
Thin accretion disk

Miljenko Čemeljić

Nicolaus Copernicus Astronomical Center of the 
Polish Academy of Sciences, 

Warsaw, Poland

 &

Academia Sinica Institute of Astronomy and 
Astrophysics, Taipei, Taiwan, Visiting Scholar

Miljenko Čemeljić, Thin accretion disk, Feb & March 2022, Silesian University,  Opava



General outline

• PART I: Introduction to accretion
- Spherical (Bondi) accretion
- Accretion disk; viscosity
- Python code for Bondi accretion

• PART II: Steady disk solutions
- Perturbative solutions for the disk
- Shakura-Sunyaev disk
- Python code for Shakura-Sunyaev disk

• PART III: General solutions
- Urpin’s and Regev’s vertically averaged solutions
- Kluźniak-Kita 3D global solution for thin disk and magnetic generalization

- Python code for thin disk; python tool DUSTER

• Check webpage https://web.tiara.sinica.edu.tw/~miki/miki_thinacrdisk.html
Required packages: Python (matplotlib, NumPy)
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Outline, Part I: Introduction to accretion

- Spherical (Bondi) accretion

- Accretion disk; viscosity; Roche equipotential surfaces

- Python code for Bondi accretion
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Accretion process – general introduction

Accretion is a process of mass collection onto a (usually rotating) central 
body, where a particle or a fluid element moving at some orbit transfers part 
of its energy and angular momentum to its surrounding.

More general, it can be described as inward motion of matter because of 
the gravitational force-this definition we need to include the simplest case 
which we will first study, the spherical (Bondi) accretion.

Gravity was the first force to be studied extensively, in mechanics, our first 
applied science. In astronomy it was for long the only computed force, by 
Newton. It was The Force of celestial motions, until we started computing 
the machinery of stellar power. Then it showed gravity is not enough-
electromagnetic interactions (chemistry) were also helpless, Sun burning 
coal would expire practically on our eyes.

Nuclear forces explained this, but Gravity made a comeback when we 
understood sun-like stars are weaklings in comparison to a more powerful 
energetics of stellar compact objects, black holes and galactic nuclei.



How we arrived to accretion

Historically, accretion was first considered as a relevant process in the 
close binaries: after collecting a wealth of spectrographic data by Struve 
and collaborators, it became obvious that simple models of stellar stability 
are insufficient to explain the spectral features-theoretical curves were 
woo smoothed by the simplifications, and observational curves were not 
smooth at all!

Introducing more physical processes into astrophysics of stars was called 
“Struve revolution” by Popper in 1970:

To explain the spectral features, hence the energy and angular 
momentum evolution in the “peculiar stars”-which mostly showed to be 
close binaries, astronomers around the middle of XX century had to 
include the streams of matter, gas rings, Roche’s equipotential surfaces, 
and finally Huang (1963) included a thick disk. Gradually, with increase in 
quality of data, similar concepts were introduced in the objects on other 
scales, like active galactic nuclei (AGNs), quasars, and centers of clusters 
of galaxies. Astrophysics of accretion could start!



Energetics of accretion

When I said that with accretion gravity made a comeback, I should say 
that it made it with a boom! - accretion is by far the most efficient way of 
extracting energy out of the matter we know: it yields about 10 times more 
than nuclear fusion!

We can show it in a back-of-the-envelope calculation for the luminosity of 
the disk acquired by the infall of material from the large distance onto a 
central object:



Energetics of accretion
● In the literature, one can find various numbers for the efficiency of 

accretion, I list some below, but what is meant by “efficiency”? 
It is the power available at given mass accretion rate Ṁ onto an object of 
radius R: P=Ṁ GM/R . This power is usually dissipated (through radiation) 
away, otherwise there will be no accretion-e.g. heat would push the matter 
away.

● Efficiency of pair annihilation: η=1

● Efficiency of Nuclear (H) fusion: η~10^{-4}

●  Accretion efficiency η : Earth: 10^{-9}, Sun: 10^{-6}, 
White Dwarf: 10^{-4}, Neutron star: 10^{-1}

● Accretion efficiency η=GM/(Rc^2) onto black hole (no hard surface) 
depends on the details of accretion flow and spin of BH:

● 0.057< η <0.42 for thin accretion disk



Eddington limit
What is the maximum luminosity at which matter still can be accreted?
(This means that gravitational force on a chunk of fluid still just exceeds 
the radiation pressure)

● Simplest case is radial accretion onto a mass point M. If medium is fully 
ionised gas of electrons and protons, and we assume Compton scattering
with the simplest radiation pressure and

from F
rad

=F
g
 we get that

● Some Eddington luminosities: solar mass NS
          supermassive BH

● Eddington mass accretion rate: 

● Usually it is said that the accretion is not possible if L>L
Edd 

but there are

cases when it is not true, and they are very interesting cases of 
supernovae and non-spherical accretion cases in disks and jets.



 Spherical accretion-fast forward

H. Bondi (1952): an analytic solution for the spherically symmetric, steady-
state accretion flow of an infinite gas cloud onto a point mass, in the 
Newtonian approach.
Such model was later extended, to be applied from the study of star 
formation to cosmology.

● Bondi considered adiabatic (p~ργ)  accretion of gas. Far from central mass, 
gas elements move in dependence of their thermal energy only, 
so that with gas temperature T

inf
 with sound speed c

s 
we can say that at 

some critical distance from the central mass r
cr
 the escape velocity is equal 

to the speed velocity: r
cr
=2GM/c

s
2

For r<r
cr 

material falls freely onto the central mass, and for the density 
above the radius r

cr,
 ρinf we can write the infalling mass Ṁ=4πG2M2ρinf/cs

2

Hydrostatic equilibrium gives ρ~r -3/2  (with γ=5/3) and temperature
T~1/r^[3(γ-1)/2]. Infalling gas reaches speed of sound at distance r

s
 from 

the center.  We find r
s
=GM/c

s
2 (5-3γ)/4 . 



 Spherical accretion, more in detail 

I follow Torok et al. (2020).
●  We consider polytropic gas, for which  p=Kργ where γ is a polytropic 

index, K is a constant. 
● Gas is moving in the gravitational potential of mass M:

Far from central mass, gas elements are at rest, ur=0, asymptotic values 
are  ρ∞ and p∞. From the continuity of mass

and from radial component of the momentum, Euler eq., we have the 
momentum conservation.

● We can integrate 

where the constant Ṁ=-4πr2ρur is the speed of mass loading onto the central 
object through the sphere of radius r.



 Spherical accretion, derivation

Radial component of the momentum eq.:

describes motion of the fluid element under gravity and pressure. From the 
logarithm of radial derivative we obtain:

so that we can write

● Next we define the dimensionless variables   (with  )

we obtain ordinary differential equation, Bondi equation, with one additional 
expression: 



 Spherical accretion, derivation

● we obtain ordinary differential equation, Bondi equation, with one additional 
expression: 

● The boundary conditions at x → ∞ follow from the requirement of zero radial 
velocity at a large distance y → 0, with the sound speed obtaining 
asymptotic values ​​ã → 1. The second condition gives asymptotic
behavior

There is a critical point, where the flow velocity equals the local speed of 
sound y=​ã2 – since the denominator at the right side in Bondi eq. is 0, it will 
be regular only with the above part also equal to 0. This is called a sonic 
point, x

s
, and we have

 This gives another condition on Bondi eq.: the integration curve y(x) is not 
necessarily in agreement with x → ∞ . Both conditions are met only for 
some values of ṁ .



 Spherical accretion, analytical derivation

● Solution with the additional regularity condition is an interesting numerical 
problem. To know if we got it correct, we first check for the analytical 
solution-which we can do because in the spherical accretion case we can 
integrate the momentum equation.

