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General outline

PART I: Introduction to accretion
- Spherical (Bondi) accretion

- Accretion disk; viscosity

- Python code for Bondi accretion

PART II: Steady disk solutions

- Perturbative solutions for the disk

- Shakura-Sunyaev disk

- Python code for Shakura-Sunyaev disk

PART III: General solutions
- Urpin’s and Regev’s vertically averaged solutions
- Kluzniak-Kita 3D global solution for thin disk and magnetic generalization

- Python code for thin disk; python tool DUSTER

Check webpage https://web.tiara.sinica.edu.tw/~miki/miki_thinacrdisk.html
Required packages: Python (matplotlib, NumPy)
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Outline, Part I: Introduction to accretion

- Spherical (Bondi) accretion
- Accretion disk; viscosity; Roche equipotential surfaces

- Python code for Bondi accretion
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Accretion process — general introduction

Accretion is a process of mass collection onto a (usually rotating) central
body, where a particle or a fluid element moving at some orbit transfers part
of its energy and angular momentum to its surrounding.

More general, it can be described as inward motion of matter because of
the gravitational force-this definition we need to include the simplest case
which we will first study, the spherical (Bondi) accretion.

Gravity was the first force to be studied extensively, in mechanics, our first
applied science. In astronomy it was for long the only computed force, by
Newton. It was The Force of celestial motions, until we started computing
the machinery of stellar power. Then it showed gravity is not enough-
electromagnetic interactions (chemistry) were also helpless, Sun burning
coal would expire practically on our eyes.

Nuclear forces explained this, but Gravity made a comeback when we
understood sun-like stars are weaklings in comparison to a more powerful
energetics of stellar compact objects, black holes and galactic nuclei.



How we arrived to accretion

Historically, accretion was first considered as a relevant process in the
close binaries: after collecting a wealth of spectrographic data by Struve
and collaborators, it became obvious that simple models of stellar stability
are insufficient to explain the spectral features-theoretical curves were
woo smoothed by the simplifications, and observational curves were not
smooth at all!

Introducing more physical processes into astrophysics of stars was called
“Struve revolution” by Popper in 1970:

To explain the spectral features, hence the energy and angular
momentum evolution in the “peculiar stars”-which mostly showed to be
close binaries, astronomers around the middle of XX century had to
Include the streams of matter, gas rings, Roche’s equipotential surfaces,
and finally Huang (1963) included a thick disk. Gradually, with increase in
guality of data, similar concepts were introduced in the objects on other
scales, like active galactic nuclei (AGNSs), quasars, and centers of clusters
of galaxies. Astrophysics of accretion could start!



Energetics of accretion

When | said that with accretion gravity made a comeback, | should say
that it made it with a boom! - accretion is by far the most efficient way of
extracting energy out of the matter we know: it yields about 10 times more
than nuclear fusion!

We can show it in a back-of-the-envelope calculation for the luminosity of
the disk acquired by the infall of material from the large distance onto a
central object:
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Energetics of accretion

In the literature, one can find various numbers for the efficiency of
accretion, | list some below, but what is meant by “efficiency”?

It is the power available at given mass accretion rate M onto an object of
radius R: P=M GMI/R . This power is usually dissipated (through radiation)
away, otherwise there will be no accretion-e.g. heat would push the matter
away.

Efficiency of pair annihilation: n=1
Efficiency of Nuclear (H) fusion: n~107{-4}

Accretion efficiency n : Earth: 10"{-9}, Sun: 10"{-6},
White Dwarf: 10°{-4}, Neutron star: 10°{-1}

Accretion efficiency n=GMI/(Rc”/2) onto black hole (no hard surface)
depends on the details of accretion flow and spin of BH:

0.057< n <0.42 for thin accretion disk



Eddington limit

What is the maximum luminosity at which matter still can be accreted?

(This means that gravitational force on a chunk of fluid still just exceeds
the radiation pressure)

Simplest case is radial accretion onto a mass point M. If medium is fully
lonised gas of electrons and protons. and we assume Compton scattering

with the simplest radiation pressure o N L and F,=-m p;”f
¢ 4mr? r
47GMm,c
from F_=F_we get that Lrda = .
g ar

M
. . .. Lvgqg = 1.3 x 1(¢ erg/s
Some Eddington luminosities: solar mass NS 5 (’U’H) /
supermassive BH Lgaa = 1.3 x 1[]‘16(10;51-1?:) ere/s

LEaq
nc?

Eddington mass accretion rate: Mmgdd =

Usually it is said that the accretion is not possible if L>L__, but there are

cases when it is not true, and they are very interesting cases of
supernovae and non-spherical accretion cases in disks and jets.



Spherical accretion-fast forward

H. Bondi (1952): an analytic solution for the spherically symmetric, steady-
state accretion flow of an infinite gas cloud onto a point mass, in the
Newtonian approach.

Such model was later extended, to be applied from the study of star
formation to cosmology.

Bondi considered adiabatic (p~pY¥) accretion of gas. Far from central mass,
gas elements move in dependence of their thermal energy only,

so that with gas temperature T.  with sound speed c_we can say that at
some critical distance from the central mass r_ the escape velocity is equal
to the speed velocity: r_=2GMlIc ?

For r<r_ material falls freely onto the central mass, and for the density
above the radius r_, p,., we can write the infalling mass M=4nG2M?p, /c 2
Hydrostatic equilibrium gives p~r 32 (with y=5/3) and temperature
T~1/r\[3(y-1)/2]. Infalling gas reaches speed of sound at distance r_from
the center. We find r =GM/c ?(5-3y)/4 .



Spherical accretion, more in detail

| follow Torok et al. (2020).

We consider polytropic gas, for which p=Kp¥where vy is a polytropic

index, K is a constant. ,

Gas Is moving in the gravitational potential of mass M: @ (r) = _GM
-

Far from central mass, gas elements are at rest, u'=0, asymptotic values

are and From the continuity of mass = . L d,,
.. % P g Vo (pB) = 5 (rPpu’) =0
r<dr
and from radial component of the momentum, Euler eqg., we have the
momentum conservation.
5 M
We can integrate 7 PU = const = " An

where the constant M=-4rir2pur is the speed of mass loading onto the central
object through the sphere of radius .



Spherical accretion, derivation

Radial component of the momentum eq.:
~du” ldp GM _ _agdlnp - GM

U p—

dr —  pdr 2 dr r2
describes motion of the fluid element under gravity and pressure. From the
logarithm of radial derivative we obtain: dlnp 2 1du’
d(u"‘)z 402  2GM  dr r o ou” dr
. - ; ]
so that we can write = = ’
dr 1 — &
Sl GM
Next we define the dimensionless variables (with 7« = 2 )
o0
( —u” ) 2 a r , M
Y = , Aa=—, T=—, m= 5
(oo oo Ty AT Poo oo

we obtain ordinary differential equation, Bondi equation, with one additional

expression:
_ 46’ _ 2 : y—1
@ ey A 2 &2 — m
dx 1 — &’ x2yl/2
Y




Spherical accretion, derivation

* we obtain ordinary differential equation, Bondi equation, with one additional

expression: = @ 2 " i
_J NP - - 2 aQ _ i
de 1-2 " — (;1:23;1/2)
Y
* The boundary conditions at x — o follow from the requirement of zero radial
velocity at a large distance y — 0, with the sound speed obtaining

asymptotic values & - 1. The second condition gives asymptotic

behavior 9
m
y & (—2) (z — o0)
i

There is a critical point, where the flow velocity equals the local speed of
sound y=&° — since the denominator at the right side in Bondi eq. is 0, it will
be regular only with the above part also equal to O. This is called a sonic
point, x_, and we have ;

464 2 )

——= S y=a
£Lg €I

This gives another condition on Bondi eq.: the integration curve y(x) is not
necessarily in agreement with X — oo . Both conditions are met only for
some values of m.



Spherical accretion, analytical derivation

e Solution with the additional regularity condition is an interesting numerical
problem. To know if we got it correct, we first check for the analytical
solution-which we can do because in the spherical accretion case we can
Integrate the momentum equation.

. . . dyl/? 1 d 1
- Dimensionless momentum eq.is /2 é +— dp +—=0
. £ a X X
We integrate the 1* and 3" terms Plioo
easily, and the 2"™is 1 /1@ o /dp _ ’TK/ g, KT @
pdx P N G CT ) P
so we have y a?
= 4 — —=const = W
2 -1 =z

the dimensionless Bernoulli equation. The integration constant W denotes
the different integration curves, which are solutions of y(x) Bernoulli's
equation. The one that meets our boundary condition must satisfyy - 0
and & - 1forx — oo, soitisgivenby W= W,=1/(y—1)

* Which value of W corresponds to a solution that passes continuously
through a critical point? From the condition of regularity we know

that 9 1
Ys = Qg, Is = 5=5
2a



Spherical accretion, analytical derivation

* The equation for the conservation of mass also allows us to express the
speed of sound at a sonic point using accretion speef - i
p p g p a‘ﬁ = (4?,],1) 5—3~

* |Inserting to Bernoulli equation, we obtain:

~ 2 ~2 I~ - -
a; N ~9 ) — 3"? ~9 ) T e 'H’f . 2y—2

V="U=— 4+ —— —2a; = iy = (47537
2 vy — “ 2y — 2 2y — 2

* Since we require the solution to pass continuously through the sonic point,
while giving the correct behavior to large radii, it must hold W_=W . This

gives us a simple analytical expression of the sonic position point x_ and

local speed of sound &_ at the sonic point: H— 3y -9 2

> Ty = , Qg =
Such speed of sound corresponds 4 D — 3
to the accretion rate 537

, 1 ( 2 )2?—2
=1 \5 "3

which is the characteristic value in the problem.



Spherical accretion, analytical derivation

We obtained solutions at great distances from a compact object
(when x — ). What behavior can be expected whenx — 0 ?

Frobenius’ theorem is applicable, which gives necessary and sufficient
conditions for finding a maximal set of independent solutions of an
overdetermined system of first-order homogeneous linear partial differential
equations: “ F is integrable if and only if for every p in U the stalk Fp is
generated by r exact differential forms.”

Geometrically, the theorem states that an integrable module of 1-forms of
rank r is the same thing as a codimension-r foliation.

Wikipedia: The method usually breaks down like this:
-We seek a Frobenius-type solution of the form of series y=) *=a x +r. ...

- The obtained series must be zero. ...

- If the indicial equation has two real roots rl and r2 such that r1-r2 is not
an integer, then we have two linearly independent Frobenius-type solutions.



Spherical accretion, analytical derivation

* Assume that the solution near the point x = 0 captures the dependence

y = A/ x% We choose from Bernoulli's equation the fastest growing terms
that must be in equilibrium and by comparing them we determine a and A.
From the continuity equation it can be seen that 42 ~ x©@-2¢-1,

* The first term of the Bernoulli equation (the term corresponding to the kinetic
energy) grows as x¢, the second term (corresponding to the internal
energy) grows as x@-2 -1 and the last third term (corresponding to

potential energy) grows as x™.

* Comparing the exponents, assuming that 1 <y < 5/3, we find

that the highest value of a corresponds to the equilibrium between the
kinetic and potential member and correspondstoa=1and A= 2, so

y~2/x (X - 0).

It means that very close to a compact object the pressure is only a
negligible perturbation to gravity. At large distances the gravitational
potential and internal energy are in balance. In both cases, the neglected

term tends to reduce the speed values. This means that it will be useful in
the numerical solution of Bernoulli's equation to use the method of bisection.



