibit a boundary layer structure”, I usually 
refer to it as doing Taylor expansion in a small parameter ε, as this is to what we resort at the end.]. Scaling is done 
to the typical values as in the table:

Now comes the “matched” part: solution of eq.7 in previous 
slide in the leading order is proportional with r -3/2 , this can 
not be valid at the boundary. An “outer” expansion at r≠1 , 
ε→ 0 is constructed and matched to the inner expansion, 
valid in the disk.

The ideal gas eq.is assumed, the radiative term neglected, 
opacity for free-free transitions is assumed, in the main 
solution and also in the boundary layer. Viscosity in the 

boundary layer is assumed as νBL=KvturbΛ, with

K and V
turb

 constant and  Λ being a characteristic length 
scale in the boundary layer. In the nondimensional units it is
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Regev solution

• Similar is done for the inner region, in the case when star is 
fast rotating, near the breakup velocity, he assumes 

Ω*=ε1/2ΩK* . This is different from our solution later, 

when we will relax this constraint, so we do not follow it 
further in detail here, just an outline:
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Regev solution

This is another z-averaged solution, only more involved than Urpin’s. Those equations need to be 
solved numerically, in difference to KK solution, which we will derive analytically. Regev obtains 
curves from Figs. 1&2 for the disk structure. Since KK obtained a general solution, all this became 
obsolete. 
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Kluźniak-Kita solution
The work in KK00 paper, which 
exists only in arXiv version, is 
actually a PhD thesis of David 
Kita from 1995 at Madison 
University, USA. It is a general 
solution obtained similarly to 
Regev’s, but without assumptions 
he used at the inner disk radius. It 
is a 3D, axisymmetric, purely HD 
solution.

• David Kita’s Thesis is not 
available online, it is only in hard 
copy in the library in USA and an 
example in CAMK, Warsaw-but 
arXiv paper is actually very 
similar to the Thesis, all the 
formalism is copied in the paper.

• Paper in arXiv is with figures 
given at the end, I rearranged it 
and made a more handy version 
with figures positioned in their 
places in the text. You can 
download it from my orange 
webpage:
http://web.tiara.sinica.edu.tw/~miki/
PostPrez/KK00mikiversion.pdf
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Kluźniak-Kita solution

• We will go through the process of deriving asymptotic matched solutions in, again 
sometimes painful, detail. It is a very instructive example, and it could be of use for other 
similar work.

• Motivation of KK00 paper is to find the solutions which would show that the backflow, 
which appeared also in other solutions except Urpin and Regev, is not of a thermal 
origin. Urpin included thermal effects but made the simplification of zero net angular 
momentum flow in the disk (equivalently, his self-similar solution is valid asymptotically 
for large radii). KK chose the opposite route—neglect thermal effects, but include the 
inner boundary condition. They were able to find a global solution. They show how the 
backflow is fed by the inflowing fluid.

• An interesting note: Narayan & Yi (1995) went beyond the one-dimensional solutions by 
numerically constructing axisymmetric ADF solutions which factorize the three-dimensional 
equations, i.e., solutions of the type f (r, θ) = R(r)Θ(θ). Solutions in KK00 are not factorizable.
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Magnetic Kluźniak-Kita disk solution (MKK)

• Not to repeat the lengthy derivations twice, we will do the magnetic version, and outline 
the HD solutions by setting B=0. It is interesting that both are non-published work, 
present only in arXiv, referees did not appreciate the contributions, yet. KK00 paper has 
a decent following and garnered 60-some citations until now...more than many 
“published” papers, so it will stay in arXiv domain. The more recent magnetic 
generalization is still in push for publication. DISCLAIMER: in 2023 we finally got the 
part of the magnetic version published (and within it, the non-magnetic) in A&A! The 
complete one I present here is a rewrite of rejected version, not yet published. Referee 
did not appreciate our effort. (S)he thought it useless. True? Envy? I see our solution as 
maths: nobody did it yet, so it should be published, someone might improve on it, not 
wasting time on rederiving it-it took us quite some time to get it cleaned, more than less, 
of errors. It is 75 equations in 16 pages, beat that!

• HD solutions can be obtained since the set of HD equations is closed. For the magnetic 
case it is not the case, and only some general conditions can be obtained. I verify, with 
help of numerical simulations both the HD and non-ideal MHD solutions.
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Magnetic Kluźniak-Kita disk solution (MKK)

We search for the quasi-stationary state 
solutions, assuming that all the heating is 
radiated away from the disk. This is why the 
dissipative viscous and resistive terms are not 
present in the energy equation, nor are the 
cooling terms. We still solve the equations in 
the non-ideal MHD regime, because of the 
viscous terms in the momentum equation, and 
the Ohmic resistive term in the induction 
equation. We are solving viscous and resistive 
MHD equations (in the cgs units):
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Magnetic Kluźniak-Kita disk solution (MKK)

• To compare the magnitude of the different terms in the equations, they have to be written in 
normalized units. We will repeat what was done in Regev (1983): all the variables are written in the 
Taylor expansion, with the coefficient of expansion given by the characteristic ratio of disk height 
to the radius, ε= H/R<< 1. For a variable X we have then X=X

0
+εX

1
+ε2X

2
+ε3X

3
+… and we can 

compare the terms of the same order in ε for each variable.
• In the case of a viscous HD disk (B = 0), the equations can be solved inside the disk (KK00). One 

can assume that the disk density decreases smoothly to zero towards the disk surface, which greatly 
simplifies the solution. In the case with a stellar magnetic field, the disk solution is connected with 
the magnetosphere of a star-disk system, through the coronal magnetic field. Reconnection and 
outflows complicate the solution in the magnetosphere, together with a back-reaction from the disk.

• In a magnetic case, we can obtain only the most general conditions for the disk magnetic field from 
the equations.

• We will be searching for the rotationally invariant stationary solutions, so that stationarity, ∂/∂t = 0, 
and axial symmetry ∂/∂φ = 0 both hold. [In some cases we write ∂/∂x=∂

x
 for simplification.]