● Dimensionless momentum eq.is
We integrate the 1st and 3rd terms
easily, and the 2nd is

so we have

the dimensionless Bernoulli equation. The integration constant Ψ denotes 
the different integration curves, which are solutions of y(x) Bernoulli's 
equation. The one that meets our boundary condition must satisfy y → 0 
and ã → 1 for x → ∞, so it is given by

● Which value of Ψ corresponds to a solution that passes continuously 
through a critical point? From the condition of regularity we know
that 

 



 Spherical accretion, analytical derivation

● The equation for the conservation of mass also allows us to express the 
speed of sound at a sonic point using accretion speef

● Inserting to Bernoulli equation, we obtain:

● Since we require the solution to pass continuously through the sonic point, 
while giving the correct behavior to large radii, it must hold Ψ

s
 = Ψ

0
. This 

gives us a simple analytical expression of the sonic position point x
s
 and 

local speed of sound ã
s
 at the sonic point: 

Such speed of sound corresponds
to the accretion rate

which is the characteristic value in the problem.



 Spherical accretion, analytical derivation

● We obtained solutions at great distances from a compact object
(when x → ∞). What behavior can be expected when x → 0 ?

Frobenius’ theorem is applicable, which gives necessary and sufficient 
conditions for finding a maximal set of independent solutions of an 
overdetermined system of first-order homogeneous linear partial differential 
equations: “ F is integrable if and only if for every p in U the stalk Fp is 
generated by r exact differential forms.” 

● Geometrically, the theorem states that an integrable module of 1-forms of 
rank r is the same thing as a codimension-r foliation.

● Wikipedia: The method usually breaks down like this:
● -We seek a Frobenius-type solution of the form of series y=∑∞

k=a
k
x

k
+r. ...

-   The obtained series must be zero. ...
-    If the indicial equation has two real roots r1 and r2 such that r1−r2 is not 
an integer, then we have two linearly independent Frobenius-type solutions.



 Spherical accretion, analytical derivation

● Assume that the solution near the point x = 0 captures the dependence 
y ≈ A / xα. We choose from Bernoulli's equation the fastest growing terms 
that must be in equilibrium and by comparing them we determine α and A. 
From the continuity equation it can be seen that ã2  x∼ (α − 2) (γ − 1).

● The first term of the Bernoulli equation (the term corresponding to the kinetic 
energy) grows as x−α, the second term (corresponding to the internal 
energy) grows as x(α − 2) (γ − 1) and the last third term (corresponding to
potential energy) grows as x−1.

● Comparing the exponents, assuming that 1 ≤ γ ≤ 5/3, we find
that the highest value of α corresponds to the equilibrium between the 
kinetic and potential member and corresponds to α = 1 and A = 2, so
y~2/x (x →0). 
It means that very close to a compact object the pressure is only a 
negligible perturbation to gravity. At large distances the gravitational 
potential and internal energy are in balance. In both cases, the neglected 
term tends to reduce the speed values. This means that it will be useful in 
the numerical solution of Bernoulli's equation to use the method of bisection.



 Accretion disk

● Let us take another view on accretion: material point orbiting around a 
center of mass interacts with its surrounding, transferring part of its energy 
and angular momentum.

● Consequence of such scenario is slowly spiral-in of the mass point.
Energy which can be extracted is equal to the bonding energy of the 
smallest orbit: E

acr
=GMm/R , see the back of the envelope calculation.

● We consider rotating volume of gas with angular momentum L in cylindrical 
coordinates (R,φ,z), with z parallel to the axis of rotation.

● We further assume that distribution of L between the gas particles 
is much slower than radiation transfer and rotation=L of the 
particle with mass m remains constant, but its kinetic and internal 
energy are distributed to other particles by collisions, shocks and 
radiation.

● For the constant L the minimal energy is for the circular orbit=>we 
obtain the thin disk in which particles rotate with vφ=RΩ(R),we can 
write, with potential Φ: Fg=ma=mvφ

2/R=-dΦ/dR=Fcf.



 Accretion disk

● If there is a process counteracting the spread of particles (as viscosity), 
energy spreads through the system by heat, and escapes from the system 
by radiation.

● As a consequence, mass particle will orbit at smaller R, we can understand 
this as transformation of the orbital energy into radiation energy.

• With the gas surface density S(R,t) and radial velocity v
r
(R,t), we observe the 

element of gas with inner radius R and outer R+ΔR. Mass of such ring is 
Δm=2πR·ΔR·S, angular momentum L=Rxp, where for angle of 90°between 
R and p we can write L=Rmvφ, and in fact we can write, with L=mR2Ω, 
that the angular momentum of such ring is  2πRΔRSR2Ω. Change of mass of 
such a ring is equal to the fluxes in and out from the neighboring rings 
(positive sign is away from the center): ∂/∂t(Δm)=flux(R )-flux(R+ΔR)=

=[with ΔR→0, 3rd term=0 and f(x+Δx)-f(x)=Δx∂f(x)/∂x]= -ΔR∂(2πRSvr)/∂R



 Accretion disk

● Now we can write ∂/∂t(Δm)/ΔR=-∂/∂R(2πRSvr) and since

Δm/ΔR=2πRS, so we stay, after divide by 2π, with
∂/∂t(RS)=-∂/∂R(RSvr), ∂R/∂t=vr and we can write further

vrS+R∂S/∂t=-vrS-R∂/∂R(Svr). Since ∂/∂R(RSvr)=vrS+R∂/∂R(Svr)

we can write: R∂S/∂t+∂/∂R(RSvr)=-vrS=0, since we are interested 
only in the change of mass.

● Exercise for homework is to do the same for conservation of the 
angular momentum of such a ring, but adding the term for transfer 
of angular momentum between the rings, because of viscous 
torques, ΔR∂G/∂R:



 Accretion disk

• In the linear approximation, first two terms are -ΔR∂(2πvrRSR2Ω)/∂R

and we have:

• Again we discard constant 1st l.h.s and 2nd r.h.s. terms and write
∂R/∂t=vr to get: 



 Viscosity

       Two neighbor rings in the disk.

• Now we will find the torque of two neighbor rings. The speed of chaotic 
motion in the gas is ῡ, and λ is the characteristic scale, which is also the 
mean free path. After exchange, element A will (in average) have torque from 
the position R-λ/2, and element in B from R+λ/2. Material in chaotic 
movement does not transfer matter (in average =0), only the steady flow can.

• Transferred mass is ∂m/∂t=Hρῡ, where H is the disk height in z direction. 
• For the accretion process essential is the difference in transported torques, 

and there is transport of torque because of chaotic motions. This is viscous 
torque.

• Observer in point P, rotating with  Ω(R ) sees fluid in R-λ/2 moving with 
speed



 Viscosity

● This gives the average flow of angular momentum by the unit angle directed 
outwards:

and inwards:

● Torque on the outer ring by the inner ring is equal to total outwards torque.
In the first approximation we have:

• =[first two terms in { } give -Rλ∂Ω/∂R, 3rd and 4th after λ/2→0 give
-λ/2Ω(R )  ]=-λρῡHR2∂Ω/∂R.
  



 Viscosity, and back to the disk

• For the whole ring we multiply the obtained result with 2πR, and with the 
surface density ρH=S [from ρ=m/V, S=m/A we divide with H, we have
S/H=m/(AH), r.h.s.=ρ] we obtain that the torque of the outer to the inner 
ring  

• (- inner torque to the outer ring)  is G(R )=2πRνSR2cΩ/∂R,
where ν= λῡ is the kinematic viscosity coefficient.

• We had G=G(R,t), and with R∂Ω/∂R=A we have G(R )=2πRνSAR, where
νSA is a viscous force per unit angle.

• Now we can insert the obtained viscosity in the disk equations. We insert G
into the equation we obtained from angular momentum conservation:

• We divide with R and together with R∂S/∂t+∂/∂R(RSvr)=0 we can 
eliminate vr.



 Viscosity, and back to the disk

• The first equation, after division with R, we can rewrite as:

• We write R∂S/∂t+∂/∂R(RSvr)=0 as ∂(Rsvr)/∂R=-R∂S/∂t and we have

• In the first approximation L is a constant vector, and since R2Ω is 
proportional to its length, we can discard the 1st term.   