Accretion disk

Let us take another view on accretion: material point orbiting around a
center of mass interacts with its surrounding, transferring part of its energy
and angular momentum.

Consequence of such scenario is slowly spiral-in of the mass point.

Energy which can be extracted is equal to the bonding energy of the
smallest orbit: E_=GMm/R , see the back of the envelope calculation.

We consider rotating volume of gas with angular momentum L in cylindrical
coordinates (R,9,z), with z parallel to the axis of rotation.

We further assume that distribution of L between the gas particles
Is much slower than radiation transfer and rotation=L of the
particle with mass m remains constant, but its kinetic and internal
energy are distributed to other particles by collisions, shocks and
radiation.

For the constant L the minimal energy is for the circular orbit=>we
obtain the thin disk in which particles rotate with v =RQ(R),we can

write, with potential ®: F =ma=mv ?/R=-d®/dR=F .



Accretion disk

* |f there is a process counteracting the spread of particles (as viscosity),
energy spreads through the system by heat, and escapes from the system
by radiation.

* As a conseguence, mass particle will orbit at smaller R, we can understand
this as transformation of the orbital energy into radiation energy.

- With the gas surface density S(R,t) and radial velocity v (R,t), we observe the

element of gas with inner radius R and outer R+AR. Mass of such ring is
Am=21R-AR-S, angular momentum L=Rxp, where for angle of 90°between
R and p we can write L=Rmv(p, and in fact we can write, with L=mR?Q),

that the angular momentum of such ring is 2MRARSR?Q). Change of mass of
such a ring is equal to the fluxes in and out from the neighboring rings
(positive sign is away from the center): a/ot(Am)=flux(R )-flux(R+AR)=

— v (R, t)- 27 RS(R,t) —v.(R+ AR, t)2r(R + AR)S(H + AR )=
— v, (R, t)2rRS(R.t) —v.(R+ AR, )2rRS(R + AR, t)-

~uv(R+ AR, t)2rARS(R + AR, t) =

=[with AR -0, 3" term=0 and f(x+Ax)-f(x)=Axaf(x)/ox]= -ARJ(2nRSv )/aR



Accretion disk

- Now we can write 3/dt(Am)/AR=-3/0R(2nMRSv ) and since

Am/AR=21RS, so we stay, after divide by 2m, with
0/0t(RS)=-0/0R(RSv ), dR/ot=v_and we can write further

v 5S+RaS/at=-v 5-Ra/dR(Sv ). Since 3/dR(RSv )=v S+R3/0R(Sv )
we can write: RaS/ot+9/0R(RSv )=-v S=0, since we are interested
only in the change of mass.

* Exercise for homework is to do the same for conservation of the
angular momentum of such a ring, but adding the term for transfer
of angular momentum between the rings, because of viscous
torques, ARAG/aR:

9 (2 RARSRA) = vn(R, )27 RS(R,1) ()~
i

—v,(R+ AR, 1)27(R+ AR)S(R+ AR,t) - (R + AR*QUR+ AR)+

+€%3H — [(R+ AR)® = R*+3R?AR +3R(AR)* + (AR)® =
i

= linearnaaproksimacija = R®+3R*AR] =



Accretion disk
= v,(R, )27 RS(R, ) R°*Q(R + AR)-

. di
_3u.(R+ AR 2FARS(R+ AR YRR+ AR) + H—Han

- In the linear approximation, first two terms are -ARd(2nv RSR*Q)/dR

and we have: J-iﬁs (RSR'Q) = .-;ui't%['zmr, RS R*Q)-

aG
— 3027 ARSR' O+ —AR

an
IR a i ol el gER
rj Hﬂ H —['“"H: :| ﬁtu"h“qﬁ ﬂ_]—ﬂi‘.rSH ﬂ-l_ﬁ'R D
« Again we discard constant 1t I.h.s and 2" r.h.s. terms and write
oR/at=v_to get: ; L 9G

5 Sre bl 5 sspeiit it o 51500
R=-(SR'Q) 4 ——=(Rv, SR0) = 5-2.



Viscosity

A=A

Two neighbor rings in the disk.

Now we will find the torque of two neighbor rings. The speed of chaotic
motion in the gas is v, and A is the characteristic scale, which is also the
mean free path. After exchange, element A will (in average) have torque from
the position R-A/2, and element in B from R+A/2. Material in chaotic
movement does not transfer matter (in average =0), only the steady flow can.

Transferred mass is om/at=Hpv, where H is the disk height in z direction.

For the accretion process essential is the difference in transported torques,
and there is transport of torque because of chaotic motions. This is viscous
torque.

Observer in point P, rotating with Q(R ) sees fluid in R-A/2 moving with

speed \ \ \

(R— )R- 3) + RS



Viscosity

* This gives the average flow of angular momentum by the unit angle directed

outwards: A\ A A
poHR[(R — Z)Q(R — ) + Q(R)]
and inwards: ) A\ A
poHR[R+ ZQ(R+ 2) — AR)T],

* Torque on the outer ring by the inner ring is equal to total outwards torque.

In the first approximation we have:

pOHR{(R~ 2)Q(R - 2) + AR)5] — [(R+ 5)R(R+ 3) - AR)Z]} =

_ A A o A N
= poH R{RQY R — -2—) — RQ(R + 5) — -Q-Q(R— -2-) - EQ(R-I- E) +QQ(R)§} -

=[first two terms in { } give -RA3Q/dR, 3™ and 4™ after A/2—-0 give
M2Q(R) ]=-ApDHR23Q/aR.



Viscosity, and back to the disk

For the whole ring we multiply the obtained result with 2nR, and with the
surface density pH=S [from p=m/V, S=m/A we divide with H, we have

S/H=m/(AH), r.h.s.=p] we obtain that the torque of the outer to the inner
rng

(- inner torque to the outer ring) is G(R )=2nRvSR%*Q)/oR,

where v= Av is the kinematic viscosity coefficient.

We had G=G(R,t), and with RoQQ/oR=A we have G(R )=2nRvSAR, where
PSA is a viscous force per unit angle.

Now we can insert the obtained viscosity in the disk equations. We insert G
Into the equation we obtained from angular momentum conservation:

5 ; G S L 1 dis

X - 1 S . —— .
H--_i{.?ﬁf ) 4 fmufzhn ) o IR

We divide with R and together with RaS/at+9d/0R(RSv )=0 we can
eliminate v..



Viscosity, and back to the disk

« The first equation, after division with R, we can rewrite as:

i) i ! as 1 o)
ik 1 9 , 00
+ SRR (R) = pon(vSROZE)

- We write RaS/at+0/0R(RSv )=0 as d(Rsv )/oR=-RaS/ot and we have

9 Gl e G ahE
S (RAD)E RIS RIS Sv—(RQ)

1 0
— Eﬁ(USRs )

« In the first approximation L is a constant vector, and since R2Q) is
proportional to its length, we can discard the 1% term.



Viscosity, and back to the disk egs.

3990
* We obtain: %%(VSR E'f'i)

Vy = S%(REQ)

- Inserting it into RaS/ot+9/0R(RSv )=0 we

have: oS | a[ SRBR( SRSBR ]_

ot ROR = (R2Q)
1 0 {aR[uSRS( “1}, 9 (rq) = Ea—-RW GMR™?) =
& RoR (RO ok
. . . . _ 9 JGMR}) = LVGMR
- With F =F, potential of point mass M is waR 2
2 j— 2 = p—t i 5
mv?/R=GMm/R* and v QR, G=gravity 1 2, VS RO2GMRS)

=

const., Keplerian Q=(GM/R3)'?2 and AT "}?aR{ 2 \/E—R_%
dQ/dR=-3/2(GM/R>)¥2 and -
This is the diffusion equation for the 10 5plv53v 2VGMR?]
surface density S: mass diffuses ROR' 1JGMR™
iInwards, angular momentum outwards. 3

. Diffusion timescale is t ._ =R?/v. ROR

VISC

=



Viscosity, general discussion

We obtained the solution for S. In general, v depends on local conditions in
the disk, and v=pv(S,R,t) so that we obtained nonlinear diffusion eq. for S.

If v depends on R only, eq. is linear in S, even for the power of R
(it was clear already in 1920-ies, Jeffreys 1924, Weizsacker in 1948).

Most of the mass moves towards the center, losing energy and torque. A
tail of matter moves towards larger R to conserve the angular momentum.
Matter from the initial ring arrives to the center, and total angular
momentum is transported to large radii by a very small mass, compared to
the disk mass. The disk slowly spreads outwards.

In 1973 Shakura & Sunyaev gave a solution, parameterizing viscosity

as v=ac_H, where a<1 is a coefficient describing “turbulent viscosity”.
Usually v~LV, where L is characteristic scale, and v characteristic

velocity of the turbulent eddies-so we assumed L~H of the disk,
and V~c_(turbulence is usually assumed to be subsonic).

In astrophysics we are usually dealing with large Reynolds numbers Re,
defined through Re=LV/v, simply because of large L.



Viscosity, general discussion

Re measures ratio of inertial to viscous forces, so in the disc we usually
have proportionality with v */R

For Re<<1 viscous forces are dominating, and with Re>>1 they are
unimportant. In accretion discs usually Re>>10% and we can not get much
lower.

Clue of the problem is exactly in so large Re: from experiments we know that
fluids have some critical value Re_, at which the velocity becomes chaotic, so

we have turbulence. Typical Re_=10° so we can conclude that disc material
IS turbulent.

There were many works on turbulence, but we still do not have the full
understanding of the mechanism in accretion disks. Currently accepted
paradigm is the one by Balbus & Hawley (1992), where magneto-rotational
(MRI) turbulence is invoked.

Mathematically, viscous process is a diffusion process (of matter and angular
momentum), this is the basics for our description.



Roche equipotential surfaces

* A small, but hopefully useful
distraction: Roche surfaces
usually emerge when we are
dealing with close binaries.

* French matematician Edouard
Albert Roche (1820-1883)
discussed the problem of
equipotential surfaces in the
context of stability of the
orbits of small planetary
satellites in 1849.

* Physical model is of the small
test mass m moving in the
gravitational fields of two
massive points. There is no
gravitational back-reaction
from m to M1 and M2.




Roche equipotential surfaces

Because of tidal forces, with close binaries we usually can work in this
approximation.

Lagrange in 1772 showed the existence of 5 points (Lagrange points L -L,),

where forces from M1 and M2 are balanced.

If we solve the equations in (X,y,z) put along the line connecting M1 and M2,
perpendicular to it in the plane of the paper and vertical out of the paper,

we obtain, with p and 1-u being the masses expressed in total mass
parts p=M1+M2 and distances r, and r, in the units of the masses

M1 and M2 distance: e
uE:I?+y2+g“ ) +?_'u - C
™ 2
Constant C is defined by the initial conditions.

The velocity v=0 defines a surface at which velocities are >0 or
<0, real or imaginary, and C defines from which side of this
surface the mass m is moving.




Roche equipotential surfaces

e Jacobi found that v>=V-C, where

l 2 L pa-pis
VA== (i hiys) o e o
Q(I V') T T2

* |t shows that we can use the same approach for close binaries, even when
there are flows between them, or they are filling their respective “Roche
lobes”, so that the solution

gives us the equipotential
surfaces, U is the potential:

 We have v?=-2U-C



Python code, jupyter notebook

We will solve the Bondi spherical accretion problem using Python.

We will use the relaxation method, for coordinate network with logarithmic
distribution.

To ease the work, we use the jupyter notebook, but we also work with
Python scripts alone.

jupyter notebook is useful tool, because one can directly follow the pieces of
python code with the explaining text.