• Another assumption is that the structure of the disk is symmetric under reflection about the z=0 
midplane. From this follows that physical quantities such as Ω, ρ, P , η, u=v

r
, and c

s
 are even 

functions of z, while v=v
z
 is odd under reflections through the equatorial plane. When we expand an 

even/odd function (e.g. Ω) in powers of  ε  1, we require each term in the expansion (e.g. Ω≪
i
  ; i = 

0, 1, 2,...) to be independently even/odd. This means that e.g. for Ω=Ω
0
+εΩ

1
+ε2Ω

2
+ε3Ω

3
+..., when 

we have Ω=even, all the terms [including ε in (εΩ
n
)] should be even=> εΩ

1
=0=Ω

1
=0

  
and so on 

for all the odd terms. This is generalized in Rebusco et al. (2009).
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Magnetic Kluźniak-Kita disk solution (MKK)

• We work in the cylindrical coordinates (r, φ, z). The normalization is defined with the following 
equations: ε=
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MKK-continuity equation example
We illustrate the asymptotic approximation method in detail by deriving all the terms through the 
second order in the continuity equation. Other equations are derived by following the same method.

See the next slide for this.
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MKK-radial momentum

***In Rebusco et al. (2009) is given a non-axisymmetric solution. It is obtained with help of  Gegenbauer (or hyper-
spherical) equation and its solutions are known in terms of combinations of the associated Legendre functions (also known as 
Gegenbauer polynomials), with use of Wolfram Mathematica 6 software. As mentioned above, there is also given a general 
discussion of eqs.for the first order in angular velocity, I copy it in the next slide:

In HD case, from vertical symmetry and also 
parity consideration, Ω

1
=0, and here we 

obtain u
0
=v

r0
=0.
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Rebusco et al.(2009), Appendix A 143



MKK-azimuthal momentum
144



MKK-HD solutions
We review already obtained results with the vanishing com-
ponents of B

0
 , when magnetic field influences the solution

only in the higher orders in . Then Eqs. (14), (23) and (28)
become the same as in a HD case:
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It was my addition to this 
derivation, nobody needed it 
before. Feels good!



MKK-HD and MHD solutions

Now we can continue with the rest of equations.
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MKK-MHD solutions
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MKK-MHD solutions
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MKK-MHD solutions
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MKK-MHD solutions
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MKK-MHD solutions
• We list now the solutions. Far away from the star, where we expect a small effect of the magnetic field, solutions in 

the simulations should not differ much from the HD solutions. Closer to the star, the magnetic field influence 
increases and the change in results will be larger. Higher order terms in the MHD solution may differ from those in 
KK00.
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MKK-HD and MHD numerical solutions
152



MKK- analytical expressions from the numerical solutions 153



MKK- analytical expressions from the numerical solutions

Using this table, we can “prescribe” the disk-it will fairly well describe the disk, as we saw in the 
previous slide.

• We could plug in any other disk model and compare with simulations or other computation result
• We write such a script, for comparison of solutions.
• I supply a template in mc_razlikaANnum.py, it can easily be modified. We test it with one of the results 

from simulations.
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Accretion disk simulations

•First numerical solution of (HD) accretion disk was by Prendergast & Burbidge (1968) (no pics!)

•Analytical solution was given by Shakura & Sunyaev (1973), with alpha-viscosity prescription.

• From that time to the 1990-ies many developments and models, with different approximations.

•In Kluźniak & Kita (2000) was given a solution of the HD disk in the full 3D. It was            
obtained by the method of asymptotic approximation (Taylor expansion).

•In 2009, numerical simulations of star-disk magnetospheric interaction were done in 2D-               
  axisymmetric simulations, by Romanova et al. (2009, 2013, with non-public code), Zanni &         
  Ferreira (2009, 2013, with modification of a  publicly available code PLUTO v. 3.0).

•Development of disk simulations in the direction of MRI in the disk (Flock et al.), but nothing       
  much in star-disk magnetospheric simulations for a decade.

•In Čemeljić et al. (2017) and Čemeljić (2019, “Atlas” paper), the first repeating of Zanni et al. 
(2009, 2013) axi-symmetric viscous & resistive MHD simulations in 2D with PLUTO code, v.4.1. 
The results are similar to Romanova et al., obtained with their (non-public) code with entropy 
conservation, not energy.

•In “Atlas” paper I performed a parameter study to investigate the influence of different 
parameters. This publication, especially its Appendix, is used here as a guide through setup and 
numerical methods.



Normalization in the code

Code works in the normalized units. For translating into other units, 
one needs to multiply with the corresponding scaling factors. When 
using Cooling, one needs to define units in definitions.h subroutine.



Equations solved by the code

•Code I used in “Atlas” is PLUTO (v.4.1) by

Mignone et al. (2007, 2012). We will do 

 it in v.4.4.3(=4.4.patch3)

• If the disk is to reach the quasi-stationary

state, the Ohmic and viscous heating in the

energy equation should be balanced with the

 source term. In such a case, we effectively

neglect the dissipative terms in the energy

equation-this is equal to the assumption that

all the heat is radiated away from the disk.

•Viscosity and resistivity are still affecting the

solution, in the equation of motion and in the

induction equation.



Practical part: init.c file,  Hydro-dynamical star-disk setup

In the corona, density and pressure are:

Viscosity tensor is given by Landau-Lifshitz def:



Practical part: results in Hydro-dynamical star-disk simulations

Time dependence of the mass and 
angular momentum fluxes in the various 
components in our simulations.

Ideally, this is what we wish to obtain. Computational box 
and a zoom closer to the star after 80 stellar rotations. In 
color is shown the density, and vectors show velocity, with 
the different normalization in the disk and stellar wind.



Star-disk simulations setup

• The Kluźniak-Kita (2000) analytical solution
is purely HD. 

• We will start with the HD disk, and then add 
the magnetic field.

• Stellar surface is a rotating boundary around 
the origin of the spherical computational 
domain. In the non-magnetic setup, it is just
a simple setup with “absorption” of the flow 
atop the stellar surface-we assume the star to 
be a (differentially) rotating magnetized 
rotator. 

• The initial corona is a non-rotating corona in a 
hydrostatic balance with the 100 times denser 
disk below it. After short relaxation, lasting 
for the few stellar rotations, corona starts 
rotating, following the disk.