 



 Viscosity, and back to the disk eqs.

● We obtain: 

• Inserting it into R∂S/∂t+∂/∂R(RSvr)=0 we

have:

• With F
g
=F

cf
, potential of point mass M is

mv2/R=GMm/R2 and vφ=ΩR, G=gravity

const., Keplerian Ω=(GM/R3)1/2 and
dΩ/dR=-3/2(GM/R5)1/2 and     →
This is the diffusion equation for the
surface density S: mass diffuses
inwards, angular momentum outwards.

• Diffusion timescale is tvisc=R2/ν. 



 Viscosity, general discussion 

● We obtained the solution for S. In general, ν depends on local conditions in 
the disk, and ν=ν(S,R,t) so that we obtained nonlinear diffusion eq. for S.

● If ν depends on R only, eq. is linear in S, even for the power of R
(it was clear already in 1920-ies, Jeffreys 1924, Weizsacker in 1948).

● Most of the mass moves towards the center, losing energy and torque. A
tail of matter moves towards larger R to conserve the angular momentum.
Matter from the initial ring arrives to the center, and total angular
momentum is transported to large radii by a very small mass, compared to
the disk mass. The disk slowly spreads outwards.

● In 1973 Shakura & Sunyaev gave a solution, parameterizing viscosity
as ν=αcsH, where α<1 is a coefficient describing “turbulent viscosity”.

Usually ν~LV, where L is characteristic scale, and v characteristic 
velocity of the turbulent eddies-so we assumed L~H of the disk, 
and V~cs (turbulence is usually assumed to be subsonic).

In astrophysics we are usually dealing with large Reynolds numbers Re, 
defined through Re=LV/ν, simply because of large L.



 Viscosity, general discussion 

• Re measures ratio of inertial to viscous forces, so in the disc we usually 
have proportionality with vφ

2/R 

• For Re<<1 viscous forces are dominating, and with Re>>1 they are 
unimportant. In accretion discs usually Re>>1011 and we can not get much 
lower.

• Clue of the problem is exactly in so large Re: from experiments we know that 
fluids have some critical value Re

c
, at which the velocity becomes chaotic, so 

we have turbulence. Typical Re
c
=103, so we can conclude that disc material 

is turbulent.
• There were many works on turbulence, but we still do not have the full 

understanding of the mechanism in accretion disks. Currently accepted 
paradigm is the one by Balbus & Hawley (1992), where magneto-rotational 
(MRI) turbulence is invoked.

• Mathematically, viscous process is a diffusion process (of matter and angular 
momentum), this is the basics for our description.

   

 



Roche equipotential surfaces 

● A small, but hopefully useful 
distraction: Roche surfaces 
usually emerge when we are 
dealing with close binaries.

● French matematician Edouard 
Albert Roche (1820-1883) 
discussed the problem of 
equipotential surfaces in the 
context of stability of the 
orbits of small planetary 
satellites in 1849.

● Physical model is of the small 
test mass m moving in the 
gravitational fields of two 
massive points. There is no 
gravitational back-reaction 
from m to M1 and M2.



Roche equipotential surfaces 

● Because of tidal forces, with close binaries we usually can work in this 
approximation.

●  Lagrange in 1772 showed the existence of 5 points (Lagrange points L
1
-L

5
), 

where forces from M1 and M2 are balanced.
● If we solve the equations in (x,y,z) put along the line connecting M1 and M2, 

perpendicular to it in the plane of the paper and vertical out of the paper,
we obtain, with μ and 1-μ being the masses expressed in total mass 
parts μ=M1+M2 and distances r1 and r2 in the units of the masses 
M1 and M2 distance:

●   Constant C is defined by the initial conditions.
● The velocity v=0 defines a surface at which velocities are >0 or 

<0, real or imaginary, and C defines from which side of this 
surface the mass m is moving.



Roche equipotential surfaces 

● Jacobi found that v2=V-C, where

● It shows that we can use the same approach for close binaries, even when 
there are flows between them, or they are filling their respective “Roche 
lobes”, so that the solution
gives us the equipotential
surfaces, U is the potential:

● We have v2=-2U-C 



Python code, jupyter notebook 

● We will solve the Bondi spherical accretion problem using Python.
● We will use the relaxation method, for coordinate network with logarithmic 

distribution.
● To ease the work, we use the jupyter notebook, but we also work with 

Python scripts alone.
● jupyter notebook is useful tool, because one can directly follow the pieces of 

python code with the explaining text.
● Few hints for solving the problems: Depending on your python 

installation,you might need to upgrade existing or install missing packages. 
Browsing for the answers using the error messages shown on the execution 
gives you hints on how to solve the problem.

● Few examples, to remind you of commands for this. I find it simplest to use 
pip (for python3, which we use here, use pip3-update it on your machine
by typing: python3 -m pip install --upgrade pip).

● I also needed to install dvipng package for creating png files, in ubuntu:
sudo apt-get install dvipng

● You might encounter problem with jax, install it, it needs jaxlib, install it too
● If something does not work with python3.5, try 3.8 or else, python is a 

delicate animal and sometimes you have to beg it to get what you want!  



Python code for Bondi accretion in analytical solution 

● First we exercise use of python on showing our analytical solution.

● Run the routine bondi-relaxation.ipynb which you got in slack in jupyter:
jupyter-notebook bondi-relaxation.ipynb
this will launch the notebook in your default browser.

● If there are any problems with jupyter notebook, extract the bare python code from 
jupyter notebook version and try to run it in the terminal. Some tweaks might be 
needed, try with other versions of python.

● After you solve the problems in bare script and install/activate all the needed 
routines, jupyter version should also work.



Python code for Bondi accretion solver 

● After installing everything, we are ready to run the solver itself.

● Run the solver parts of the routine bondi-relaxation.ipynb.

● After you get it running in jupyter, extract the needed part into a separate file (there 
is such a function in jupyter), and run from the terminal as a python script.



PyAstronomy & Roche equipotential surfaces 

● If you need some routine for astrophysical use, it is very probable someone else 
also needed it. There is a pile of astro-routines from last decades, but not in python, 
this is relatively new fashion, before for long time a standard package was IDL, a 
quite expensive proprietary software.

● There is Open source initiative version of IDL, called GDL, which has most-but 
not all-functionality of IDL. For simpler graphics or most of computations it usually 
works, give it a try-”G” in GDL is from Gnu…, so it is distributed with major linuxen, 
or can easily be installed.

● If you are lucky, your needed code might be already translated to python, and 
available in Github or similar. One such library is PyAstronomy-currently at 0.18 
beta edition, but growing, so best is you browse for it and find the current wersion, it 
will for certain grow steadily.

● I show an example of a routine from PyAstronomy, computation od Lagrange points 
and Roche equipotential surfaces. Note that, depending on software used for 
viewing the results, you can read the positions in wished points by just moving the 
cursor on your screen. The data about mass ratio etc is printed out in the terminal.



Summary of the Part I

• General introduction to accretion
• Energetics of accretion
• Eddington limit
• Spherical (Bondi) accretion

• Accretion disk
• Viscosity

• Python code for Bondi accretion
• PyAstronomy package
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Outline, Part II: Steady disk solutions

- Perturbative solutions for the disk

- Shakura-Sunyaev disk

- Python code for Shakura-Sunyaev disk
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General equations

•  We will go through (sometimes painful) detail into the accretion disk 
equations.

• The obtained solution is still a starting point for explanation of the birth of 
stars and larger structures.

• Matter which we consider, when undergoing accretion, is gaseous, which 
means that interaction is by the collisions, not short distance forces. We use, 
as we did before, λ for the mean free path of the particles, ῡ for the mean 
velocity (velocities are measured in the comoving coordinates, and 
distributed following a Maxwell-Boltzmann distribution, which is dependent 
on the temperature, T), ρ for the mass density of gas. When observing the gas 
at scales L>>λ, we can consider it as a continuous fluid, with density, 
velocity and temperature defined in every point of the flow. The equations to 
describe such fluid are the equations of conservation of mass, momentum and 
energy.