Few hints for solving the problems: Depending on your python
Installation,you might need to upgrade existing or install missing packages.
Browsing for the answers using the error messages shown on the execution
gives you hints on how to solve the problem.

Few examples, to remind you of commands for this. | find it simplest to use
pip (for python3, which we use here, use pip3-update it on your machine

by typing: python3 -m pip install --upgrade pip).

| also needed to install dvipng package for creating png files, in ubuntu:
sudo apt-get install dvipng

You might encounter problem with jax, install it, it needs jaxlib, install it too

If something does not work with python3.5, try 3.8 or else, python is a
delicate animal and sometimes you have to beg it to get what you want!



Python code for Bondi accretion in analytical solution

First we exercise use of python on showing our analytical solution.

Run the routine bondi-relaxation.ipynb which you got in slack in jupyter:
jupyter-notebook bondi-relaxation.ipynb
this will launch the notebook in your default browser.

If there are any problems with jupyter notebook, extract the bare python code from
jupyter notebook version and try to run it in the terminal. Some tweaks might be
needed, try with other versions of python.

After you solve the problems in bare script and install/activate all the needed
routines, jupyter version should also work.



Python code for Bondi accretion solver

After installing everything, we are ready to run the solver itself.

Run the solver parts of the routine bondi-relaxation.ipynb.

After you get it running in jupyter, extract the needed part into a separate file (there
IS such a function in jupyter), and run from the terminal as a python script.



PyAstronomy & Roche equipotential surfaces

If you need some routine for astrophysical use, it is very probable someone else
also needed it. There is a pile of astro-routines from last decades, but not in python,
this is relatively new fashion, before for long time a standard package was IDL, a
guite expensive proprietary software.

There is Open source Iinitiative version of IDL, called GDL, which has most-but
not all-functionality of IDL. For simpler graphics or most of computations it usually

works, give it a try-"G” in GDL is from Gnu..., so it is distributed with major linuxen,
or can easily be installed.

If you are lucky, your needed code might be already translated to python, and
available in Github or similar. One such library is PyAstronomy-currently at 0.18
beta edition, but growing, so best is you browse for it and find the current wersion, it
will for certain grow steadily.

| show an example of a routine from PyAstronomy, computation od Lagrange points
and Roche equipotential surfaces. Note that, depending on software used for
viewing the results, you can read the positions in wished points by just moving the
cursor on your screen. The data about mass ratio etc is printed out in the terminal.



Summary of the Part I

General introduction to accretion
Energetics of accretion
Eddington limit

Spherical (Bondi) accretion

Accretion disk
Viscosity

Python code for Bondi accretion
PyAstronomy package

Miljenko Cemeljié, Thin accretion disk, Feb & March 2022, Silesian University, Opava



Outline, Part II: Steady disk solutions

- Perturbative solutions for the disk
- Shakura-Sunyaev disk

- Python code for Shakura-Sunyaev disk

Miljenko Cemelji¢, Thin accretion disk, Feb & March 2022, Silesian University, Opava



General equations

« We will go through (sometimes painful) detail into the accretion disk
equations.

« The obtained solution is still a starting point for explanation of the birth of
stars and larger structures.

* Matter which we consider, when undergoing accretion, is gaseous, which
means that interaction is by the collisions, not short distance forces. We use,
as we did before, A for the mean free path of the particles, v for the mean
velocity (velocities are measured in the comoving coordinates, and
distributed following a Maxwell-Boltzmann distribution, which is dependent
on the temperature, T), p for the mass density of gas. When observing the gas
at scales L>>A, we can consider it as a continuous fluid, with density,
velocity and temperature defined in every point of the flow. The equations to
describe such fluid are the equations of conservation of mass, momentum and

energy. dp
« Conservation of mass: §;

Conservation of momentum follows from the force acting on a fluid element:
i j( Pdii = (Gauss —Ostrogradski) = — h VPdV
S

P is pressure, and the direction of ort vector n is outwards from the volume.



General equations

Force acting on the unit volume element of the gas is (-VP), and its equation

of motion we obtain from the 2" Newton, multiplying it with the unit volume

mass=density P and acceleration, SO we can write: dv o p
L St
dt

Acceleration is also with respect to the comoving coordinates,

not in the background rest system, so we have two parts in the velocity
change in this equation: one is the change of velocity in the given point of
space at a time interval dt: dv/otdt and another is the difference in velocities
at two points of space, distanced r, through which the fluid flows during dt,
what we can write as drVv, so we can write all together: . _ 'Z_v dt + diV - ;,};_

When we insert it to the above equation of motion, 1z 95
. = I S AT T
we obtain Pﬂa_i VAT =P dt — o

General equation of motion should add the source term for the external forces
acting on the system, we obtain the Euler equation: | o v . 7=-vP+ [ (E)

If we insert f=pg for a gas in gravity field (g is the &z
gravity acceleration), f could contain contributions
from viscosity, external magnetic field etc.



General equations

Momentum of the fluid element is pv, conservation of the momentum is:

D Dps s o

E_.I',FU_D_ E“-[-Pﬂ.l',
For a stationary flow ap/ot=0, so we also the last derivative is zero, and we
have ooV T4+ VP —pi=0 (A)

From mg = —GmMrp/r? &g = —GMra/rt

For the accretion onto spherical object of mass M, we choose spherical
coordinates (r,9,@), radial component of the equation (A) is (G=grav. const)

d dP GM
U, Iiﬂr rL]]+—+P

*n;—

T'

where []=2rv +r°dv /or so we have

2, 0 10P GM_ (5
r ar por r?



General equations

* From the continuity equation we have, for the stationary case with aP/at=0
that ap/at+V(pvr)=O. For any vector A radial partis v. 4 = l?[di{rmrj],
r r
sowe have ! d

AL g it which means that r*v =const.
PT'sz'{T T-'r::l = [:I l'llj r

Since (-pv,) is inflow mass flux, this const must be related to mass flux,
+ i.e. the accretion rate M=4mrp(-v ), since r*(inflow flux)=const=M/4m,

for the whole sphere is 41ir2M-(inflow flux).
Now we insert rv = - M/4mip into eq.(B) from the previous slide to obtain

v =-M/4mipr?, which in the limit r - 0 gives v=0 and for the stationary

spherical accretion we stay with v 1dP  GM _ .

; J'IT

Uy

dr par



General equations

Energy conservation:
The gas element energy is a sum of kinetic term 1/2pv? (by unit volume)

and internal (thermal) energy €p (€ is specific energy-by mass unit,
dependent on temperature T). From the equipartition of energy we know that
each degree of fredom has average energy of 1/2kT, so for mono-atomic gas
we have only 3 translational directions and we can write €=3/2KkT.

Energy conservation equation we write similar to mass conservation,
plus adding source terms, depending on physics we include in our model,
now instead of p we conserve the kinetic and internal energy, and in the
spatial derivative we will have work done by the pressure, Pv:

d.1 1 =, .
a7 (3P0 +pe)+ Y [(5pv’ +pe+ P)i] - 3 =0 and for a stationary case:

Nav -
V- [(5p0% + pe+ P)i) = fT

On the r.h.s. we can add the losses (so, - sign!) by radiation, heat etc. as
the source terms inside -V( ).



e with m,~m_

Perturbative solutions for the disk

Now we move to the perturbation method-we compute the perturbation in
relation to the hydrostatic balance. We obtained

V:(pv) =10
plT-Vi=-VP+ f
I 4 F
V- [(sv? + pe + P)i] = i

and with v=0 in the hydrostatic case we stay only with

VP=f

For the ideal gas, which we can assume everywhere except degenerate gas in
some dense objects or near the centres of the normal stars, we have

kT
pa=

JLTTL By

.. 1s the hydrogen atom mass, and [ is the average molecular

mass in units of m,, so that for completely ionized hydrogen it is u=0.5
and for neutral hydrogen u=1.



Perturbative solutions for the disk

Now we assume a small shift in the density and pressure (p’, P’) from the
initial balance values (p,, P,): p=p,+p’, P=P,+P", v=Vv’

Depending on the processes, perturbations can be isothermal or adiabatic.

For adiabatic changes with y=5/3 and isothermal with y=1 we can write
P/p¥ = const=k, so we can write P +P’= k(p,+p’)¥ [try y=1.05 in simuls!]

Linearizing the mass continuity eq.: R
& y €4.- gf+?~{ﬂﬁ'}=a{ﬂu+aﬂ“}+'~7-[iﬂu+ﬂ3"”’]=

with V(p’)v - O in the first approx.

dp’
— 2R Vv =0
:H+ﬂﬂ v

We do the same with Euler eq. to obtain:

—
[ s —

' {PD+P“}EIL+[;:U+F’}1F-?-IFI—":"{Pn-l'-P}‘i'f
Since VP =f, and products of

second and higher orders are Fﬂ%!: +pov'- V- =—VPy— VP + [

neglected, we obtain p 0v’/dt=-VP’ . rﬂ;:r

We obtained two egs.: a + poV - v' =0 (C)
%  Lypr=g

dt  po



Perturbative solutions for the disk

From P +P’= k(p,+p")¥ we see that P is a function of p only, so that we can
write VP’=(aP/ap),Vp’, to the first order, where with a subscript ,we

assigned that we evaluate the derivation for the equilibrium state.
The second of the egs. (C ) we can write now as: gy 1

We act on it with V: o T E(dffdﬂ]n?p =0
al;; l ¢ 2l
We act on the 1% eq.in (C ) with 3/ot: ~ 3*p’ L

'@"P{Fu?atjzﬂ

We subtract the two eqgs.to obtain:

0?2 P.t
- 2
i (AP/dp)oV?*p'
the wave equation! With T as the sound speed, c*, we can write
ai ’
£ V2!

dt?



Perturbative solutions for the disk

 For P’ and v’ we obtain the equivalent equations, so we conclude that small
perturbations around the hydrostatic equilibrium positions spread with the
speed of sound.

« Depending on the kind of perturbation, we have two possibilities,

adiabatic ol 5T Ao Tanaky
g 3p Sumy
or isothermal: ... _ \/E S0 RRD
3 P Hmy




Stationary thin disk
Back in “Viscosity, and back to the disk eqgs”, slide 25, we obtained the

equation: 9S 1 0 &S Ra%m R3] s (G is gravity const. here!)
ot ROR' LJGMR:
it {%[uSi\/GMiR'F]}=
- ROR" 1VGMR™2
RaR[\/_--— US\/__]

To continue, we needed the viscosity. That the disk would be “stationary” and
that viscosity would work, we need that the mass accretion rate M would be

slow enough. Then we can set 8/0t=0 and from the mass conservation we can
write M=2mRS(-v ) and from the angular momentum conservation (middle of

slide 23 ) we have RSV R*Q=(G(R,t)+C)/(2n), with C=const. related to the

angular momentum rate of the accreted matter. Star must rotate slower than
the breakup rotation at the equator, so when approaching closer to the star,
there is a region in the disk where the disk corotates with the star. Even closer
to the star, our approximation breaks-here starts the discussion and departure
from the simple estimates.



Stationary thin disk

In slide 23 we had G=G(R,t), and with R3Q/dR=A it was G(R )=2nRvSAR,

where vSA is a viscous force per unit angle. After integration:

< 90 &
— 1.-' ﬁ = g{—i.-'-,-ﬂ} 3 Efﬁ' (D)

Inside a ring at R,+Db, the rotation of the disk approaches Keplerian,
reaches 8Q2/dR=0, and increases until it reaches R~R,. We can

. oM b = : |
write R by = ~ 1+ Tﬂ]] (G is gravity constant now!).