Logarithmic grid in a star-disk simulations setup



 Resolution needed in a setup
● Resolution in my production runs is Rxϑ=[217x100] grid cells in ϑ=[0,π/2], with a 

logarithmic grid spacing in the radial direction. For testing I also use Rxϑ=[109x50] 
grid cells, which gives qualitatively correct results.

●  The accretion column is well resolved if a rule of thumb is satisfied that there is 
at least that many grid cells how many there is independent variables (5 in HD 
case, 8 in MHD case in our setups: density, pressure, 3 components of v and B).

● Star rotates at about 1/10 of the breakup rotational velocity.
● I did also ϑ=[0,π] cases in  Rxϑ=[217x200] grid cells, as well as Rxϑ=[109x100] grid 

cells. Now there is no need to define the equatorial boundary condition, the simulation self-
consistently computes across the domain. This case usually leads to an asymmetry with 
respect to the equatorial plane-I will show more on this in the last lecture.



Star-disk: pluto.ini



Star-disk: definitions.h



Star-disk: init.c



Star-disk: paraview



Summary of the Lect. 4
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• Approximate, vertically averaged solutions for thin disc

• Kluźniak-Kita 3D solution for thin disc

• Setup of 2.5D HD KK disc in PLUTO

• Analysis of the results with Paraview

M. Čemeljić, Numerical simulations of accretion discs, Winter Semester 2024/2025



Outline, Lect.5 : Numerics essentials and magnetic KK disc

• Riemann problem, Finite difference, Godunov’s method, 
volume and elements  methods, CFL condition, RK2, RK3, ...

• Setup and running of 2.5D MHD KK disc in PLUTO

• Analysis of the results from 2.5D magnetic  runs with 
Paraview and Python
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M. Čemeljić, Numerical simulations of accretion discs, Winter Semester 2024/2025



Primitive and conservative variables

In the computational fluid dynamics (CFD) we speak about primitive and consrvative variables and 
approximate Riemann solvers all the time, what is it about? I follow the Eleuterio Toro book here: 
E.F. Toro. Riemann Solvers and Numerical Methods for Fluid Dynamics. 2009

• We consider the time–dependent Euler equations: a system of non–linear hyperbolic conservation 
laws that govern the dynamics of a compressible material, such as gases or liquids at high pressures, 
for which the effects of body forces, viscous stresses and heat flux are neglected. 

• We have a freedom in choosing a set of variables to describe the flow. Usual choice are
 a) primitive variables: ρ(x, y, z, t) = density or mass density,  p(x, y, z, t) =pressure,
the velocity vector V = (u, v, w) where  u,v,w(x, y, z, t)  are x,y,z–components of velocity, 
respectively

•  b) conserved variables: the mass density ρ, the momentum components ρ(u,v,w), where u,v,w are 
the x,y, z momentum components, respectively, and the total energy per unit mass E.The conserved 
quantities result naturally from the application of the fundamental laws of conservation of mass,
Newton’s Second Law and the law of conservation of energy. Computationally, there are some 
advantages in expressing the governing equations in terms of the conserved variables. This gives 
rise to a large class of numerical methods called conservative methods.

• We next state the equations in terms of the conserved variables under the assumption that the 
quantities involved are sufficiently smooth to allow for the operation of differentiation to be defined. 
Later we remove this smoothness constraint to allow for solutions containing discontinuities, such as 
shock waves.
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Euler equations 170

The conservation laws (1.1)–(1.5) can be written more compact by defining a column vector U of 
conserved variables and flux vectors F(U), G(U), H(U) in the x, y and z directions, respectively.



Euler equations 171

We have now

The flux vectors F = F(U), G = G(U), H = H(U) are functions of the conserved variable vector U.  
Any system of the PDE’s written like eq. 1.7 is called a system of conservation laws.The 
differential formulation assumes smooth solutions, that is, partial derivatives are assumed to exist.
There are other ways of expressing conservation laws in which the smoothness assumption is 
relaxed to include discontinuous solutions.



Euler equations 172

In eqs. 1.1-1.5 we have more unknowns than equations. Relation (1.6) defines the total energy E 
in terms of the velocity vector V from equations (1.1)–(1.5) and a new variable e, the specific 
internal energy. We need relation defining e in terms of other quantities, like pressure and density, 
as a closure condition. If we add more physical effects to the basic equations (1.1)–(1.5), other 
variables, e.g. temperature, might enter the equations. Here we are only interested in p–v–T 
systems, where we can relate the variables by the thermal equation of state T = T (p, v) .

We could also have p = p(T, v)  or  v = v(T, p) .

For thermally ideal gases we have T=pv/R, with R constant depending on the particular gas. We 
consider gases obeying the ideal thermal EOS pV = nRT, where R is the universal gas constant 
R=8.134×10³ J/kilomole/K and T is measured in K(elvins). 

The initial–value problem for the special case of the linear advection equation is given with

 
where a is a constant wave propagation speed. The initial data at time t = 0 is a function of x 
alone and is denoted by u_0 (x).



Finite difference ver. Finite volume method 173

Finite difference method: numerical technique for solving 
differential equations by approximating derivatives with finite 
differences. The spatial domain (and time domain in time-
dependent problems) is discretized, or broken into a finite number 
of intervals, and the values of the solution at the end points of the 
intervals are approximated by solving algebraic equations 
containing finite differences and values from nearby points.  In a 
consequence, ordinary differential equations (ODE) or partial 
differential equations (PDE), which may be nonlinear, are 
converted into a system of linear equations that can be solved by 
matrix algebra techniques.

Finite volume method: the name  refers to the small volume 
surrounding each node point on a mesh. Volume integrals in a 
partial differential equation that contain a divergence term are 
converted to surface integrals, using the divergence theorem. 
These terms are then evaluated as fluxes at the surfaces of 
each finite volume. Because the flux entering a  volume is 
identical to the flux exiting the neighbor volume, finite 
volume methods are conservative. Finite volume method is 
easily formulated to allow for unstructured meshes.