• Conservation of mass:
Conservation of momentum follows from the force acting on a fluid element:

P is pressure, and the direction of ort vector n is outwards from the volume. 



General equations

•  Force acting on the unit volume element of the gas is (-∇P), and its equation 
of motion we obtain from the 2nd Newton, multiplying it with the unit volume 
mass=density ρ and acceleration, so we can write:

• Acceleration is also with respect to the comoving coordinates,
not in the background rest system, so we have two parts in the velocity 
change in this equation: one is the change of velocity in the given point of 
space at a time interval dt: ∂v/∂tdt and another is the difference in velocities 
at two points of space, distanced r, through which the fluid flows during dt, 
what we can write as dr∇v, so we can write all together:

• When we insert it to the above equation of motion,
we obtain

• General equation of motion should add the source term for the external forces 
acting on the system, we obtain the Euler equation:  (E) 

• If we insert f=ρg for a gas in gravity field (g is the
gravity acceleration), f could contain contributions
from viscosity, external magnetic field etc.



General equations

•  Momentum of the fluid element is ρv, conservation of the momentum is:

• For a stationary flow ∂ρ/∂t=0, so we also the last derivative is zero, and we
have (A)

• From is

• For the accretion onto spherical object of mass M, we choose spherical 
coordinates (r,ϑ,φ), radial component of the equation (A) is (G=grav. const)

• where []=2rv
r
+r2∂vr/∂r so we have

                                                        (B)



General equations

•  From the continuity equation we have, for the stationary case with ∂P/∂t=0
that ∂ρ/∂t+∇(ρvr)=0. For any vector A radial part is

 so we have  which means that r2v
r
=const.

Since (-ρvr) is inflow mass flux, this const must be related to mass flux,

• i.e. the accretion rate Ṁ=4πrρ(-vr), since r2·(inflow flux)=const=Ṁ/4π,

for the whole sphere is 4πr2Ṁ·(inflow flux).

Now we insert r2v
r
= - Ṁ/4πρ into eq.(B) from the previous slide to obtain

v
r
=-Ṁ/4πρr2, which in the limit r→0 gives v

r
=0  and for the stationary 

spherical accretion we stay with



General equations

•  Energy conservation:
The gas element energy is a sum of kinetic term 1/2ρv2 (by unit volume)
and internal (thermal) energy ϵρ (ϵ is specific energy-by mass unit, 
dependent on temperature T). From the equipartition of energy we know that 
each degree of fredom has average energy of 1/2kT, so for mono-atomic gas 
we have only 3 translational directions and we can write ϵ=3/2kT.

• Energy conservation equation we write similar to mass conservation,
plus adding source terms, depending on physics we include in our model, 
now instead of ρ we conserve the kinetic and internal energy, and in the 

• spatial derivative we will have work done by the pressure, Pv:
                                                   =0  and for a stationary case:

On the r.h.s. we can add the losses (so, - sign!) by radiation, heat etc. as
the source terms inside -∇( ).



Perturbative solutions for the disk

•  Now we move to the perturbation method-we compute the perturbation in 
relation to the hydrostatic balance. We obtained

and with v=0 in the hydrostatic case we stay only with
                          ∇P=f

 
• For the ideal gas, which we can assume everywhere except degenerate gas in 

some dense objects or near the centres of the normal stars, we have

• with m
H
~m

proton
 is the hydrogen atom mass, and μ is the average molecular 

mass in units of m
H
, so that for completely ionized hydrogen it is μ=0.5 

and for neutral hydrogen μ=1.



Perturbative solutions for the disk

•  Now we assume a small shift in the density and pressure (ρ’, P’) from the 
initial balance values  (ρ0, P0):    ρ=ρ0+ρ’ ,  P=P0+P’ ,  v=v’

• Depending on the processes, perturbations can be isothermal or adiabatic.
• For adiabatic changes with γ=5/3 and isothermal with γ=1 we can write 

P/ργ = const=k, so we can write P
0
+P’= k(ρ0+ρ’)γ [try γ=1.05 in simuls!] 

• Linearizing the mass continuity eq.:
• with (ρ’)v→∇ 0 in the first approx.

• We do the same with Euler eq. to obtain:

• Since P∇
0
=f, and products of

second and higher orders are
neglected, we obtain ρ0∂v’/dt=- P’ . ∇

• We obtained two eqs.: (C)



Perturbative solutions for the disk

•  From P
0
+P’= k(ρ0+ρ’)γ we see that P is a function of ρ only, so that we can 

write P’=(∇ ∂P/∂ρ)0∇ρ’, to the first order, where with a subscript 
0 
we 

assigned that we  evaluate the derivation for the equilibrium state.
• The second of the eqs. (C ) we can write now as:
• We act on it with :∇

• We act on the 1st eq.in (C ) with ∂/∂t:

• We subtract the two eqs.to obtain:

the wave equation! With ↑  as the sound speed, c
s
2, we can write



Perturbative solutions for the disk

•  For P’ and v’ we obtain the equivalent equations, so we conclude that small 
perturbations around the hydrostatic equilibrium positions spread with the 
speed of sound.

• Depending on the kind of perturbation, we have two possibilities,
adiabatic

or isothermal:



Stationary thin disk

•  Back in “Viscosity, and back to the disk eqs”, slide 25, we obtained the 
equation: (G is gravity const. here!)

• To continue, we needed the viscosity. That the disk would be “stationary” and 
that viscosity would work, we need that the mass accretion rate Ṁ would be 
slow enough. Then we can set ∂/∂t=0 and from the mass conservation we can 
write Ṁ=2πRS(-vr) and from the angular momentum conservation (middle of 
slide 23 ) we have RSVrR

2Ω=(G(R,t)+C)/(2π), with C=const. related to the 
angular momentum rate of the accreted matter. Star must rotate slower than 
the breakup rotation at the equator, so when approaching closer to the star, 
there is a region in the disk where the disk corotates with the star. Even closer 
to the star, our approximation breaks-here starts the discussion and departure 
from the simple estimates.



Stationary thin disk

•  In slide 23 we had G=G(R,t), and with R∂Ω/∂R=A it was G(R )=2πRνSAR, 
where νSA is a viscous force per unit angle. After integration:        

           
                                          R (D)

• Inside a ring at RA+b, the rotation of the disk approaches Keplerian, 
reaches ∂Ω/∂R=0, and increases until it reaches R~RA. We can 
write     (G is gravity constant now!).

• Closer than RA The thin disk approx. is not valid animore. To find C 
we insert R=RA+b and evaluate C=2πRA

3SvrΩ(RA+b)|R_A+b (now Ω() , 
not multiplying!), which gives, after inserting mass accretion rate Ṁ 
and Ω(RA+b), C=-Ṁ(GMR

A
)1/2 that          , exact to order O(b/R

A
). 

We insert it to eq. D to obtain

• Loss of energy because of viscosity is                                                        which is 
D(R)=g/(4π)∂Ω/∂R per unit disk
surface. Inserted back to (D) it it gives that  , 
D(R ) is independent of viscosity:



Stationary thin disk

•  Now we can estimate the luminosity of a disk between R
1
 and R

2 
(2 is for 2 

disk sides: , 

• If we substitute x=R/R
A
, we obtain

• For R=R
1
 and R

2
→∞ we obtain the complete disk luminosity (G is gravity 

const):

• where we defined

• This means that half of the energy is radiated from the disk, and half is 
released very close to the central star, which takes the same amount like the 
whole disk! (which has a much, much larger surface). 
 



Stationary thin disk

•  This was for radial direction, is it all consistent with the vertical direction? In 
the vertical, z direction, there is mainly no flow, we have the hydrostatic 
equilibrium:    which we get from the vertical component of

 Euler eq.  (eq.E on slide 38) neglecting all the terms with velocities.
For the thin disk z<<R we have

• Since H||z we can write ∂P/∂z~P/H and z~H, and condition for a thin 
disk becomes H<<R. For P∝ρc

s
2 we have

which means that it has to be
c

s
<<(GM/R)1/2; additional condition for a thin disk: local Keplerian speed 

must be highly supersonic. Only with this satisfied, the approximation of thin 
disk can be used. - This is a strong condition for the inner workings of a disk, 
and tells us that the local orbiting speed will be close to the Keplerian speed.