Closer than R, The thin disk approx. is not valid animore. To find C
we insert R=R +b and evaluate C=2nR*Sv Q(R, +b)|. .., (now Q) ,

not multiplying!), which gives, after inserting mass accretion rate M
and Q(R,+b), C=-M(GMR,)"2that M ﬁ] , exact to order O(b/R)).

vS=—[1 -

I_

We insert it to eqg. D to obtain 3 R
a1 an .,
Loss of energy because of viscosity is D f) = 4% 3R — 2" I'fﬁ—]' which is
D(R)=g/(41)9Q2/oR per unit disk i
surface. Inserted back to (D) it it gives that B

D(R ) is independent of viscosity: D(R) =

h-'r.n'?:*[ : F]



Stationary thin disk
Now we can estimate the luminosity of a disk between R and R, (2 is for 2

IGMM [Fs Ra| dR
disk sides: L(Ry, Ry) = / D(R)2rRdR > LRy, Re) = — j:{ []— E‘ R

Fis

: : J 2Ry 2 [R
If we substitute x=R/R,, we obtain L(#;, R.) = %"-E{E[ == ——’;‘]—Ell—idﬂ—:i}

For R=R, and R, - % we obtain the complete disk luminosity (G is gravity

const): I GMME Dot
disk — ERA —= 9 akrecije

ABu. GMM
AT

where we defined [ ,..;. =

This means that half of the energy is radiated from the disk, and half is
released very close to the central star, which takes the same amount like the
whole disk! (which has a much, much larger surface).



Stationary thin disk

This was for radial direction, is it all consistent with the vertical direction? In
the vertical, z direction, there is mainly no flow, we have the hydrostatic

equilibrium: 197 _ @ [ GM ] which we get from the vertical component of
poz Oz |VRE+ 22

Euler eq. (eq.E on slide 38) neglecting all the terms with velocities.
For the thin disk z<<R we have 19F _ GM:

pdz R3
Since H||z we can write dP/0z~P/H and z~H, and condition for a thin
disk becomes H<<R. For Pxpc* we have R =
H ™~ e\ =
which means that it has to be “Vem

c.<<(GM/R)"*; additional condition for a thin disk: local Keplerian speed

must be highly supersonic. Only with this satisfied, the approximation of thin
disk can be used. - This is a strong condition for the inner workings of a disk,
and tells us that the local orbiting speed will be close to the Keplerian speed.



Stationary thin disk

The radial component of the Euler eq.is: gy, -uf;: il 1 dP GM i
If we neglect the pressure term, because '"dR p SRR &

of ¢ <<(GM/R)"?, we have p*oP/dR~c_?/R in comparison to a larger
gravitational term GM/R2 with M=4nrp(-v ) which we know from

before, and M from slide 47, we have 3v R
yhi= '_I-_{ i ] V. = —-——{1 = ?]
o3I

Now we are slowly shifting to the Shakura & Sunyaev (1973) main
assumption: for any reasonable viscosity, the radial velocity v_is
highly subsonic, while orbital velocity is highly supersonic and
approximately Keplerian: with vec H we have v «v/R~c H/R<<c_

Now we have all the equations for the disk structure.



Lynden-Bell on steady model disk

Galactic Nuclei as Collapsed Old Quasars

by
D. LYNDEN-BELL

Royal Greenwich Observatory,
Herstmonceux Castle, Sussex

RYLE gives good evidence! that quasars evolve into power-
ful radio sources with two well separated radio components,
one on each side of the dead or dying quasar. The energies
mvolved in the total radio outbursts are calculated to be
of the order of 10% erg, and the optical variability of some
quasars indicates that the outbursts probably originate
in a volume no larger than the solar system. Now 108 erg
have a mass of 10%° g or nearly 107 Suns. If this were to
come from the conversion of hydrogen into helium, it
can only represent the nuclear binding energy, which is
3/400 of the mass of hydrogen involved. Hence 10° solar
masses would be needed within a volume the size of the
solar system, which we take to be 10** em (10 light h).
But the gravitational binding energy of 10° solar masses
within 10%% em 1s GM?/r which i1s 10%2 org. Thus we are
wrong to neglect gravity as an equal if not a dominant
source of energy. This was suggested by Fowler and
Hoyle?, who at once asked whether the red-shifts can
also have a gravitational origin. Greenstein and Schmidt?,
however, earlier showed that this is unlikely because the
differential red-shift would wash out the lines. Attempts
to avoid this difficulty have looked unconvineing, so I
shall adopt the cosmological origin for quasar red-shifts.
Even with this hypothesis the numbers of quasar-like
objects are very large, or rather they were so in the past.
I shall assume that the quasars were common for an mnitial
epoch lasting 10° yr, but that each one only remained
bright for 10° vr, and take Sandage’s estimate (quoted in

Powerful emissions from the centres of nearby galaxies may represent
dead quasars.

which we shall call the Schwarzschild throat. We would
be wrong to conclude that such massive objects in space-
time should be unobservable, however. It is my thesis
that we have been observing them indirectly for many
vears.

Effects of Collapsed Masses

As Schwarzschild throats are considerable centres of
gravitation, we expect to find matter concentrated toward
them. We therefore expect that the throats are to be
found at the centres of massive aggregates of stars, and
the centres of the nuclei of galaxies are the obvious
choice. My first prediction is that when the light from the
nucleus of a galaxy is predominantly starlight, the mass-
to-light ratio of the nucleus should be anomalously large.

We may expect the collapsed bodies to have a broad
speetrum of masses. True dead quasars may have 101°
or 10" M while normal galaxies like ours may have
only 10°-10% M ~ down their throats. A simple calculation
shows that the last stable circular orbit has a diameter of
12 GM [c*= 12m so we shall call the sphere of this diameter
the Schwarzschild mouth. Simple calculations on circular
orbits yield the following results, where M, is the mass of
the collapsed body in units of 107 M o, so that M, ranges
from 1 to 102

Cireular velocity
Ve = [GM/[(r—2m)]''? where r > 3m (1)

Usually cited
before Shakura
& Sunyaev
disk is
Lynden-Bell
(1969)
discussion of
the origin of
emission from
galactic
nuclei-’old
quasars”,
Schwarzschild
mouth was still
the term for
the event
horizon.



Shakura & Sunyaev viscous alpha disk

 Now we are in a better position to discuss the SS73 paper, which is one of
the most cited papers on accretion disks (10657 at noon Sunday 27" 02 2022)

It got a reprint in A&A in 2009, and a review by Andrew King, which best
describes its importance. We will first follow this short review.

A&A 500, 53-54 (2009)
DOI: 10.1051/0004-6361/200912147
© ESO 2009

A&stronomy
Astrophysics
Special issue

CoMMENTARY ON: SHAKURA N. I. AND Sunyaev R. A., 1973, A&A, 24, 337

Accretion: the gold mine opens

A. King

Theoretical Astrophysics Group, University of Leicester, Leicester LE1 7RH, UK

e-mail: ark@astro.le.ac.uk

In the early 1970s, Yakov Zeldovich suggested that two young
Moscow astronomers, Nikolai Shakura and Rashid Sunyaev,
should combine their efforts to understand how accretion could
power bright X-ray sources.

The result was a paper now amongst the most cited in all
astronomy. Another highly influential paper on accretion disks
(Pringle 1981) calls it “seminal”, and so it is. Yet itis not by any
means the first paper on disks. The references in the paper make
it clear that the authors knew of a large literature on the subject
going back to the early 1960s. Indeed Pringle (1981) shows that
knowledge of the principles and even the equations of disk the-
ory dates back still earlier (to the 1920s and 1940s, respectively).

The reason for the paper’s vast and deserved success lies
partly in its approach to the problem it attacked, and partly in a
technical innovation. Shakura and Sunyaev’s title: “Black Holes
in Binary Systems. Observational Appearance” makes their aim

momentum and so drives accretion, thus tapping the gravita-
tional energy of infall. There is a direct connection between vis-
cosity and accretion rate, and in a steady disk one can infer the
surface dissipation rate purely in terms of the latter. Observations
made it clear that none of the obvious candidate mechanisms —
certainly not the standard “molecular™ viscosity for example —
was adequate to drive accretion at the rates required.

Authors therefore resorted to various parametrizations of the
unknown process, usually thought of as some kind of turbulent
effect. Shakura and Sunyaev adopted the now famous alpha-
prescription, in modern notation usually written

v = acsH.

Here v is the kinematic viscosity, ¢ the sound speed, and H the
local disk scaleheight, i.e. the disk semithickness.



Shakura & Sunyaev viscous alpha disk

With the thin disk approximation, we can compute the structure of the disk.
In practice, we are solving the 1D with only a radial dependence, as we
decoupled it from the vertical, z-dependence, which is essentially written as a
hydrostatic equilibrium and energy transport.

In the radial direction, the disk structure enters only in the local energy
dissipation rate D(R). 19pr  GM:

From the hydrostaticeq. #92  R* for isothermal structure we obtain the
. 12 . —
solution o(R.z) = pe(R) €577 where p_ stands for the density at z=0.

—

The central density of the disk we can approximate as p=5/H, H=pc/v .

, L I
c.>=P/p, where P is a sum of gas and radiation pressure p = =< 27

pm, 3¢
with an assumption T(T,z)~T (R,0). The central temperature T_is determined

by the relation between the vertical energy flux and the energy dissipation
because of viscosity.

Locally, using the thin disk approximation, we now have the vertical
temperature gradient, so that for z=const surface we have radiated energy flux

(%, is the Rosseland mean opacity): : 16072 0T

- —
I

it 3H.Rﬁ 0z



Shakura & Sunyaev viscous alpha disk
-« We assumed the optically thick disk: T=pH» =Sx >>1, so that the radiation

is locally very close to the black body radiation. In the case with T=<1
radiation could directly exit the disk, and the equation for F(z) from the
bottom of previous slide would not be valid any more.

« For the energetic balance must be F(H)-F(0)=D(R ), so that #(z) ~ —T“( )
which, with T *>>T*(H) gives G—TT: = D(R) .

 For the full set of eqs.we need the xR=xR(p,TC) relation, and expression for

v and its relation to S and M. This all amounts to 8 equations for
P, S, H, T, c, P, T,v independence of R, M and M ,with some
parameter in the viscosity, which are describing the thin disk model:

S .
(1) p= 4 {5}4JT: o 3GMM[1 o _R_A]
.::_,R"'% 37 87 R3
‘) —
YR e (6)r = Skr(p; To) = 7(Sip:To)
2 M R
) Cim (1) vS.=5[1 —\/F]
(4) p = 2 | 39 TS o)




Shakura & Sunyaev viscous alpha disk

- With “alpha viscosity” parameterization p=oac_H Shakura & Sunyaev (‘73)

gave the first solution. They used the Kramers’ law (6.6:1022 wrongly sometimes!!)
%, =5-10%*pT_72cm?/g and neglected the radiation pressure in eq.(4). Now
the system of 8 egs.can be solved. | give steps (from “Accretion power..."):

- First we simplify f*=1-(R,/R)"* and write whole r.h.s. of eq.5 as equal to D.
Now with eq.6, %, and eq.2 we can write eq.5 as
40T*/(31)=D=40T?/(3*5:10%*pS)=[p=S/H]=40HT'>?/(15-102%45?)=
={H=c_R¥?/(GM)*> and from egs. 3 and 4 (without rad pressure term)
write
H=R32T2[k /(GMpum )]*? } =40R3>?T®[k /(GMum )]*?/(15-10°*S?), and from
that obtain T8=15-10%%S?D[k,/(GMum )]*?/(40R3?). We insert D back as the
r.h.s of eq.5 and use eqgs.7 and 8 (where finally 1)=O(CSH comes into

game), to write the solution-I give the detailed derivation of solutions on
the next slide, this is usually not shown in literature; then we can write v,

from the equation in the slide 50.