Godunov’s scheme 174

This is a conservative finite volume method which solves exact or approximate Riemann 
problems at each inter-cell boundary. In its basic form (1959), Godunov's method is first 
order accurate in both space and time, yet can be used as a base scheme for developing 
higher-order methods. U(x) is approximated by Ū_ijk . This is the piece-wise constant 
approximation where the whole cell is assumed to have constant values for each variable in 
the vector of conserved quantities.
At the interface between each cell we then have a discontinuity, a left and right state, UR and 
UL, with corresponding left and right fluxes from which we need to produce a single vector of 
fluxes. This is what is referred to as the Riemann problem. In one dimension, it consists of 
two fluids with different but constant states separated by an imaginary membrane. The 
membrane is then removed and the system evolves in time. We are then interested in what the 
fluxes are at the location of this membrane at some later time after the system begins to 
evolve.



Finite elements methods 175

Finite element method: a large system is subdivided into simpler parts called finite elements. 
A mesh is constructed  for the object: the numerical domain for the solution, which has a 
finite number of points. With a given boundary values, this finally results in a system of 
algebraic equations. The method approximates the unknown function over the domain. The 
simple equations that model these finite elements are then assembled into a larger system of 
equations that models the entire problem. The solution is approximated by minimizing an 
associated error function via the calculus of variations. 



Riemann problem 176

Riemann problem is a special problem where

With two constant values u_L (left) and u_R (right), as shown in Fig.2.2.below. 

The initial data has a discontinuity at x = 0. 
IVP (2.40) is the simplest initial–value 
problem. The trivial case would be
for u_L = u_R. 



Riemann problem 177

 We expect any point on the initial profile to propagate a distance d = at in time t. In particular, we 
expect the initial discontinuity at x = 0 to propagate a distance d = at in time t. The particular 
characteristic curve x = at will then separate those characteristic curves to the left, on which the 
solution takes on the value u_L, from those curves to the right, on which the solution takes on the 
value u_R ; see Fig. 2.3.

The solution of the Riemann problem (2.40) is simply

The solution of the Riemann problem can be 
represented in the x–t plane. Through any 
point x_0 on the x–axis we can draw a 
characteristic. For the constant a, these are 
all parallel to each other. For the solution of 
the Riemann problem the characteristic 
passing through x = 0 is the only one across 
which the solution changes.



Riemann problem 178

We had the simplest PDE of hyperbolic type, the linear advection, with constant wave propagation 
speed. If we extend the analysis to sets of m hyperbolic PDEs of the form

where the coefficient matrix A is constant, with the assumption of hyperbolicity A has m real 
eigenvalues λ_i and m linearly independent eigenvectors Kⁱ , i = 1, . . . , m.



Riemann problem 179

The structure of the solution of the Riemann problem (2.54) in the x–t plane is depicted in Fig. 2.4. 
It consists of m waves emanating from the origin, one for each eigenvalue λ_i . Each wave i carries 
a jump discontinuity in U propagating with speed λ_i . Naturally, the solution to the left of the λ_1 –
wave is simply the initial data U_L and to the right of the λ_m –wave is U_R .
The task is to find the solution in the wedge between the λ_1 and λ_m waves. As the eigenvectors 
K¹ , . . . , Kᵐ are linearly independent, we can expand the data U_L , constant left state, and U_R , 
constant right state, as linear combinations of the set K¹ , . . . , Kᵐ.



Riemann problem 180

The Riemann problem can be 
solved exactly in some cases. A 
common test problem for 
computational fluid codes is the 
Sod shock tube problem, Sod 
(1978), a specific case of the 
Riemann problem which has a 
semi-analytical solution. You 
started PLUTO learning with 
this problem. However, such 
methods are usually time 
consuming, and if they have to 
be computed at every cell 
interface for every time step, it 
becomes impractical. It is much 
easier, and usually nearly as 
effective to use an approximate 
solution.



CFL condition 181

Courant-Friedrichs-Levy condition: Richard Courant, Kurt Friedrichs, and Hans Lewy  
described it in their 1928 paper.
If a wave is moving across a discrete spatial grid and we want to compute its amplitude at 
discrete time steps of equal duration, this duration must be less than the time for the wave to 
travel to neighbor grid points. If we decrease the grid point separation, the upper limit for the 
time step also decreases.

• In the 1D case, for a quantity w   the dimensionless number C is the
Courant number, u is the velocity,
the time step and length intervals
are ∆t and ∆x. The value of Cmax changes with the method discretization-it also depends if 
the method is explicit or implicit. If explicit (time-marching) solver is used then typically Cmax 
= 1. Implicit (matrix) solvers are usually less sensitive to numerical instability and so larger 
values of Cmax may be tolerated. 

• In 2D:

• In nD:



Runge-Kutta 2nd and higher orders 182

Euler's method and the improved Euler's method are the simplest examples of a whole family 
of numerical methods to approximate the solutions of differential equations called Runge-
Kutta methods. A numerical technique (year ~1900) used to solve an ordinary differential 
equation of the form        dy/dx=f(x,y), y(x0)=y0

Euler’s method is the first member of RK-solvers family: yi+1=yi+f(xi,yi)h with y(x0)=y0  it is 
h=xi+1−xi , from the Taylor series, dy/dx=f(x,y), we have
yi+1=yi + f(xi,yi)(xi+1−xi) + 1/2!f′(xi,yi)(xi+1−xi)² + 1/3!f′′(xi,yi)(xi+1−xi)³ +… 

so that Euler’s method can be considered a Runge-Kutta 1st order method. 
The second order would, obviously, include one more term of the Taylor series:
 yi+1=yi+f(xi,yi)h+1/2!f′(xi,yi)h²

Comparison of the solutions for a particular problem. 



Runge-Kutta 3rd  order, RK3 183

The higher orders are approximating and simplifying
the steps, where possible.