Stationary thin disk

•  The radial component of the Euler eq.is:
If we neglect the pressure term, because

• of  c
s
<<(GM/R)1/2, we have ρ-1∂P/∂R~cs

2/R in comparison to a larger 

gravitational term GM/R2, with Ṁ=4πrρ(-vr) which we know from 
before, and  from slide 47, we have

• Now we are slowly shifting to the Shakura & Sunyaev (1973) main
assumption: for any reasonable viscosity, the radial velocity vr is 
highly subsonic, while orbital velocity is highly supersonic and 
approximately Keplerian: with ν∝c

s
H we have vr∝ν/R~c

s
H/R<<c

s

• Now we have all the equations for the disk structure.



Lynden-Bell on steady model disk
Usually cited 
before Shakura 
& Sunyaev 
disk is 
Lynden-Bell 
(1969) 
discussion of 
the origin of 
emission from 
galactic 
nuclei-”old 
quasars”, 
Schwarzschild 
mouth was still 
the term for 
the event 
horizon. 

 



Shakura & Sunyaev viscous alpha disk
•  Now we are in a better position to discuss the SS73 paper, which is one of 

the most cited papers on accretion disks (10657 at noon Sunday 27th 02 2022)
• It got a reprint in A&A in 2009, and a review by Andrew King, which best 

describes its importance. We will first follow this short review.



Shakura & Sunyaev viscous alpha disk
•  With the thin disk approximation, we can compute the structure of the disk. 

In practice, we are solving the 1D with only a radial dependence, as we 
decoupled it from the vertical, z-dependence, which is essentially written as a 
hydrostatic equilibrium and energy transport.

• In the radial direction, the disk structure enters only in the local energy 
dissipation rate D(R ).  

• From the hydrostatic eq. for isothermal structure we obtain the 
solution    where ρc  stands for the density at z=0.

• The central density of the disk we can approximate as ρ=S/H, H=ρcs/vφ.

cs
2=P/ρ, where P is a sum of gas and radiation pressure

with an assumption T(T,z)~T
c
(R,0). The central temperature T

c
 is determined 

by the relation between the vertical energy flux and the energy dissipation 
because of viscosity.

• Locally, using the thin disk approximation, we now have the vertical 
temperature gradient, so that for z=const surface we have radiated energy flux
(ϰ

R
 is the Rosseland mean opacity):   



Shakura & Sunyaev viscous alpha disk
•  We assumed the optically thick disk: τ=ρHϰ

R
=Sϰ

R
>>1, so that the radiation 

is locally very close to the black body radiation. In the case with τ≤1 
radiation could directly exit the disk, and the equation for F(z) from the 
bottom of previous slide would not be valid any more.

• For the energetic balance must be F(H)-F(0)=D(R ), so that
which, with T

c
4>>T4(H) gives     .

• For the full set of eqs.we need the ϰR=ϰR(ρ,Tc) relation, and expression for

ν and its relation to S and Ṁ. This all amounts to 8 equations for 
ρ, S, H, Tc, cs, P, τ,ν in dependence of R, M and Ṁ ,with some 
parameter in the viscosity, which are describing the thin disk model: 
 

                                    +



Shakura & Sunyaev viscous alpha disk

•  With “alpha viscosity” parameterization ν=αc
s
H

 
Shakura & Sunyaev (‘73)

gave the first solution. They used the Kramers’ law (6.6·1022 wrongly sometimes!!)

ϰR=5·1024ρTc
-7/2cm2/g and neglected the radiation pressure in eq.(4). Now 

the system of 8 eqs.can be solved. I give steps (from “Accretion power…”):

• First we simplify f4=1-(R
A
/R)1/2 and write whole r.h.s. of eq.5 as equal to D.  

Now with eq.6, ϰR and eq.2 we can write eq.5 as

4σT4/(3τ)=D= 4σT15/2/(3*5·1024ρS)=[ρ=S/H]=4σHT15/2/(15·1024S2)=
={H=csR

3/2/(GM)1/2 and from eqs. 3 and 4 (without rad pressure term) 
write

H=R3/2T1/2[kB/(GMμmp)]
1/2 }=4σR3/2T8[kB/(GMμmp)]

1/2/(15·1024S2), and from 

that obtain T8=15·1024S2D[kB/(GMμmp)]
1/2/(4σR3/2). We insert D back as the 

r.h.s of eq.5 and use eqs.7 and 8 (where finally ν=αc
s
H comes into 

game), to write the solution-I give the detailed derivation of solutions on 
the next slide, this is usually not shown in literature; then we can write vr 
from the equation in the slide 50.



Shakura & Sunyaev viscous alpha disk



Shakura & Sunyaev viscous alpha disk

•  So, with “alpha viscosity” parameterization ν=αc
s
H

 
Shakura & Sunyaev 

(‘73) gave the first solution. They used the Kramers’ law (6.6·1022 wrongly 

sometimes!!) ϰR=5·1024ρTc
-7/2cm2/g and neglected the radiation pressure in 

eq.(4) to write, in the form variations of which we usually find in the literature:
 

                                                        190

• It is important that α is nowhere coming with large power, so that any error because of our not 

knowing it, is less.   



•  The Kramers’ law for ϰR is critical, because when it is not holding any more, 

our approximation breaks down, but until it holds, disk can extend far in R, of 
the order of Roche boundary of the more massive star.

• Mass in the disk is     , which is even in the 

very large disks negligible in comparison with the central object. This justifies 
the neglect of self-gravity of a disk, which is valid until ρ<<M/R3.  Only for a 
very small α, of the order of 10-10, this would not be fulfilled.

• The disk thickness in z-direction means that each element of the disc
surface radiates as a blackbody with a temperature T (R) given by equating 
the dissipation rate D(R) per unit face area to the blackbody flux: σT4=D(R )

• If we insert D from the bottom of slide 47:
•

                                   Ṁ
16

 = Ṁ /1016 g s-1, m
1
=M/Mʘ,R

9
=R

*
/109 cm etc. for  

                                          disk around WD (R
9
) & NS (R

6
). Note R

A
=R

*
 now!

Shakura & Sunyaev viscous alpha disk



•  The low power of α in the equations is good for usefulness of α as a 
parameter, but it also means we cannot expect to learn the typical size of α by 
direct comparison of steady-state disc theory with observations. This is 
something what is troubling disk astrophysics until today. No free lunch!

• A good thing is that for α≤1 we obtained believable solutions, which are not 
too much off the models from observational data.
Where we expect the assumptions (Kramers’ opacity and the neglect of 
radiation pressure) to break down? From the top of slide 54 we have 

• ϰ
R
=τ/S=36 Ṁ

16
-1/2 m

1
1/4 R

10
3/4 f−2 independent of α. We compare with other 

opacity sources-the major competitive opacity is electron scattering where
ϰ

R
=σ

T
/m

p
~0.4cm2/g with Kramers’ opacity dominating for 

R>2.5×107 Ṁ
16

2/3 m
1
1/3f8/3 cm. This is smaller than the radius of a white dwarf 

for any reasonable Ṁ, so for the accretion discs in cataclysmic variables we 
expect Kramers’ opacity to dominate in most of the disc.

Shakura & Sunyaev viscous alpha disk



• In reasonable range we can rely on the results shown in the figure below for 
the physical regimes in steady α-discs around compact objects:

Shakura & Sunyaev viscous alpha disk



• If the disk is concave, then the central, hot regions, could irradiate the more 
distant, colder parts of the disk with hard radiation, and the picture 
complicates-this would show in observations.