Shakura & Sunyaev viscous alpha disk
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Shakura & Sunyaev viscous alpha disk

- So, with “alpha viscosity” parameterization v=ac_H Shakura & Sunyaev

(*73) gave the first solution. They used the Kramers’ law (6.6:1022 wrongly
sometimes!!) X, =5-10°*pT_72cm?/g and neglected the radiation pressure in

eq.(4) to write, in the form variations of which we usuallt}/ find in the literature:
Rio = R/(10" cm),M; = M/Mg i My = M/(10' gs™'),u = 0.615,f =

[1 4 (RA/R]U“S]IHZ
S = 5. ‘}ﬂm‘ﬁﬂj‘l“ﬁ MU‘*R—EJ"l}r]Uﬁ g Cm_z,

H = 1.7- 108~ /M M7 RYP £2/° cm,
D N5 05 S&_.‘fl{l :”11_.1’2(} bflﬁnjER-‘.IE,"Ef”_{s,
T. = 1.4-10% VS MO M R 1815 K (3.39)
r 190a —4;’5Ml,15f4,!5
= I8 A1 0 A MM AR £8/5 em? 57,
—2.7-10%S MMV R 15 cm 57!

It is important that a is nowhere coming with large power, so that any error because of our not
knowing it, is less.



Shakura & Sunyaev viscous alpha disk
The Kramers'’ law for 3 Is critical, because when it is not holding any more,

our approximation breaks down, but until it holds, disk can extend far in R, of

the order of Roche boundary of the more massive star.
Mass in the disk is ., — or [ srRar < (107 Me)a~#015 , WhicCh is even in the

A

very large disks negligible in comparison with the central object. This justifies
the neglect of self-gravity of a disk, which is valid until p<<M/R3. Only for a
very small a, of the order of 1019, this would not be fulfilled.

The disk thickness in z-direction means that each element of the disc

surface radiates as a blackbody with a temperature T (R) given by equating
the dissipation rate D(R) per unit face area to the blackbody flux: oT*=D(R )

If we insert D from the bottom of slide 47: | {:s(;*ﬂmr . (&yﬁ }”’1
For i 5.4, STR3c R

T = T(R/R.)*/

where

/4 \
M, =M /10%* g s, m =M/M_,R,=R,/10° cm etc. for
v disk around WD (R,) & NS (R,). Note R =R, now!

. 1
3GMM
T = | —=
| ( 8TRio
— 4.1 x 10* M *m!/* Ry3/*K
= 1.3 x 107 M/*m/* R;¥/*K. |




Shakura & Sunyaev viscous alpha disk

* The low power of « in the equations is good for usefulness of a as a
parameter, but it also means we cannot expect to learn the typical size of a by
direct comparison of steady-state disc theory with observations. This is
something what is troubling disk astrophysics until today. No free lunch!

A good thing is that for a=1 we obtained believable solutions, which are not
too much off the models from observational data.

Where we expect the assumptions (Kramers’ opacity and the neglect of
radiation pressure) to break down? From the top of slide 54 we have

« % =T/S=36 M16'1/2 m '* R, **f~independent of a. We compare with other
opacity sources-the major competitive opacity is electron scattering where
XR=GT/mp~O.4cm2/ g with Kramers’ opacity dominating for
R>2.5%10’ M162/3 m_ "% cm. This is smaller than the radius of a white dwart

for any reasonable M, so for the accretion discs in cataclysmic variables we
expect Kramers’ opacity to dominate in most of the disc.



Shakura & Sunyaev viscous alpha disk

 In reasonable range we can rely on the results shown in the figure below for
the physical regimes in steady a-discs around compact objects:

Typical Roche

Typical Roche lobe size,
Radius of neutron star, lobe size, massive
last stable orbit around Radius of cataclysmic X-ray

black hole white dwarf variable binary

19

M 4y neutron star,

1 B hlack hole

B RADIATION PRESSURE,
ELECTRON SCATTERING
OPACITY

FRESSURE,
ELECTRON
SCATTERING

OPACITY

-,
Q‘t’j I
= (GAS PRESSURE,
@
r§: KRAMERS' OPACITY

GAS PRESSUHE,
16 — OTHER OPACITY —

SOURCES

15 —
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log R (cm)



Shakura & Sunyaev viscous alpha disk

« If the disk is concave, then the central, hot regions, could irradiate the more
distant, colder parts of the disk with hard radiation, and the picture
complicates-this would show in observations.

compact
star

 Similar is for a warped disk, complications in the picture:

photon scattered from surface
perturbation

. perturbed disc

non—central force = torque



SS73 concave disc

o If the disk is concave, then the central, hot regions, could irradiate the more
distant, colder parts of the disk with hard radiation, and the picture
complicates-this would show in observations.

compact
star

central
source

k indicates the direction of propagation of the radiation incident on the disc and n is the local
inward-directed normal vector.

* In low-mass X-ray binaries the disk is probably heated by irradiation by the central
accretion source. If the accretor is a luminous star, we can have a similar effect.
 If the central source can be regarded as a point, its total radiative flux at disc radius

Ris L /(4nR?), source with L total luminosity. The flux We can write:
L
i i is point is F = +es (1 — 8) cos ¥ ;
crossing the disc surface at this point is a2 (L~ B)cost . g _044
B is the albedo, the effective fraction of incident radiation
. . . where
scattered from the surface without absorption, and y is the A
angle between the local inward-directed disc normal and tand = -,
the direction of the incident radiation. and

tan ¢ =

E!



SS73 concave disc

e Since dH/dR, H/R are both <<1 for a thin disc
dH H

cos ) = sin(f — @) = cos f cos p|tan § — tan ¢| ~ —

dR R
+ With effective temperature T  resulting from irradiation by the point source and F from the

L H din H
L —1{(1 - ),
P 474‘}?.20'(}?) [dlnR ]( b,

Tpe\'  H(RN\’[dnH
(%) =%(%) [mz-1ja-»

T, is the effective temperature of the central source, defined by L. = 4nR 0T 7,

previous slide,

or

with the characteristic source dimension R,. With H varying as R®, for the non-irradiated disk in the

solutions for the disk, in a disc deriving all its luminosity from irradiation by a point source, one can
show that H « R%’, and the factor in square brackets in solution lies between 1/8 and 2/7, which we
name g, (to add another g). The ratio H/R is roughly constant in a disc, so T | falls off as R . For a

large enough disc T dominates the disk effective temperature, which goes as R™*. We obtain:
To )"1 2 RLy H

- - 1-03).
Tefr 3GMM 791 = 0)

« If the central luminosity L results from accretion, as in low-mass X-ray (

binaries, we have Lpt = GM M /R, where R,= 10 km for a neutron star, and

"~ 3R.R
« This means that even if the combination (H/R)g(1 — ) can be <107, the central source will dominate for a disc with a

a similar value for a black hole. Then ( T )’1 2 R H 1-p)
- g — 7).
Ter

large enough ratio R/R,. In low-mass X-ray binaries R~10°m and outer disk radius is ~10'°cm, so R/R,~10* and
there will be a large range of surface temperatures in the disk.



Working of MRI in a disk
Alpha viscosity does not give us predictive power.

Since 9/0R(R?Q)=0 [Rayleigh criterion, stability against axisymmetric
perturbations] and 9QQ/d0R<0 . Most potential mechanisms are sensitive to
the angular momentum gradient, so they work in such

a way that they are bringing angular momentum INWARDS. We need a
mechanism sensitive to Q.

If not alpha viscosity, then what? How the MRI works?
Balbus-Hawley (magnetorotational, MRI) instability (1992).

If we imagine a straight magnetic field B line threading a rotating disc,
magnetic tension tries to straighten line, there is imbalance between gravity
and rotation which bends the line (figures in this and next 2 slides are from A.

King’S lECtlll‘e I f()und OnliHE) . Vertical fieldline perturbed outwards, rotates faster than
surroundings, so centrifugal force > gravity = kink increases
magnetic field B threading disc = Line connects fast-moving (inner) matter with slower (outer)

matter, and speeds latter up: outward a.m. transport

magnetic tension tries to straighten line
imbalance between gravity and rotation bends line

if field too strong instability suppressed
(shortest growing mode has A>H )



Working of MRI in a disk

« Vertical fieldline perturbed outwards, rotates faster than surroundings, so
centrifugal force > gravity, so that kink increases. Line connects fast-moving

(inner) matter with slower (outer) matter, and speeds latter up: outwards a.m.
transport!

—>new vertical field, closes cycle

numerical simulations show this cycle
can transport a.m. efficiently

« For a too large mag. field, instability is supressed. Distorted fieldline stretched
azimuthally by differential rotation, strength grows, pressure balance between flux
tube and surroundings requires B2/8l'[+Pgas,m:F’gaS,Out , S0 that gas pressure (and

density) are lower inside tube; buoyant (Parker) instability works, and Flux tube rises
above the disk, creating another vertical field, which closes the cycle, which can
transport the angular momentum - this was shown to work in numerical simulations.



Self-gravity of disk
« Another effect which will change the picture is when the disk becomes larger:

main difference: size of AGN disc set by self—gravity

vertical component of gravity from central mass is ~ GMH / R?

|

|

cf that from self—gravity of disc ~ GpH S/H? ~ GpH

3
Thus self—gravity takes over where ©O ™ M /R , Or

H
disc RZH/O ~ EM

disc breaks up into stars outside this

M




Python code for Shakura & Sunyaev viscous alpha disk

For the beginning, some ideological points:

Physical interpretation of observations is usually given, even in the cases with
publicly funded experiments and observatories gathering the data, by
individuals with proprietary and private modeling software. Such a practice

produces results difficult to reproduce or verify. As with the recent initiatives,
which is slowly becoming a policy, that publications should be freely
available, similar initiatives are promoted for software and tools.

It will take time, but we will get there, because it is in public interest, and it is
also not very justified that some - and not at all so numerous, because of
historical reasons - publishers would earn from the publicly paid research.

As for Python, and in general tools, in line with green approach I gave a
presentation on this back in 2020, I will repeat here some interesting points,
might be of use.



The Ecological Impact of High-performance Computing in
Astrophysics

Simon Portegies Zwart

1T eiden Observatory, Leiden University, PO Box 9513, 2300 RA, Leiden, The Nerherfﬂﬂds

' Non-anonymous Dutch scientists.

Computer use in astronomy continues to increase, and so also its impact on the
environment. To minimize the effects, astronomers should avoid interpreted scripting
languages such as Python, and favor the optimal use of energy-efficient workstations.

ArXiv:2009.11295; Nature Astronomy vol.4, 819 (2020)
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Figure 1: CO’ emission (in kg) as a function of the time to solution (in days) for a variety
of popular computational techniques employed in astrophysics, and other activities common
among astronomers 2%, The solid red curve gives the current individual world-average pro-
duction, whereas the dotted curves give the maximum country average. The LIGO carbon
production is taken over its first 106-day run (using ~ 180 kW) <, and for ALMA a 1-year
average % A Falcon 9 launch lasts about 32 minutes during which ~ 110 000 liters of highly
refined kerosene is burned. The tree-code running on GPU is performed using V = 2% par-
ticles. The direct N-body code on CPU (right-most blue bullet) was run with N = 2"*7 and
the other codes with V= 2'°_ All performance results were scaled to NV = 2% particles. The
calculations were performed for 10 N-body time units ®. The energy consumption was com-
puted using the scaling relations of ® and a conversion of KWh to Co, of (0.283 kWh/kg. The
blue dotted curve shows the estimated carbon emission when these calculations would have
been implemented in Python running on a single core. The solid blue curve to the right, start-
ing with the orange bullet shows how the performance and carbon production changes while
increasing the number of compute cores from 1 to 10" (out of a total of 7299 (72, left-most
orange point) using the performance model by 1.