• RK3: To approximate the solution of        dy/dx=f(x,y), y(x0)=y0

compute x1=x0+h, k1=f(x0,y0), k2=f(x0+h,y0+hk1), k3=f[x0+h/2, y0+h(k1+k2)/4]
• y1=y0+h(k1+k2+4k3)/6, then y(x1)≈y1

• It uses the improved Euler method to find an approximate midpoint of the secant line and 
then takes a weighted average of the slopes at the left and right endpoints and the midpoint. If 
f(x,y) is a function of x alone, f(x), solving the differential equation dy/dx=f(x) is just 
evaluating the integral ∫f(x)dx and then explored what coefficients could be set to zero. In this 
case, the third order Runge-Kutta method is the same as Simpson's rule for numerical 
approximation of integral.



Runge-Kutta 4th order, RK4 184

The 4th order, RK4 is most efficient and most used one for the higher orders. It is accurate up 
to seven digits after the decimal point in some cases. In the worst case, it is accurate up to two 
digits after the decimal point. 



Magnetic Kluźniak-Kita disk solution (MKK)

We work with Ohmic resistivity; in the YSOs 
disk this is valid only in the inner par of the 
disk.
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We search for the quasi-stationary state solutions, assuming that all the heating is radiated away from 
the disk. This is why in the “Atlas”and following papers, done with PLUTO v.4.1 the dissipative 
viscous and resistive terms are not present in the energy equation, nor are the cooling terms. We still 
solve the equations in the non-ideal MHD regime, because of the viscous terms in the momentum 
equation, and the Ohmic resistive term in the induction equation. You will be solving viscous and 
resistive MHD equations with all the terms and with the cooling source term.



Example of a solution with 500 Gauss



Star-disk magnetospheric interaction
(SDMI) simulations

Time dependence of the mass and 
angular momentum fluxes in the various 
components in our simulations with 
marked the time interval in which the 
average for the quasi-stationarity is 
computed.

јaxout

ј(R>Rcor)

ј(R<Rcor)

Computational box and a zoom closer to the star after 80 
stellar rotations, to visualize the accretion column and the 
magnetic field lines (white solid lines), connected to the disk 
beyond the corotation radius Rcor=2.92 Rs. In color is 
shown the density, and vectors show velocity, with the 
different normalization in the disk, column and stellar wind.



Types of solutions in “Atlas”

● 4 different cases if we consider the position of 
Rcor in the case with conical outflow.

● In general, faster stellar rotation prevents the 
accretion column formation.

● In the bottom panels  resistivity αm=0.1 and 
Ωs=0.1, a conical outflow is formed.



Star-disk simulations with magnetic field

• We add the magnetic field to the HD solution
• Stellar surface is a rotating boundary condition 

at the origin of the spherical computational 
domain. We assume the star to be a magnetized 
rotator. The initially non-rotating corona is in a 
hydrostatic balance.



Numerical methods in PLUTO for star-disk interaction

•I already showed, and will show again where is definition of each of the setup entries in 
the code, here is an example of what you can usually read in the description of a setup: 

-Simulations were performed using the second-order piecewise linear reconstruction.

-Van Leer limiter, which is more diffusive and enhances stability, is used in density and 
magnetic field and a minmod (monotonized central differences) limiter in pressure and velocity. 

-An approximate Roe solver (hlld in the pluto options) was used, with a modification in the 
flag_shock subroutine: flags were set to switch to more diffusive hll solver when the internal 
energy was lower than 1% of the total energy, instead of switching in the presence of shocks. 

-The second-order time-stepping (RK2) was employed.

-  · B∇  = 0 was maintained by the constrained transport method.

-The magnetic field was evolved with the split-field option, so that only changes from the initial 
stellar magnetic field were evolved in time. This means that in the final results, one has to add 
magnetic dipole (or other initial field) to the solution from the code.

-The power-law cooling is introduced to account for the disk dissipative heating. Physically it is 
good enough to represent bremsstrahlung. There are other cooling functions in PLUTO, one can 
also import a table of values, not necessarily a function.



Setup of magnetic runs-changes in pluto.ini and definitions.h



Setup of magnetic dipole and multipoles in init.c



Visualization of Bp lines with Paraview



Analysis with paraview



Python script for visualization
● mc_veloclect.py , python ver.3.5 and newer.

● Density in logarithmic color grading.

● Vectors of velocity. Remember to show normalization, I normalize to Keplerian velocity
at the stellar equator (R=1).

● Magnetic field lines-plots with Aϕ isocontours-they are parallel to Bp field lines.
Magnetic field lines could be plotted also with Bp streamlines, but I did not do it here.



Summary of the Lect. 5
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• Riemann problem, Finite difference, Godunov’s method, volume and elements  
methods, CFL condition, RK2, RK3, ...

• Setup and running of 2.5D MHD KK disc in PLUTO

• Analysis of the results from 2.5D magnetic  runs with 
Paraview

• Python script for visualization

M. Čemeljić, Numerical simulations of accretion discs, Winter Semester 2024/2025



Outline, Lect.6 : Continuation of numerics essentials, 
astrophysical jets

• Approximate Riemann solvers: HLL, HLLC, HLLD

• Reconstruction methods, MHD numerics

• Astrophysical jets, simulations of jets from disc as a b.c. and with the disc 
evolution included

• Streamlines in Paraview in 2D and 3D
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M. Čemeljić, Numerical simulations of accretion discs, Winter Semester 2024/2025



Riemann problem 198

We had the figure with waves and eigenvalues, which is used in publications to illustrate the 
Riemann problem and approximate Riemann solvers:



Approximate Riemann solvers 199
FROM PHD THESIS OF D. ABARCA, CAMK, (2021): One strategy for coming up with approximate 
Riemann solvers is to approximate the solution by the superposition of a number of waves moving 
left and right after the system begins to evolve in time. A two-wave solution which uses the 
maximum and minimum velocity signals was proposed by Harten et al. (1983) hereby referred to 
as the HLL Riemann solver. If the maximum and minimum signal velocities (or maximum left and 
right moving signal speeds), SR and SL , respectively, can be computed (there are a number of 
ways to do this), then the HLL Riemann solver gives, for left and right fluxes, 

If the minimum signal velocity, SL is positive, this means all waves should be moving to the right
and so one can use the flux corresponding to the left side of the interface. If the maximum signal
velocity is negative, then the opposite is true and all waves move to the left, so we take the flux 
from the right. The intermediate case takes a combination of fluxes weighted by the wavespeeds 
with the addition of a term that computes the overlap of the left and right conserved quantities.