• Similar is for a warped disk, complications in the picture:
 

Shakura & Sunyaev viscous alpha disk



• If the disk is concave, then the central, hot regions, could irradiate the more 
distant, colder parts of the disk with hard radiation, and the picture 
complicates-this would show in observations.

k indicates the direction of propagation of the radiation incident on the disc and n is the local 
inward-directed normal vector.

• In low-mass X-ray binaries the disk is probably heated by irradiation by the central 
accretion source. If the accretor is a luminous star, we can have a similar effect.

• If the central source can be regarded as a point, its total radiative flux at disc radius
R is L

pt
/(4πR2), source with L

pt
 total luminosity. The flux We can write:

crossing the disc surface at this point is
 β is the albedo, the effective fraction of incident radiation
scattered from the surface without absorption, and ψ is the
angle between the local inward-directed disc normal and
the direction of the incident radiation. 

 

SS73 concave disc



• Since dH/dR, H/R are both <<1 for a thin disc

• With effective temperature T
pt
 resulting from irradiation by the point source and F from the 

previous slide,

T
e
 is the effective temperature of the central source, defined by L

pt
= 4πR

*
2σT

e
4,

with the characteristic source dimension R
*
. With H varying as R9/8, for the non-irradiated disk in the 

solutions for the disk, in a disc deriving all its luminosity from irradiation by a point source, one can 
show that H  R∝ 9/7, and the factor in square brackets in solution lies between 1/8 and 2/7, which we 
name g, (to add another g). The ratio H/R is roughly constant in a disc, so T

pt
 falls off as R−1/2 . For a 

large enough disc T
pt
 dominates the disk effective temperature, which goes as R−3/4. We obtain:

• If the central luminosity L
pt
 results from accretion, as in low-mass X-ray

binaries, we have L
pt
 = GM Ṁ /R

*
 where R

*
= 10 km for a neutron star, and

a similar value for a black hole. Then

• This means that even if the combination (H/R)g(1 − β) can be <10-3, the central source will dominate for a disc with a 

large enough ratio R/R
*
. In low-mass X-ray binaries R~106cm and outer disk radius is ~1010cm, so R/R

*
~104 and 

there will be a large range of surface temperatures in the disk.

SS73 concave disc



• Alpha viscosity does not give us predictive power. 
• Since ∂/∂R(R2Ω)=0 [Rayleigh criterion, stability against axisymmetric 

perturbations] and ∂Ω/∂R<0 . Most potential mechanisms are sensitive to 
the angular momentum gradient, so they work in such

• a way that they are bringing angular momentum INWARDS. We need a 
mechanism sensitive to Ω. 

• If not alpha viscosity, then what? How the MRI works?
• Balbus-Hawley (magnetorotational, MRI) instability (1992).

If we imagine a straight magnetic field B line threading a rotating disc, 
magnetic tension tries to straighten line, there is imbalance between gravity 
and rotation which bends the line (figures in this and next 2 slides are from A. 
King’s lecture I found online). 

Working of MRI in a disk



• Vertical fieldline perturbed outwards, rotates faster than surroundings, so 
centrifugal force > gravity, so that kink increases. Line connects fast-moving 
(inner) matter with slower (outer) matter, and speeds latter up: outwards a.m. 
transport!

• For a too large mag. field, instability is supressed. Distorted fieldline stretched 
azimuthally by differential rotation, strength grows, pressure balance between flux 
tube and surroundings requires B2/8π+P

gas,in
=P

gas,out
 , so that gas pressure (and 

density) are lower inside tube;  buoyant (Parker) instability works, and  Flux tube rises 
above the disk, creating another vertical field, which closes the cycle, which can 
transport the angular momentum – this was shown to work in numerical simulations.

Working of MRI in a disk



• Another effect which will change the picture is when the disk becomes larger: 
Self-gravity of disk



For the beginning, some ideological points:

• Physical interpretation of observations is usually given, even in the cases with 
publicly funded experiments and observatories gathering the data, by  
individuals with proprietary and private modeling software. Such a practice
produces results difficult to reproduce or verify. As with the recent initiatives, 
which is slowly becoming a policy, that publications should be freely 
available, similar initiatives are promoted for software and tools. 

• It will take time, but we will get there, because it is in public interest, and it is 
also not very justified that some - and not at all so numerous, because of 
historical reasons - publishers would earn from the publicly paid research.

• As for Python, and in general tools, in line with green approach I gave a 
presentation on this back in 2020, I will repeat here some interesting points, 
might be of use.

Python code for Shakura & Sunyaev viscous alpha disk



Computer use in astronomy continues to increase, and so also its impact on the 
environment. To minimize the effects, astronomers should avoid interpreted scripting 
languages such as Python, and favor the optimal use of energy-efficient workstations.  

 

ArXiv:2009.11295; Nature Astronomy vol.4, 819 (2020)



Carbon footprint of 
astronomy and computing

• Comparison of the average Human 
production of CO2 (red line) with 
other activities, such as telescope 
operation, the emission of an 
average astronomer, and finishing a 
(four year) PhD.

• The emission of carbon while 
running a workstation is 
comparable to the world’s per-
capita average.



Carbon footprint of computing

• The relation between the time-to-solution and the 
carbon footprint of the calculations is not linear. 
When running a single core, a supercomputer-used 
to capacity-produces less carbon than a 
workstation. More cores result in better 
performance, at the cost of producing more carbon. 

• Similar performance as a single GPU is reached 
when running 1000 cores, but when the number 
of cores is further increased, the performance 
continues to grow at an enormous cost in carbon 
production.

• When running a million cores, the emission by 
supercomputer by far exceeds air travel and 
approaches the carbon footprint of launching a 
rocket into space.



Ecological impact of computing language 
• Results were obtained with the 

assumption that astrophysicists invest 
in full code optimization that uses the 
hardware optimally.

• In practice, most effort is generally 
invested into solving the research 
question; designing, writing, and 
running the code is not the primary 
concern, if the result is obtained 
reasonably fast. This is why 
inefficient (and slow) scripting 
languages as Python flourish.

• According to the Astronomical 
Source Code Library,  43% of the ∼
code is written in Python, 7 % Java, 
IDL and Mathematica. Only 18%, 
17% and 16% of codes are written in 
Fortran, C and C++ respectively.

• Python and Java are also less efficient 
in terms of energy per operation than 
compiled languages, which explains 
the offset away from the dotted curve.

• Among 27 tested languages, only Perl 
and Lua are slower than Python-
popularity of Python should be 
confronted with the ecological 
consequences.



How to improve?

• Runtime performance of Python can be improved using numba or NumPy libraries, which offer pre-
compiled code for common operations-it leads to an enormous increase in speed and reduced carbon 
emission. However, these libraries are rarely adopted for reducing carbon emission or runtime with 
more than an order of magnitude.

• NumPy, for example, is mostly used for its advanced array handling and support functions. Using these 
will reduce runtime and, therefore, also carbon emission, but optimization is generally stopped as soon 
as the calculation runs within an unconsciously determined reasonable amount of time, such as the 
coffee-refill time-scale or a holiday weekend. We even teach Python to students, but without realizing 
the ecological impact.

• The carbon footprint of computational astrophysics can be reduced substantially by running on GPUs, 
but the development time of such code requires major investments in time and expertise. 

• As an alternative, one could run concurrently using multiple cores, rather than a single thread. It is 
even better to port the code to a supercomputer and share the resources.

•  Best for the environment is to abandon Python for a more environmentally friendly (compiled) 
programming language. 

• Even better is to use other interesting strongly-typed languages with characteristics similar to Python, 
such as Alice, Julia, Rust, and Swift. They offer the flexibility of Python but with the performance of 
compiled C++. 

• Educators may want to reconsider teaching Python to University students. There are plenty 
environmentally friendly alternatives.



• Back to our topic. As an intro and example, we install and run the agnpy, python package 
modelling the radiative processes of relativistic particles accelerated in the jets of AGNs. We 
try to learn from it, eventually use some of its content.

• The package is fresh, arXiv paper was out in January of this year, information about the 
installation and the first example I took from the poster from Jets conference in last year.