Carbon footprint of
astronomy and computing

Comparison of the average Human
production of COz2 (red line) with
other activities, such as telescope
operation, the emission of an
average astronomer, and finishing a
(four year) PhD.

The emission of carbon while
running a workstation is
comparable to the world’s per-
capita average.



Carbon footprint of computing

The relation between the time-to-solution and the
carbon footprint of the calculations is not linear.
When running a single core, a supercomputer-used
to capacity-produces less carbon than a
workstation. More cores result in better
performance, at the cost of producing more carbon.

Similar performance as a single GPU is reached
when running 1000 cores, but when the number
of cores is further increased, the performance
continues to grow at an enormous cost in carbon
production.

When running a million cores, the emission by
supercomputer by far exceeds air travel and
approaches the carbon footprint of launching a
rocket into space.




Ecological impact of computlng language
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Figure 3: Here we used the direct N-body code from 2¥ to measure execution speed and
the relative energy efficiency for each programming language from table3 of 2. The dot-
ted red curve gives a linear relation between the time-to-solution and carbon footprint
(~ 5kg CO./day). The calculations were performed on a 2.7GHz Intel Xeon E-2176M CPU
and NVIDIA Tesla P100 GPU.

Results were obtained with the
assumption that astrophysicists invest
in full code optimization that uses the
hardware optimally.

In practice, most effort is generally
invested into solving the research
question; designing, writing, and
running the code is not the primary
concern, if the result is obtained
reasonably fast. This is why
inefficient (and slow) scripting
languages as Python flourish.

According to the Astronomical
Source Code Library, ~ 43% of the
code is written in Python, 7 % Java,
IDL and Mathematica. Only 18%,
17% and 16% of codes are written in
Fortran, C and C++ respectively.

Python and Java are also less efficient
in terms of energy per operation than
compiled languages, which explains
the offset away from the dotted curve.

Among 27 tested languages, only Perl
and Lua are slower than Python-
popularity of Python should be
confronted with the ecological
consequences.



How to improve?

Runtime performance of Python can be improved using numba or NumPy libraries, which offer pre-
compiled code for common operations-it leads to an enormous increase in speed and reduced carbon
emission. However, these libraries are rarely adopted for reducing carbon emission or runtime with
more than an order of magnitude.

NumPy, for example, is mostly used for its advanced array handling and support functions. Using these
will reduce runtime and, therefore, also carbon emission, but optimization is generally stopped as soon
as the calculation runs within an unconsciously determined reasonable amount of time, such as the
coffee-refill time-scale or a holiday weekend. We even teach Python to students, but without realizing
the ecological impact.

The carbon footprint of computational astrophysics can be reduced substantially by running on GPUs,
but the development time of such code requires major investments in time and expertise.

As an alternative, one could run concurrently using multiple cores, rather than a single thread. It is
even better to port the code to a supercomputer and share the resources.

Best for the environment is to abandon Python for a more environmentally friendly (compiled)
programming language.
Even better is to use other interesting strongly-typed languages with characteristics similar to Python,

such as Alice, Julia, Rust, and Swift. They offer the flexibility of Python but with the performance of
compiled C++.

Educators may want to reconsider teaching Python to University students. There are plenty
environmentally friendly alternatives.



Python package agnpy

« Back to our topic. As an intro and example, we install and run the agnpy, python package
modelling the radiative processes of relativistic particles accelerated in the jets of AGNs. We
try to learn from it, eventually use some of its content.

« The package is fresh, arXiv paper was out in January of this year, information about the
installation and the first example | took from the poster from Jets conference in last year.

agnpy: an open-source, do it yourself,
approach to (jetted) AGN modelling

C.Nigrol . Sitarek? P Gliwny?2 D.Sanchez?

1 Institut de Fisica d’Altes Energies (IFAE), Barcelona [cosimo.nigro@ifae.es]
2University of Lodz

3Laboratoire d’Annecy de Physique des Particules (LAPP), Annecy AGpr
. Evaluate Energy Density and Absorption of the
Introduction Line and Thermal Emitters
agnpy [1] is a python package modelling the radiative processes of agnpy allows to evaluate the energy density, u/(ergcm—3), of the lil
relativistic particles accelerated in the jets of Active Galactic Nuclei and thermal emitters as a function of the distance from the jet axis
(AGN). It additionally includes classes representing the AGN thermal or their y-y opacity, Ty, as a function of the escaping y energy.

and line emitters and computes the y-y absorption produced in their
photon fields. The package is built on numpy [2] and astropy [3] and is
affiliated with the latter project. [GitHub, Docs]

Package Modules

Emission Regions
agnpy.emission_regions describes the region responsible for particle
acceleration and radiation. It contains an e* energy distribution
parametrised with an analytical function.




Python package agnpy

They can be used as target for EC or y-y absorption; their broad-band
emission can also be evaluated.

Examples

Compute the SED for a Given Radiative Process

With few lines of python the user can evaluate the SED for a specific
radiative process

import numpy as np

import astropy.units as u —— synchratran
from agnpy.emission_ regions import Elob 101 o
from agnpy.synchrotron import Synchrotron
from agnpy.utils.plot import plot_sed Tty
import matplotlib.pyplot as plt
# define the emission region and the radiative process 1
blob = Blob()

synch = Synchrotron(blob)

vF, (g om s

1017

# compute the SED over an array of frequencies 101 o
nu = np.logspace(8, 23) * u.Hz

sed = synchaed flux(nu) I T R TR S R PR
# plot it v

plot_sed(nu, sed, label="synchrotron”)

plt_show()

Validation

agnpy is thoroughly validated against bibliographic references and
against other modelling codes relying on the same physical assump-
tions. An agreement between 10% and 30% with other sources is
achieved. Below we compare agnpy's synchrotron and SSC spectra
against the ones in [4] and the ones produced with jetset.

synchratron synchrmotron self-Compton

1

wF | fergem s

13 - awy " - ampy
=== Fig. 74, Dermer & Menan {2009) === Fig. 74, Dermer & Menan {2005)
—== jetset —== jetset

T T T T T T T T T
' 10 M 10" 10" 0 0" ' 1 10 i
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C. Nigro et al.: agnpy: an open-source python packag
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Fig. A.1: Geometry used for the energy density and external
Compton scattering calculations. A disc-like emitter with

radial coordinate R is represented as an example.

Python package agnpy

Appendix A.2.3: Shakura-Sunyaev accretion disc

Let us consider an accretion dise with inner and outer radii
Iy, and R, . respectively. From the sketch in Fig.wc
see that the cosine of the photon incoming angle pp = cos#
and the coordinate along the disc radius R are related via

R2\ Y7 —
= (1—0——;2) SR =r/p 2 —1. (A.13)
-

The minimum and maximum incoming angles of photons
from the dise impinging on the emission region are therefore

1{2 —1/2 _{i’_‘z —-1/2
Hmin = (l + ;—;‘") » Hmax = (1 + %) . (‘A-l"l)

The specific spectral energy density of photons coming
from a |Shakura & Sunyaev| (1973) accretion disc can be
parametrised, following [Dermer & Schlickeiser] (2002) and

|Dermer et al.|(2009), as:

3G M

ule, ;1) = an)2erms *

(R)d(e — eo(R)) (A.15)

where (R) represents the variation of energy flux along
the radius

l." 11’.5,.

P(R) =1— (A.16)

R

and en(R) is the monochromatic approximation for the
mean photon energy emitted from the disc at radius R

IEdd 1/4 R —3/4
o(R) = 2.7 = 1074 [ = — . AT
enl( ) = (J”H”) (Rp‘> ( 7)

In the abowve equations, (¢ is the gravitational constant,
M = Mg =x10% Mg is the mass of the black hole in solar mass
units, [gh‘_lj the black hole mass accretion rate, n the
fraction of gravitational energy converted to radiant energy
(Laise = r,rm(:Q)_. lgda the ratio of the disc luminosity to the
Eddington luminosity (Lgaq = 1.26 x 104 Mgergs— '), and
R, = GM/c? is the gravitational radius of the BH. When

using Eq. (A.16) and Eq. {A.17)), we make explicit the fact

Using NumPy, SciPy, and astropy, agnpy
is still “kosher” and provides another
element to the modular astrophysical
software system envisioned in Portegies
Zwart (2018). But, how much of SS73 disk
is there in agnpy? There is rather an update
of their result-good for science, but not for
our goal of using SS73. But maybe we
could simply make it and incorporate into
agnpy, they claim it is easy to do. Let’s
check it, can we do it in 2 hrs? We wish to
plot this updated result aside the original

one.

that the photons emitted at a given disc radius R will have
different incidence angles depending on the blob position r,
by replacing ¢ (R) — () and eg( ) — eglpsr).

The integral energy density in the galactic frame is

3 M Hmax , s
()= L G | (i)

- dp ——=+-
STI'(_' rl‘} Hmin " (H_z - 1]&;2
In the blob frame the energy density is

, 3 GMm
u(r) =———

Sme i

(A.18)

Hmin

[ o(pir)
) }'F“(l —Bu)?(1+ Bu' ) (p

—1)8/2

(A.19)



Python code for Shakura & Sunyaev viscous alpha disk

Next we prepare our own Python code to plot the results for Shakura &
Sunyaeyv thin disk:

-load the necessary routines and prepare the definition of quantities.
-type-in the equations, constants and write the interactive input interface.

-make the visualisation part of the code.



Summary of the Part I1

We introduced the simplest equations for disk description
Detailed perturbative solutions, step by step.

Shakura & Sunyaev ‘73 solution
If not alpha viscosity, then what? How the MRI works?
Self-gravity of disk

Python code for Shakura & Sunyaev viscous alpha disk
-some ideological points about open access

-agnpy package

-our own python routine

-merging of our routine for original SS73 with agnpy

Miljenko Cemelji¢, Thin accretion disk, Feb & March 2022, Silesian University, Opava



Outline, Part III: General solutions for thin disk

- z-averaged solutions: Urpin (1984) ; Regev (1983) solution

- Kluzniak-Kita global solution for a thin HD disk and its
magnetic generalization

- Umurhan (2006) generalized Yy solutions

- Python code for thin disk; python tool DUSTER

Miljenko Cemeljié, Thin accretion disk, Feb & March 2022, Silesian University, Opava



Urpin solution
Hydrodynamic flows in accretion disks

V. A. Urpin

Ioffe Physics and Technology Institute, USSR Academy of Sciences, Leningrad

(Submitted December 14, 1982)
Astron. Zh. 61, 84-90 (January—February 1984)

Calculations of the velocity field in an accretion disk show that matter may flow in the disk not only toward
but also away from the central object. The rates of flow are determined, and the geometry of hydrodynamic

motions in nonstationary disks is discussed.