HLL is used extensively due to its simplicity while still producing meaningful results, but many
other Riemann solvers exist. There is a third type of wave in ordinary hydrodynamics which HLL 
does not consider: the contact discontinuity corresponding to a jump in density without a 
corresponding jump in pressure. HLL is unable to provide satisfactory solutions when the contact 
discontinuity becomes important and a three wave Riemann solver was proposed by Toro (2009) 
(HLLC) which includes it. In MHD and GRMHD one also has to consider Alfvén and magnetosonic 
waves. These wave speeds can be used in the HLL or HLLC Riemann solvers but more accuracy 
is achieved by considering even more intermediate states as in the HLLD Riemann solver (Miyoshi 
and Kusano 2005) which assumes a five wave solution at the interface.



Reconstruction methods 200

Godunov method is zeroth order accurate in space. We can do better by moving from a piecewise 
constant approximation for a flux U to a piece-wise linear approximation. It is difficult to compute 
the fluxes as function of the conserved quantities; easier is to use a different set of variables, the 
primitives, P. They are usually naturally well-defined quantities such as density, velocity, and 
internal energy, with straightforward, analytical expressions for F(P) and U(P). But we must also 
perform the inversion from conserved to primitive variables, P(U). In ordinary HD it is easy, but with 
additional physics, it gets very complicated. In GRMHD is it necessary to perform the inversion
Numerically, e.g. with a Newton-Rhapson method.

If F(P), U(P), and P(U) can be computed, we can reconstruct the primitive variables at the cell 
interfaces.   When computing slopes ∆Pi/∆x, not to introduce new maxima and minima into the 
approximate solution of U (and, consequently,  P), which would cause the instability of the 
numerical scheme, with spurious oscillations in the solution which would grow in time, we need 
to use a total variation diminishing (TVD) scheme. Usually it is done with a slope limiter which 
adjusts the computed slopes to prevent the formation of new maxima and minima.

• One such scheme is the generalized minmod van Leer (1979) slope limiter, which produces a 
modified slope.

• Another scheme, the minmod slope limiter, is actually a one-parameter mix between the more 
diffusive van Leer scheme (van Leer 1974) and the more accurate (but less stable) monotized 
central scheme (van Leer 1977).
Slope-limiters have the additional function of preserving large discontinuities in the fluid across
cell interfaces. Numerical schemes which include these limiters are refereed to as shock 
capturing schemes.



MHD numerics 201

•With Maxwell’s equations we often have to depart from the conservation laws which are holding 
for fluids. The best example is the  · B∇  = 0  condition, which imposes additional constraint on B.

•To solve this issue and prevent increase in non-physical component of the magnetic field, various 
methods were invented.

•The simplest way was to simply remove the unphysical component by using the Helmholtz 
theorem, saying that any vector field B’ can be written as a sum of the curl and gradient of two 
other fields: B’=  x A+∇ ∇ϕ. If we take the gradient of this expression, we obtain the Poisson 
equation   · B’∇  = ∇²ϕ , which we can solve for  ϕ,  giving us a divergence-free field

B=B’-∇ϕ=  x A.  ∇ The solution is neat, but we need to solve the Poisson equation often, which 
comes with a large computational cost. There are many methods for approximating this, but the 
idea is similar-this are the “divergence cleaning” methods.

•Another, more precise, or actually exact method, is the Constrained Transport (CT) method, 
(Evans&Hawley, 1988) which keeps the  · B∇  constant...but you have to start with the  · B∇  = 0  
field-which is not always true or easy. It involves computing the induced electric field ∈ = v × B at 
four locations for

the each component of B around every point and evolving B with a finite difference in ∈. Any 
round-off errors are canceled out, so we stay with divergence-less B.

•For this computation a staggered grid was originally used, with B computed in the center of the 
cell faces, and the four values of ∈ in the cell corners. So one needs two grids.

•Later in Tóth (2000) flux-interpolated constrained transport (flux-CT) method, the values of B and 
v are computed at cell centers and then interpolated to the cell faces, where the field is evolved 
and then interpolated back to the cell centers.



Jet launching and propagation

● We are still searching for the way to 
explain not only how the stars are 
slowed down, but also to the tightly 
related mechanism: how astrophysical 
jets are launched and collimated.

● For the jet propagation and 
collimation, we do not need the 
launching part, we just assume they 
are launched, input some surface as a 
b.c. and follow the flow. But we have 
to be careful about some characteristic 
surfaces in such flows when settting 
them. This is a good example.  



Jet propagation
● Results strongly depend on resistivity. 



Jet launching

When we include the disc, all the hell get loose, 
equations are having fun with us! This still
waits for your contribution, even in 2D we did 
investigate it enough, yet, and in 3D we just
scratched the surface. Internal report by a Master 
student looked like few tens of pages of this:



Paraview streamlines
In 2D you use a line to seed the streamlines, in 3D, better is to use a point source and a 
sphere around it-you can move the sphere around and choose the set of streamlines which 
you want to show.



Summary of the Lect. 6
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• Approximate Riemann solvers: HLL, HLLC, HLLD

• Reconstruction methods, MHD numerics

• Astrophysical jets, simulations of jets from disc as a b.c. and with the 
disc evolution included.

• Streamlines in Paraview in 2D and 3D
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Outline, Lect.7 : PLUTO modules, post-processing of the results

• Different  modules in PLUTO, cooling versus radiative transfer

• Hot discs

• Post-processing of the results, DUSTER

• Python script for analysis
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 PLUTO physics modules, equations



 PLUTO physics modules, equations



 PLUTO physics modules, equations



 PLUTO physics modules, equations



 PLUTO physics modules, equations



 PLUTO physics modules, equations



 PLUTO physics modules, equations



 PLUTO physics modules, equations















Hot discs
The simulations up to now were with cold thin discs. This is physically correct for proto-planetary discs 
around YSOs, but if we rescale the results to the WD, NS or BH case, the disc is hot. With this year 
interns during the Summer program in CAMK, I started preparing the seup for hot discs. The only 
change is actually to change the polytropic index in PLUTO  setup: by default, it is γ=5/3 , which is for 
adiabatic processes. For 
isothermal it would be
γ=1 , and for hot discs we
expect something between,
like γ=4/3. So, in init.c we
have to set such values,
by setting g_gamma.