Python package agnpy



Python package agnpy



Python package agnpy
Using NumPy, SciPy, and astropy, agnpy 
is still “kosher” and provides another 
element to the modular astrophysical 
software system envisioned in Portegies 
Zwart (2018). But, how much of SS73 disk 
is there in agnpy? There is rather an update 
of their result-good for science, but not for 
our goal of using SS73. But maybe we 
could simply make it and incorporate into 
agnpy, they claim it is easy to do. Let’s 
check it, can we do it in 2 hrs? We wish to 
plot this updated result aside the original 
one.



Next we prepare our own Python code to plot the results for Shakura & 
Sunyaev thin disk:

-load the necessary routines and prepare the definition of quantities.

-type-in the equations, constants and write the interactive input interface.

-make the visualisation part of the code.

Python code for Shakura & Sunyaev viscous alpha disk



Summary of the Part II

•  We introduced the simplest equations for disk description

• Detailed perturbative solutions, step by step.

• Shakura & Sunyaev ‘73 solution
• If not alpha viscosity, then what? How the MRI works?
• Self-gravity of disk

• Python code for Shakura & Sunyaev viscous alpha disk
-some ideological points about open access
-agnpy package
-our own python routine
-merging of our routine for original SS73 with agnpy

Miljenko Čemeljić, Thin accretion disk, Feb & March 2022, Silesian University,  Opava



Outline, Part III: General solutions for thin disk

- z-averaged solutions: Urpin (1984) ; Regev (1983) solution

- Kluźniak-Kita global solution for a thin HD disk and its 
magnetic generalization

- Umurhan (2006) generalized γ solutions

- Python code for thin disk; python tool DUSTER

Miljenko Čemeljić, Thin accretion disk, Feb & March 2022, Silesian University,  Opava



Urpin solution

I was mentioning before the z-averaged 
solutions. Assumptions in Urpin are all as we 
already know: 

I noticed here we forgot to discuss on viscous 
tensor, of which the above eq.is a component:



Urpin solution



Urpin solution
Next he discusses the three zones of the disk, neglecting 
the closest one to the star:



Urpin solution
Now we compute v

r
: we have from eq.4, because of vertical hydrostatic equilibrium



Urpin solution
Next he discusses the three zones of the disk, neglecting 
the closest one to the star:

z
cr

, towards.



Regev solution

• In Regev’s solution by expansion on a small parameter of H/R is proposed. 
On this, later similar solutions are developed.

• We will contrast his solution with the later ones, to better understand the 
development.



Regev solution

• Boundary layer between the inner disk radius and stellar surface is 
important-there ΩK of the infalling material changes to Ω* in a very thin 
layer, compared to the disk extension in radius.

• As we obtained at slide 48, up to a half of the accretion luminosity is 
generated in this thin layer.

• In SS73, Pringle81 and similar, dΩ/dr=0 is used at r=r
*
 boundary.

• Solutions by Regev, applied to a disk around a white dwarf relate to region  
(c) in SS73.

• He searches for steady, axisymmetric solutions, with ∂/∂t=∂/∂φ=0,
viscosity is present (only r-φ component of the viscous stress tensor is 
present, the rest is neglected), the disk is optically thick, with radiation 
transfer treated in the diffusion approximation.



Regev solution

We are already familiar with the equations: 
momentum eq.in r and z directions (cylindrical 
coords), angular momentum (in r), mass 
continuity and energy eqs. Radiative energy 
fluxes in r and z directions are, with the 
assumptions from the bottom of previous slide:

We need to supply the equation of state for P 
and opacity  ϰR.

The constant mass flux through the disk is 
another requirement, which is a constraint for 
the solution:



Regev solution
We will not follow Regev solution in detail but just outline it, because we will repeat it related to KK solution:



Regev solution

Equations 7-12 depend on the small parameter ε and other nondimensional constants, order of which is important 
for finding an approximate solution. The “method of matched asymptotic expansions” is used [Regev refers to it as 
“Bender & Orszag (1978, chapter 9) solution for differential eqs.which exibit a boundary layer structure”, I usually 
refer to it as doing Taylor expansion in a small parameter ε, as this is to what we resort at the end.]. Scaling is done 
to the typical values as in the table:

Now comes the “matched” part: solution of eq.7 in previous 
slide in the leading order is proportional with r -3/2 , this can 
not be valid at the boundary. An “outer” expansion at r≠1 , 
ε→ 0 is constructed and matched to the inner expansion, 
valid in the disk.

The ideal gas eq.is assumed, the radiative term neglected, 
opacity for free-free transitions is assumed, in the main 
solution and also in the boundary layer. Viscosity in the 

boundary layer is assumed as νBL=KvturbΛ, with

K and V
turb

 constant and  Λ being a characteristic length 
scale in the boundary layer. In the nondimensional units it is



Regev solution

• Similar is done for the inner region, in the case when star is 
fast rotating, near the breakup velocity, he assumes 

Ω*=ε1/2ΩK* . This is different from our solution later, 

when we will relax this constraint, so we do not follow it 
further in detail here, just an outline:



Regev solution

This is another z-averaged solution, only more involved than Urpin’s. Those equations need to be 
solved numerically, in difference to KK solution, which we will derive analytically. Regev obtains 
curves from Figs. 1&2 for the disk structure. Since KK obtained a general solution, all this became 
obsolete. 



Kluźniak-Kita solution
The work in KK00 paper, which 
exists only in arXiv version, is 
actually a PhD thesis of David 
Kita from 1995 at Madison 
University, USA. It is a general 
solution obtained similarly to 
Regev’s, but without assumptions 
he used at the inner disk radius. It 
is a 3D, axisymmetric, purely HD 
solution.

• David Kita’s Thesis is not 
available online, it is only in hard 
copy in the library in USA and an 
example in CAMK, Warsaw-but 
arXiv paper is actually very 
similar to the Thesis, all the 
formalism is copied in the paper.

• Paper in arXiv is with figures 
given at the end, I rearranged it 
and made a more handy version 
with figures positioned in their 
places in the text. You can 
download it from my orange 
webpage:
http://web.tiara.sinica.edu.tw/~miki/
PostPrez/KK00mikiversion.pdf



Kluźniak-Kita solution

• We will go through the process of deriving asymptotic matched solutions in, again 
sometimes painful, detail. It is a very instructive example, and it could be of use for other 
similar work.

• Motivation of KK00 paper is to find the solutions which would show that the backflow, 
which appeared also in other solutions except Urpin and Regev, is not of a thermal 
origin. Urpin included thermal effects but made the simplification of zero net angular 
momentum flow in the disk (equivalently, his self-similar solution is valid asymptotically 
for large radii). KK chose the opposite route—neglect thermal effects, but include the 
inner boundary condition. They were able to find a global solution. They show how the 
backflow is fed by the inflowing fluid.

• An interesting note: Narayan & Yi (1995) went beyond the one-dimensional solutions by 
numerically constructing axisymmetric ADF solutions which factorize the three-dimensional 
equations, i.e., solutions of the type f (r, θ) = R(r)Θ(θ). Solutions in KK00 are not factorizable.



Magnetic Kluźniak-Kita disk solution (MKK)

• Not to repeat the lengthy derivations twice, we will do the magnetic version, and outline 
the HD solutions by setting B=0. It is interesting that both are non-published work, 
present only in arXiv, referees did not appreciate the contributions, yet. KK00 paper has 
a decent following and garnered 60-some citations until now...more than many 
“published” papers, so it will stay in arXiv domain. The more recent magnetic 
generalization is still in push for publication.

• HD solutions can be obtained since the set of HD equations is closed. For the magnetic 
case it is not the case, and only some general conditions can be obtained. I verify, with 
help of numerical simulations-which you are already familiar with-both the HD and non-
ideal MHD solutions.