I was mentioning before the z-averaged
solutions. Assumptions in Urpin are all as we

already know:

We shall adopt the turbulent-viscosity model.® Ac-
cording to this model the influence of small-scale turbulent
motions upon the regular motions is tantamount simply to
a renormalization of the viscosity coefficient. The equa-
tion of motion will then take the form

v
p—a—t—--}-p(V-V)V=-Vp+pV¢+Vﬁ,
(1)
= avy oV, 2
iR= +‘_'"-'_'_-— {] -

I noticed here we forgot to discuss on viscous
tensor, of which the above eq.is a component:

The viscosity was defined by the

T=1, |(Vu) + (Vo)! - %(V : 0)1‘ ,

with the dynamic viscosity n, = pvy

dp
5—3—-+V (pV) =0. (2)

It has been suggested that the motions along the r, z
directions may take place at subsonic velocities, while the
rotational velocity V , may exceed the sound speed cg.
Estimates indicate (ﬁefs. 1, 2) that these conditions will
often be satisfied in real objects. Moreover, we shall con-
sider only objects in which the accretion rate varies so
slowly that the inequality

t&>f5::ot.1=2;11:rf Ve (3)

holds for all r; here t, is the time scale for change in the
accretion rate. In this event the disk will be axisymmetric.

With these assumptions the z component of Eq. (1) re-
duces to the simple hydrostatic-equilibrium condition

where M is the mass of the central object (we neglect the
self-gravitation of the disk). The radial component of
Eq. (1) will take the form

8V, Va 1 6p 9% 1 .
pole PV Vo .. % 90 0% 5t oy
ar 0z r por 4or p

T



Urpin solution

Since V. ~ §/r and V, ~ (z¢/ 1)V, (z, is the character-
istic disk thickness; see, for example, Shakura and Syun-

1 - =
yaev'), one can readily show that the EerSt two terms on If the condition (3) holds, the ¢ component of the equa~
the left are much smaller than (z,/r) Vgg /r. We may tion of motion will become
therefore neglect them. The last term on the right is

asil imated: - = %
eagily estimated V i(rVq,)—l—V,aV =—1:—(Vn)w.
r or 0z P
1. (vﬁ) g @Vq Ut lt Vq:z Zﬂz
?‘ %) S = (c— ) (Z) @ In the disk V, ~ (z(/r)Vy, and furthermore avw/ar ~
v\ [ Lo\ [ 2o \* Vi Zo\? V2 (z /r)BV(P/ or. We may therefore neglect the second term
=2l =<l = on the left. Then
2 o

it too may be neglected. Then V=" (z5) (V. (5)

V. dgp 1 dp ) o &

= e + > o According to the definifion of the tensor ™ we may write

Later we will need an expression for V , accurate to Va=[V(pD) VIVHpdVV+pdV (VV) +VIVV (p9) )

terms of order (z/r)2. Since y =GM/R, where R = (r? + —(VV) V(pg)_i V (pHVYV).
22)1/ 2 is the distance from the compact object, we readily 3
find
GM\"“(. 32  r ap
bt (—r_) {1_7?+ 2GMp E"}‘ (4)



Urpin solution

Next he discusses the three zones of the disk, neglecting

Since we have assumed the disk to be axisymmetric with the closest one to the star:

8/ op =0,
) IV, 3(p) 3(o§) [V, V firm that the law (8) holds for zones B, C. In zone A,
(Vi) o= e ( 9:— —;) Shakura and Syunyaev! found that p is independent of

oV, & 0V, V height, but if one allows for turbulent heat transfer, this
2 +_( ar"‘+_;";)] _ conclusion will no longer be valid.” The density variation

in zone A then can also be described to fair accuracy by

Eq. (8). However, in the accretion disks around neutron

stars and white dwarfs zone A evidently is often absent;

Substituting this expression into Eq. (5), we obtain

. 9% 7 p oV, 3(p) we therefore shall consider in detail only the flows in zones
V,~— 2
P (GM) { 9z &z BirG:
d(pD) Ve V, 9*V, oV,  V, I have obtained the following expressions for the scale
ar [a_r_"T l@[ 0z ( or r_)]} z, in these two zones':
s _2_1{ ( L ) " 3V 9 (p-ﬁ) zone C: zo= 10% *mvm’™R’"* cm,
GM az az 'y 1 1) IS i (9)
V. 34 (P@) 3 zohe B: zo==2 1-10f a="om oS {*/» cm,
tod dz ] T2 ar 4P '5} (6) Here m =M/Mg; m = M/(1.9 - 10%¥ m - g/sec), with M

the accretion rate; ® =rc?/6GM =r/(8.89 - 10° m - cm);
It is evident from Eq. (6) that to determine the radial comand the parameter o = $/z.¢. measures the level to which
ponent of the velocity correctly we must know V , to term,turbulence has developed in the disk [cg = (kT,/ mp)l/ 3,
of order (z/r)% since 8°V,,/ 82% ~ 8%,/ 8% ~ Vp /12

Al . .
O arbieasian 19 bH des this accuracy ong with these expressions we shall also need the

condition that the mass flux be conserved. We can obtain
The vertical velocity component V, can be determined it from the equation of continuity, together with Egs. (6),

from the equation of continuity: (8):
G 1 @ a _ e —
E(p )= — —————( oV ;;. (7) M=const=— f2:n:rer dz=3n¥n p.Hz, (10)

- 00

where p , is the density in the central disk plane.



Urpin solution

Now we compute v : we have from eq.4, because of vertical hydrostatic equilibrium

L. GM)”’(_iap_ L e %) (11)
( p or CMp*orozl’

9z 2\ r
We introduce the convenient dimensionless paramefers

t = z/2pf=T/Te ¥=p/pe- With these definitions we
obtain

dlnp dlnp. _ ¥ dlng,

or or v oar

(12)

13p_2chf{61npnT., E(‘I’_|_)" dIn z,
p or my ar v _f-) or }

(the dot signifies differentiation with respect to £).

The r-dependence of the parameters p ., T¢» 2g» § has
been investigated by Shakura and Syunyaev (Ref. 1) and the

author.” For these parameters the following relations hold:

dIn p. 15 dlnT
goneCy —————=———,

dlnr 8 dlnr
dlnz, 9 dIlnd 3
dlar 8 olnr 4 °
dlnp. 33 dInT. 9

F————

o

H

3
4

zone B:

dlnr 20’ dlnr 10’
dlnz, 21 dInH

3
dlnr ET dlnr 5" (13)

As mentioned above, ¥ ~ exp(—£ % in zones B, C. Sub-
stituting the expressions (12), (13) into Eq. (11) and noting
that ¥ /¥ ~ —2¢, we obtain

OV, Bz (GM\% oo

zone C; —*= 16r2( - ) £ (5—7/—6E*+6fE —3Ef),
oV, 3z {GM\" >
, o AT 4E 14T —TEF).
zone B: 40:4( - ) £ (11— 17— 14E*+14fE*— TEf)

Using these expressions, it is not hard to evaluate V.
In zone C,

s

r

__.::}_. 5__1% i i 3 __3 2% (14)
Lt At ¥ S—Ef},

5 7,28 ., ,...8_,
-/-Tevame g

while in zone B,

3
Vi —50%{22—171‘— 1065*+7678"+288" 288 —315/+28E°f—TET).
(15)
Notice that when £ = 0 the radial component of the velocity
is positive, and equal to 9$/8r in zone C and 3§/4r in
zone B. Thus in the vicinity of the central plane, matter
is flowing away from the compact object.



Urpin solution

If ¢ is not too large, we may use for the function f the
asymptotic expressions’:

zone C: f~1—0,258*+0,0048E—
zone B: f=1—0.288*+0.0054E*—

With these we can easily obtain analytic expressions for
Vy at reasonably small heights £:

zone Cs: V,= %?(1—1.452—4.85“— o
zone B: V,=%g(i—0.8§2—7.6§‘— i)
r

Comparison with a numerical calculation of V, from Egs.
(14), (15) indicates that the asymptotic expressions (16)
reproduce the V,. profile almost exactly if £ = 0.6; they
work quite well for 0.6 = £ = 1 [accurate to ~ (20-30)%l,
and are qualitatively valid for 1 < £ < 1.5.

Having V.., it is not hard to compute from Eq. (7) the
vertical velocity component:

99 0z,
zone C: ¥, =§'%__z__g(1 —1.482—4 8k — e
(17)
3
zone B: V. __4‘%__.5(1 —0.88:—T7.68—...);
V, changes sign at the same height z¢y as Vy. When z <

Zoye Vz 18 directed away from the central plane; when z >

z_, towards.

Next he discusses the three zones of the disk, neglecting
the closest one to the star:

S e e g
— o — —

—_—— e —

On substituting into Egs. (16), (17) the appropriate val-
ues” of §, we obtain the following expressions for the ve-
locity components in the two zones:

zone C:  V,=9:-10%c"sm~"smi" f-" (1—1 4E*— 4.8 — ...
V.~ A1 0% om= i oo (1— . 4 —4,8E— . . ),
zone B:  V,=2,6-10%"sm~"sm"*R~"s(1—0.8*—7.68'— .. .),

V.~6,4-10%a” om="omm /R ~"/vE (1—0.8E*—T7.68'— ...).

Figure 2 schematically illustrates the geometry of the reg-
ular motions in the disk.
Now Iet us estimate the rates at which mass flows in

different directions in the disk. Denoting by M+, M_ the
ﬂux toward andaway from the compact object, we will have
M4 — M- =M = canst(r). Equations (8), (10), (16) then
readily yield

M_= j.é;nrpV, dz '.-s{ 0'35&{ .in zone C,

. 0,250 in zone B,
Thus the mass flow toward the center exceeds the opposite
flow by a factor of ~4 in zone C and 5 in zone B.

Some of the matter flowing into the disk will change
direction immediately adjacent to the compact object; that
is where most of the outward flow will originate. Our
similarity solution is not valid in this region.



Regev solution

The disk-star boundary layer and its effect on the accretion disk structure

O. Regev

Department of Physics, Technion — Israel Institute of Technology, Haifa 32000, Israel

Received March 15, accepted May 2, 1983

Summary. The method of matched asymptotic expansions is
proposed for a self consistent calculation of an accretion disk and
the disk-accreting star boundary layer. A model of a thin, optically
thick, region (c) accretion disk and boundary layer is calculated
with the help of the method. The disk in this model is hotter and
denser than in the corresponding Shakura and Sunyaev.(1973)
model.

The significance of the model is discussed and the method is
proposed for other cases of interest.

soft X-rays, emerging from the top and botton
Pringle and Savonije (1979) propose strong shoc
thin emitting region in the boundary layer to e
emission of dwarf novae. Finally, Tylenda (
possibility of hard X-ray emission in an optic
boundary layer without strong shocks. In a rece;
al. (1982) point out that observations show that .
significantly smaller than predicted by a theoreti
model.

* In Regev’s solution by expansion on a small parameter of H/R is proposed.
On this, later similar solutions are developed.

 We will contrast his solution with the later ones, to better understand the

development.



Regev solution

Boundary layer between the inner disk radius and stellar surface is
important-there (), of the infalling material changes to Q, in a very thin

layer, compared to the disk extension in radius.

As we obtained at slide 48, up to a half of the accretion luminosity is
generated in this thin layer.

In SS73, Pringle81 and similar, dQQ/dr=0 is used at r=r, boundary.
Solutions by Regev, applied to a disk around a white dwarf relate to region
(c) in SS73.

He searches for steady, axisymmetric solutions, with a/ot=0/0¢=0,

viscosity is present (only r-¢¢ component of the viscous stress tensor is
present, the rest is neglected), the disk is optically thick, with radiation
transfer treated in the diffusion approximation.