“STARDUST”: Dusty disk in Young Stellar Objects
During a Summer Student Program, C. Turski wrote the Python script “DUSTER” for post-processing of 
the quasi-stationary results in my star-disk solutions. He added the dust particles and computed their 
movement in the disk-corona solution as a background. The results are used to model dust distribution in 
the disk.



Summary of the Lect. 7
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• Different  modules in PLUTO, cooling versus radiative transfer

• Hot discs

• Post-processing of the results, DUSTER

• Python script for analysis
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Outline, Lect.8 : Pseudo-Newtonian potentials for BHs, NkS, Star-Planet 
simulations setup

• Pseudo-Newtonian potential and its use in numerical simulations of compact 
objects

• Simulations of thin disk or torus around a black hole in Paczynski-Wiita 
potential 

• Simulations of thin disk around a naked singularity in pseudo-Newtonian 
potential for Reissner-Nordstrom metric.

• Star-planet simulations

• Running jobs on a Linux cluster

225
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Intro on compact objects

The name "black hole" is catchy, but misleading. These are not "holes", at least not 
empty ones: in fact, it is a large mass gathered in some volume (not necessarily large 
density). The escape velocity for these objects is greater than the speed of light! 
The possibility of their existence is not news: we know that Romer in 1676 measured 
the finite speed of light quite accurately by observing Jupiter's satellites - for this a 
telescope was needed, the distances on earth are too small for primitive methods of 
measuring the speed of light - unless we know optics, but then we will already have a 
telescope... From the concept of the finite speed of light to the above-mentioned 
escape velocity and the conclusion that objects of sufficiently large mass could retain 
light is not far - this is how John Michell concluded in 1783: “If the semi-diameter of 
a sphere of the same density as the Sun in the proportion of five hundred to one, 
and by supposing light to be attracted by the same force in proportion to its [mass] 
with other bodies, all light emitted from such a body would be made to return 
towards it, by its own proper gravity.”
The first description as "dark stars" followed from the invisibility of such objects. 
That inspiring description turned out to be physically incorrect: in Einstein's gravity, 
the curvature of space-time causes the curvature of the path of a light ray that does not 
change speed. But the fact that these objects are dark remains - John Wheeler called 
such objects "black holes" in a lecture in 1968, and that name remains to this day.
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227Naked sigularities

Naked singularities are also not something new: the solutions of the equations from which 
they "popped out" were published almost simultaneously with the Theory of Relativity (1916) 
and Schwarzschild's solutions for a non-rotating black hole (1916). The first solution was by 
Reissner (1916), who gave solutions for the electric charged, non-rotating black holes, and 
soon others arrived, including Nordström (1918), so such objects are now called Reissner-
Nordström (RN) naked singularities.
The next step came only in the 1960s, with solutions for rotating, uncharged (Kerr 1963) and 
charged (Kerr-Newman, 1965) black holes. Very fast rotating black holes can become naked 
singularities and have no charge, which is more physically realistic - black holes are difficult 
to charge electrically, it is generally accepted that they should be electrically neutral. This was 
also the main reason why these solutions, although simple, are not better known, they 
remained as an exercise for beginners - I performed them on a couple of pages for the exercise 
of Christoffel symbols, I recommend them to doctoral students to refresh the General Theory 
of Relativity – I suggest to do it on paper, without using Maple or similar computer packages.

The Reissner-Nordström solutions, which are relatively simple, are nevertheless useful 
because they are mathematically identical in many properties to much more complicated 
solutions for rotating objects. That's why we started to study them in a pseudo-Newtonian 
approach, so that we can run simulations faster and do the first checks of ideas, which we can 
then study in more detail in relativistic simulations, which are more demanding.



The first exact solutions in GR

Schwarzschild metric (1916) for nonrotating BHs

Reissner-Nordström metric for nonrotating charged 
BHs,or, if Q>M, naked singularities (1916, 1918)



Pseudo-Newtonian potentials

Paczyński &Wiita (1980), for a non-rotating BH:

Kluźniak & Lee (2002), for a more exact rendering of PW:



NkS in pseudo-Newtonian potential 230



NkS in pseudo-Newtonian potential

Sure, there are many such approximations, each good for its purpose-some characteristic distances or surfaces are 
usually represented correctly in such pseudo-potentials.
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NkS in pseudo-Newtonian potential 232



233Setup of different pseudo-Newtonian potentials: init.c

In the SDI setup, at the end of the init.c file, just set the BodyForcePotential instead of 
BodyForceVector.



234Setup of different pseudo-Newtonian potentials: definitions.h

Also in the definitions.h file, just set the BodyForcePotential instead of BodyForceVector.



235Setup of different pseudo-Newtonian potentials: pluto.ini

The magnetic field strength could be much smaller in this case.



236Auroras are present on all planets: Mercury, Venus, Earth

We will simulate star-planet magnetospheric interaction for a practical reason: auroras are found 
on most of the planets in the Solar system. 

Mercury Venus

Venus has smaller aurora towards Sun than Earth,

here I show a comparison. 

Mercury magnetic field is well measured thanks to 
Messenger probe. Its aurora is similar to Earth’s.
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Mars aurora

Even in the planets like Mars, which do not have significant magnetic field, we observe aurora, formed as a 
result of interaction of particles-here mostly protons- from the solar wind shock where the planet moves 
through the wind. It is most visible at the sunny side of the planet. 
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Auroras on large gaseous planets

Aurora is observed also on Jupiter and Saturn. On the gas planets aurora is visible mostly in ultra-violet, so 
we can observe it from outside our atmosphere. 

Spots in aurora on Jupiter are 
magnetically connected with its 
satellites: the spot on the left side is 
connected with Io, bottom two with 
Ganymede and Europe.