Magnetic Kluźniak-Kita disk solution (MKK)

We search for the quasi-stationary state 
solutions, assuming that all the heating is 
radiated away from the disk. This is why the 
dissipative viscous and resistive terms are not 
present in the energy equation, nor are the 
cooling terms. We still solve the equations in 
the non-ideal MHD regime, because of the 
viscous terms in the momentum equation, and 
the Ohmic resistive term in the induction 
equation. We are solving viscous and resistive 
MHD equations (in the cgs units):



Magnetic Kluźniak-Kita disk solution (MKK)

• To compare the magnitude of the different terms in the equations, they have to be written in 
normalized units. We will repeat what was done in Regev (1983): all the variables are written in the 
Taylor expansion, with the coefficient of expansion given by the characteristic ratio of disk height 
to the radius, ε= H/R<< 1. For a variable X we have then X=X

0
+εX

1
+ε2X

2
+ε3X

3
+… and we can 

compare the terms of the same order in ε for each variable.
• In the case of a viscous HD disk (B = 0), the equations can be solved inside the disk (KK00). One 

can assume that the disk density decreases smoothly to zero towards the disk surface, which greatly 
simplifies the solution. In the case with a stellar magnetic field, the disk solution is connected with 
the magnetosphere of a star-disk system, through the coronal magnetic field. Reconnection and 
outflows complicate the solution in the magnetosphere, together with a back-reaction from the disk.

• In a magnetic case, we can obtain only the most general conditions for the disk magnetic field from 
the equations.

• We will be searching for the rotationally invariant stationary solutions, so that stationarity, ∂/∂t = 0, 
and axial symmetry ∂/∂φ = 0 both hold. [In some cases we write ∂/∂x=∂

x
 for simplification.]

• Another assumption is that the structure of the disk is symmetric under reflection about the z=0 
midplane. From this follows that physical quantities such as Ω, ρ, P , η, u=v

r
, and c

s
 are even 

functions of z, while v=v
z
 is odd under reflections through the equatorial plane. When we expand an 

even/odd function (e.g. Ω) in powers of  ε  1, we require each term in the expansion (e.g. Ω≪
i
  ; i = 

0, 1, 2,...) to be independently even/odd. This means that e.g. for Ω=Ω
0
+εΩ

1
+ε2Ω

2
+ε3Ω

3
+..., when 

we have Ω=even, all the terms [including ε in (εΩ
n
)] should be even=> εΩ

1
=0=Ω

1
=0

  
and so on 

for all the odd terms. This is generalized in Rebusco et al. (2009).



Magnetic Kluźniak-Kita disk solution (MKK)

• We work in the cylindrical coordinates (r, φ, z). The normalization is defined with the following 
equations: ε=



MKK-continuity equation example
We illustrate the asymptotic approximation method in detail by deriving all the terms through the 
second order in the continuity equation. Other equations are derived by following the same method.

See the next slide for this.



MKK-radial momentum

***In Rebusco et al. (2009) is given a non-axisymmetric solution. It is obtained with help of  Gegenbauer (or hyper-
spherical) equation and its solutions are known in terms of combinations of the associated Legendre functions (also known as 
Gegenbauer polynomials), with use of Wolfram Mathematica 6 software. As mentioned above, there is also given a general 
discussion of eqs.for the first order in angular velocity, I copy it in the next slide:

In HD case, from vertical symmetry and also 
parity consideration from the bottom of slide 
94, Ω

1
=0, and here we obtain u

0
=v

r0
=0.



Rebusco et al.(2009), Appendix A



MKK-azimuthal momentum



MKK-HD solutions
We review already obtained results with the vanishing com-
ponents of B

0
 , when magnetic field influences the solution

only in the higher orders in . Then Eqs. (14), (23) and (28)
become the same as in a HD case:



MKK-HD and MHD solutions

Now we can continue with the rest of equations.



MKK-MHD solutions



MKK-MHD solutions



MKK-MHD solutions



MKK-MHD solutions



MKK-MHD solutions
• We list now the solutions. Far away from the star, where we expect a small effect of the magnetic field, solutions in 

the simulations should not differ much from the HD solutions. Closer to the star, the magnetic field influence 
increases and the change in results will be larger. Higher order terms in the MHD solution may differ from those in 
KK00.



MKK-HD and MHD numerical solutions



MKK- analytical expressions from the numerical solutions



Umurhan generalized γ solutions



Umurhan generalized γ solutions

• Here we shall not assume a steady flow: we 
retain the time derivative terms. This will 
enable us to analyze the dynamical evolution 
of deviations from the steady KK solution. -- 
we are not to go into this, we were interested 
in the steady disk only-so we will take only 
the generalization in γ  



Umurhan generalized γ solutions
Here u=v

r
 and v=v

z
  

• the equations appear as they do in KK and RG except that 
here we allow for

• Time dependence has been introduced into the expansions at O(ε2) 

for the functions Ω, ρ, c
s
2 and v while it appears at O (ε) for u. At all 

orders in which time dependence is introduced we split the solutions 
up into a sum of a steady solution and a dynamical one, denoted by a 
prime, and this is true for all high orders as well. from now and on 
all the terms of the dependent variables expansions that are 
dependent on time are denoted by a prime, while those without 
prime are just space dependent. The time-dependent part is a 
perturbation (not necessarily infinitesimal!) on the steady state.



Umurhan generalized γ solutions



Umurhan generalized γ solutions-time dependence

• Time dependence: for the dynamical evolution they 
allow for time dependence and include in all equations 
at successive orders of ε and subject them to 
appropriate initial conditions. 

• For the radial boundary conditions, the problems posed 
by them are avoided by considering only the portion of 
the disk with an inner radius r

in
 and an outer radius r

max
, 

as in the steady-state case in KK disk.
• The “surface” of the disk, in the time-dependent case, 

is taken to consist of the last fluid parcel which, in a 
steady disk, is at z = h(r). This is where the boundary 
conditions are imposed.

• We are not interested here in this discussion, as we 
were interested in steady disks, so we stop here.



Python code for thin disk: Repeating slide 108: MKK- analytical expressions from numerical solutions
Idea here is that I give you some pieces of code which can be useful as a template for work with other models, too.

We will install and run two which I already briefly presented to you during the PLUTO lectures: comparison of analytical and 
numerical model and DUSTER code for post-processing.



MKK- analytical expressions from the numerical solutions

Using this table, we can “prescribe” the disk-it will fairly well describe the disk, as we saw in the 
previous slide.

• We could plug in any other disk model and compare with simulations or other computation result
• We write such a script, for comparison of solutions.
• I supply a template in mc_razlikaANnum.py, it can easily be modified. We test it with one of the results 

from simulations.



Python tool DUSTER for post-processing of our disk results



Python tool DUSTER for post-processing of our disk results

We use the DUSTER tool to follow 
the dust under predefined forces. It is 
completely Newtonian, deterministic 
task, since we have all the needed 
data from simulation or numerical 
model.

• DUSTER can be used as a template 
for adding other forces, or modifying 
the existing equations.



Summary of the Part III

-Height-averaged solutions: Urpin (1984)
-Regev (1983) solution

- Kluźniak-Kita global solution for thin HD disk and its magnetic 
generalization

- Umurhan (2006) generalized γ solutions

- Python code for thin disk model
- Python tool DUSTER 



Lectures summary & Concluding remarks

In 9 lectures, we went through a story of thin accretion disk.

- From spherical (Bondi) accretion, we went to
- accretion disk with viscosity.
We run a python code for Bondi accretion

Next we set the stage for steady disk solutions, with
- perturbative solutions,
- Shakura-Sunyaev solutions
We initialized the Python code for Shakura-Sunyaev disk

 In the last block, we detailed general solutions for a thin disk:
- Urpin’s and Regev’s solutions as precursors, and then to
- Kluźniak-Kita 3D global solution for thin disk, with its magnetic generalization
We used those solutions in the Python code for thin disk and a tool DUSTER.

Miljenko Čemeljić, Thin accretion disk, Feb & March 2022, Silesian University,  Opava



Miljenko Čemeljić, Thin accretion disk, Feb & March 2022, Silesian University,  Opava

Thank you and let the Disk be 
with you!
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