● Saturn also features polar aurora: 

JWST’s capture of aurora on Jupiter 
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Aurora on Uranus

HST observed auroras on Uranus: And Keck on Neptune:
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240Extrasolar and exoplanet auroras

•As for now, we have an observation of extrasolar aurora on a brown dwarf LSR J1835+3259, 18 lyrs from 
us, in Lyra. There are more of similar objects which show characteristic spectral features which point to 
aurora. Shown is an artist impression, not the real observation. It is reddish aurora, from more hydrogen in 
the atmosphere, and about million times more intense, because of larger magnetic field. 

•Such an aurora should also be of different nature, because there is no other star for producing the stellar 
wind. 

•A model for aurora requires a continuously replenished body of plasma within the magnetosphere. This 
mass-loading can be achieved in multiple ways, including interaction with the interstellar medium, a 
volcanically active orbiting planet or magnetic reconnection at the photosphere. Alternatively, an orbiting 
planetary body embedded within the magnetosphere could provide magnetospheric interaction.

In the cases of exoplanets, we also expect auroras, and we can 
use the same simulations and make the predictions for different 
kinds of planets.

In the cases of planets around pulsars, which were actually the 
first observed exoplanets, we can expect similar effects. Because 
of much larger field involved, they could behave different from 
usual planet aurora. 

Here we try to make the first such model, by introducing 
necessary modifications in our star-planet interaction setup. 



Numerical simulations of star-planet interaction

• In a series of works by Varela et al. (e.g. A&A, 616, 
A182, 2018; A&A 659, A10, 2022) are given numerical 
simulations of planetary magnetospheric response in 
extreme solar wind conditions, using the PLUTO code.

• Such simulations are valid for Earth and exoplanets.
• We use this setup as a template for the much larger 

magnetic field of pulsar.
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Numerical simulations of Sun-Mercury interaction 242

Similar study was also done for Mercury, where we have a wealth of data from Mariner 10 
mission, which measured the dipole moment, and later Messenger mission, which provided more 
precise measurements for the multipolar representation.



Numerical simulations with the NS-planet interaction
I show preliminary results in our simulations with NS parameters. We are increasing the stellar 
magnetic field in the simulations-to accommodate for the large field we increase the density of the 
interplanetary medium, local magnetic field strength near the planet and stellar wind velocity. We probe 
for the different planetary surface boundary conditions (conducting, ferromagnetic) - this is potentially 
interesting for the planetary study: planets around NS could have some extreme physical properties.
Conducting planet (B_planet=0):
Bsw=3.0, Vsw=1.e9 Currents (yellow), Vsw(green), mag.field (red)
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For the conducting planet atmosphere case, electric current loops remain close to the planet 
surface.



Numerical simulations with the NS-planet interaction

In the case of feromagnetic planet surface, results are different, currents point to an extended dipolar 
electric field structure. Work is in progress to understand the possible auroral effects.
Bsw=3.0, Vsw=1.e9 Currents (yellow), Vsw(green), mag.field (red)
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Equatorial view-Alfven “wings”:



Radio emission from non-magnetic planets

Left panels: Iso-volume of 
Poynting flux divergence in 
cases with non-magnetic 
planet. Red lines are the 
magnetic field lines and 
green lines are the velocity 
streamlines of stellar wind. 
Right panels: Mag. power 
in the same cases. A surface 
with the maximum radiated 
power is located in the nose 
of the bow shock, because 
of bending and compression 
of inter-planetary magnetic 
field.

• El.mag. emission is 100 
million times more intense 
than in the Sun-Earth case.

• We suggest that it could be 
observable even with the 
current  instruments.
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Star-planet: pluto.ini 246



Star-planet: init.c 247



Star-planet: a good exercise for simulations and  plots in 3D248



Running jobs on a Linux cluster
• Usually Linux clusters and supercomputers use management and queuing system. I will describe two of 

them, which work in a similar way. Think of them just as an expanded command for running your job.
- SLURM - a free one, became quite reliable so one does not need to pay for management, which could 
come with a significant cost. After creating a slurm_job_file, execute  sbatch slurm_job_file . Most often 
used commands: sbatch, squeue, scancel.
- PBS – (Portable Batch System), there are Open (free) and Pro (not free) versions, also very similar is 
its fork, TORQUE. After creating a PBS or TORQUE job script pbs_job_file, execute in terminal: qsub 
pbs_job_file. 
Most often used commands are: qsub, qstat, qdel, qmgr and xpbs, pbsjobs (located in /home/Tools/bin) 
for additional detail about queued and running jobs.
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Summary of the Lect. 8

250

• Pseudo-Newtonian potential and its use in numerical simulations of 
compact objects

• Simulations of thin disk or torus around a black hole in Paczynski-Wiita 
potential 

• Simulations of thin disk around a naked singularity in pseudo-
Newtonian potential for Reissner-Nordstrom metric.

• Star-planet simulations

• Running jobs on a Linux cluster
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Thank you!

M. Čemeljić, Numerical simulations of accretion discs, Winter Semester 2024/2025


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179
	Slide 180
	Slide 181
	Slide 182
	Slide 183
	Slide 184
	Slide 185
	Slide 186
	Slide 187
	Slide 188
	Slide 189
	Slide 190
	Slide 191
	Slide 192
	Slide 193
	Slide 194
	Slide 195
	Slide 196
	Slide 197
	Slide 198
	Slide 199
	Slide 200
	Slide 201
	Slide 202
	Slide 203
	Slide 204
	Slide 205
	Slide 206
	Slide 207
	Slide 208
	Slide 209
	Slide 210
	Slide 211
	Slide 212
	Slide 213
	Slide 214
	Slide 215
	Slide 216
	Slide 217
	Slide 218
	Slide 219
	Slide 220
	Slide 221
	Slide 222
	Slide 223
	Slide 224
	Slide 225
	Slide 226
	Slide 227
	Slide 228
	Slide 229
	Slide 230
	Slide 231
	Slide 232
	Slide 233
	Slide 234
	Slide 235
	Slide 236
	Slide 237
	Slide 238
	Slide 239
	Slide 240
	Slide 241
	Slide 242
	Slide 243
	Slide 244
	Slide 245
	Slide 246
	Slide 247
	Slide 248
	Slide 249
	Slide 250
	Slide 251