2
ov ov 1 3P GM*Z( Zz)—m
U—+t—=——————— (14— ;

_ 1dp GM, (1+22)*3*’2

0 oT 10 %)
QCv(u —£+v —)= —xP[— — (ru)-’r,,—v}
z r or 0z

aQ 10 d

2
21 7 B Fr e Fz_
+ver (5r) r or (rF7) 0z

Regev solution

We are already familiar with the equations:
momentum eq.in r and z directions (cylindrical
coords), angular momentum (in r), mass
continuity and energy eqs. Radiative energy
fluxes in r and z directions are, with the
assumptions from the bottom of previous slide:

dac T OT

We need to supply the equation of state for P
and opacity ..

The constant mass flux through the disk is
another requirement, which is a constraint for
the solution:

—2nr | oudz=M (constant)



Regev solution

We will not follow Regev solution in detail but just outline it, because we will repeat it related to KK solution:

In order to proceed it is imperative to write the equations in a
non-dimensional form. To this end various quantities are scaled by
their typical values (denoted by a tilde ~). Thus ¢, T, v, k are in
units of g, T, 7, &, respectively. Velocities are expressed in the units of
a typical sound velocity ,, pressure in units of gz and € in units of
the Keplerian angular velocity at the surface Q,, =(GM,/R3)'?.
Two length scales are introduced — r is scaled by R, and z by i, a
typical value for the disk half-thickness.

Before writing down the non-dimensional equations it is
advantageous to state the next two assumptions (in the framework
of which this entire work is done).

(v) The circular flow is highly supersonic or, equivalently, the
disk is (geometrically) thin —z/r<1 in the disk.

(vi) The viscosity in the bulk of the disk is given by an *“‘alpha
model”, 1.e. v=ov,H.

The above assumptions are customary and are used by SS (see
also Pringle, 1981). Assumption (v) introduces a small parameter
into the problem &= (ii;/Q, R,) <1, with the help of which a typical
vertical scale of the disk H is expressed —H=¢R,.

The scaled non-dimensional equations are:

Out Cu 1 0P 1 3 22
2 G (P @i T T e
g u_{:'r+£L % Qr=—¢ T FEe 5 = (7
dv v LdP £ ArF
Yt e Bl S B 8
Eu 5r+v P 7 r3+8 5 5 6))
18 0
&~ = (row)+—- (ov)=0, ®)
r or dz
u @ 0 , 1 8 00
S — =gt — — | vor* — |, 10
o= (PQ)+v 2 e (vg ar) (10)
oT oT 1 ¢ dv
ol ] kifeell = —yPle - — _
ﬂg(su or T 0 )QC" X |:8 r or (ru}—l—@z]
(11)

C, 1s expressed in units of #/u 4 with # the gas constant and u 4
the mean molecular weight. The new nondimensional constants
here are:

—

Pgas "
ﬁggﬁ‘l ’?Eﬁr’"r

where
P, 4e 1
ﬁr—'—: _w_uzd and AET— e
QUS T‘?S T'Z

}3@5 and P,,, are the gas and radiation pressure respectively for
typical conditions, ¢ is the velocity of light and 7, is the optical
depth in the vertical direction in a typical point of the disk %, = &g H.
The physical meaning of these constants is self evident and their
numerical value depends on the scaling quantities which reflect a
particular regime of interest.

The scaled form of Eq. (6) is:

r | oudz= —euM, (12)
where M is in units of M and u= M/(2nH?35,). The fluxes F” and F*

are given as in Eq. (5), but with the constant term (4ac/3) now
missing.



Regev solution

Equations 7-12 depend on the small parameter € and other nondimensional constants, order of which is important
for finding an approximate solution. The “method of matched asymptotic expansions” is used [Regev refers to it as
“Bender & Orszag (1978, chapter 9) solution for differential eqs.which exibit a boundary layer structure”, I usually
refer to it as doing Taylor expansion in a small parameter €, as this is to what we resort at the end.]. Scaling is done
to the typical values as in the table:

Sealnp vanables N‘}ﬂ;di‘:‘emi"nal The ideal gas eq.is assumed, the radiative term neglected,
n . o, . . .
] opacity for free-free transitions is assumed, in the main
solution and also in the boundary layer. Viscosity in the

R,=9 10® cm E—R£—1 371072 K A
C : — :
Th, il s boundary layer is assumed as DBL Vturb , with
1/2 D . . L.
0,,= (%) =0.427 rad s™! B, :.{} s =1=% Kand V_. constant and AN being a characteristic length
ovs v : : : s
%_10° CK* scale in the boundary layer. In the nondimensional units it is
s @ 12 LaTe T K Vturb A
7 ) % a . BE=" “& =
. =5 6 1 L 3 + .
V, (3 5 T) 5.265 10° ¢cm s i 557 1.819 10 ' SR TR H
4ec 1
— h- /1 _———m —v-—3 1{]2
A=—2=123310" cm 7 . . _
Qus n= B4 0.641 Now comes the “matched” part: solution of eq.7 in previous
§=510"°gcm™3 o slide in the leading order is proportional with r -, this can
P=52=1.386 10° dyne cm™? = not be valid at the boundary. An “outer” expansion at r#1 ,
; dln P - i 1 1
=011 AT~ =1.048 cm?® g~ s ( : n ) 1 € . 0.15 const.ructed and matched to the inner expansion,
_ N e , InT valid in the disk.
M=210" gs '=3.1510 Mg yr C,=3

—
s

o =0.795
= ZrtHngb '




Regev solution

1. The outer solution

Let Q=Q,+eQ,+...; u=up+eu+...; v=vp+ev;+... with
the other variables expanded in & in a similar way. In lowest order

. 1
we obtain from Eq. (7) 2§ =, and thus:
r

Q,=r"3? (Keplerian). (14)
Equation (8) gives

1 8P, =

T (15)

vo has been set to be equal to zero for the following reason. From
Eq. (9) it follows that (6/6z) (gyve) =0 and thus gove =7£(r). Atz=0
vo =0 (symmetry), thus f(r) =0 and since g, +0, v, =0 everywhere.

The lowest order term in Eq. (10) is trivial vy(6Q,/0z)=0, and
from Eq. (11) we get

2 % 2_ a__ z
UVoloF (5!‘ ) =n 5a F. (16)

Order ¢ of Eq. (10) gives: uy(8/dr) (r*Qy) =0, which implies u, =0.
Using this in the order ¢ of Eq. (9) gives (3/0z) (gov,)=0 and thus
also v; =0. Thus, the & order of Eq. (10) implies

d 0 a2
FisQo = (rQy) =0 3 (‘*‘0@0-"3 a—;}) (17

Similar is done for the inner region, in the case when star is
fast rotating, near the breakup velocity, he assumes
Q*= El’ZQK* . This is different from our solution later,

when we will relax this constraint, so we do not follow it
further in detail here, just an outline:

Zo(n= | eolr,z)dz=284(r) H(r) (18)

with H(r), the half thickness of the disk to be given from (15) by

H(r)="2 = 1422, (19)
20

Also

o= H(r)=Tor'™. (20)

Integrating now Eqs. (16) and (17) over z
80y '\

avuzvrl(;) =2nF3., (21)
or J

i d a0,
- M & (rédp)=a — (v.:Eurz' T“) (22)
r or or

where condition (13) has been used in (21).

Proceeding as in 55 we put Fj=4% Th/(koZ,) withxg=5,Ty **
and thus Fj=T7 H(r)/Z}=T§Z; 2r**, Using (14) and (20) Eq.
(21) takes the form:

ﬁ:(z_:)zgr-ﬂ_ (23)
Integration of (22) gives

o o GLD
P, —C= — (;IM) TaZor? ﬂ—rﬂ 24)

where C is a constant to be determined by the inner boundary
condition. S5 (and others—see Pringle, 1981) put C =1 arguing that
(802,/dr)=0 at approximately r=1 where £J;=1. This is entirely
inconsistent with (14). In the framework of our treatment C is left
undetermined at this stage and will be found from the matching
with the inner solution, This is the important difference between
this and the 55 solution, giving rise to a significant correction (as
will be seen below). Substituting @, and vy 1n (24) solving it together
with (23) for T, and I, one gets

To=Aa~ VSN0 31401 _ p=1zpI0 (25)
Zo=Ba M0 "3 (| — O 1210, (26)
where 4 and £ are known constants:

A=(23n)"% B=A(8n/9)'5,

Equations (25) and (26) are equivalent to the S8 formulae for
region (¢} of the disk except for the constant C. Other variables can
be found also; for instance the inflow velocity:

wo=—uMr-'Z;' et (27)



Regev solution

It is convenient to use here P, as a variable. In our units s

Po=1/p0, T, (7 is the adiabatic exponent=3/3 in our case) and

thus po=7vP,/Tp. .
From the thin disk approximation H=T32/Q, and Z,=20,H T '3° i ‘ ' ' '

=2yP, Ty '?Qy'. Using these relations the following set of
equations is obtained: 120 .
0Py, Py ' i ' ' '
—_—y — (0% —1 34 16.0 |- E
(?R i To ( 0 ): ( )
e (” )MQ (1 = Qo) TE2 Py ! @5 =" |
=== oll =8&0) Lo" Fo 7
dR \2y

40 -
d E
%o _E_ prraz —aop i, (36)
dR  dny -l
Ty P,
§= —7ko Fﬁ Qo (37) o8k |

E i 2 a

with ko= P, Ty *~ for free-free opacity. It should be pointed out el i
that various quantities like Py, gy ete. arein fact z-average here (like ’

0.4 4

2 a 6 0 10 2 4 6 8 10 12 14
(r-1710"* r

Fig. 1. The structure of the boundary layer for the model example.  Fig. 2. The structure of the disk as obtained from the matched
T - the temperature, I — the surface density and Q — the angular  solution for the model example (solid curves). The dashed curves
velocity are given as a function of radius very near the star’s correspond to a solution with C=1 like that of SS (see text)
surface. The quantities are in units used in the text (see Table)

This is another z-averaged solution, only more involved than Urpin’s. Those equations need to be
solved numerically, in difference to KK solution, which we will derive analytically. Regev obtains
curves from Figs. 1&2 for the disk structure. Since KK obtained a general solution, all this became
obsolete.



Kluzniak-Kita solution

THREE-DIMENSIONAL STRUCTURE OF AN ALPHA ACCRETION DISK

Wiodzimierz Kluzniak and David Kita

Physics Department, University of Wisconsin, Madison, WI 53706, USA

ABSTRACT

An analytic solution is presented to the three-dimensional problem of steady
axisymmetric fluid flow through an accretion disk. The solution has been obtained
through a systematic expansion in the small parameter € = H /R (the ratio of disk
thickness to its radial dimension) of the equations of viscous hydrodynamics. The
equation of state was assumed to be polytropic. For all values o < 0.685 of the
viscosity parameter, we find significant backflow in the midplane of the disk occurin
at all radii larger than a certain value; however, in the inner regions of the disk the
fluid always flows toward the accreting object. The region of backflow is separated
from the region of inflow by a surface flaring outwards from a circular locus of

stagnation points situated in the midplane of the disk.

The work in KK0O paper, which
exists only in arXiv version, is
actually a PhD thesis of David
Kita from 1995 at Madison
University, USA. It is a general
solution obtained similarly to
Regev’s, but without assumptions
he used at the inner disk radius. It
is a 3D, axisymmetric, purely HD
solution.

David Kita’s Thesis is not
available online, it is only in hard
copy in the library in USA and an
example in CAMK, Warsaw-but
arXiv paper is actually very
similar to the Thesis, all the
formalism is copied in the paper.

Paper in arXiv is with figures
given at the end, I rearranged it
and made a more handy version
with figures positioned in their
places in the text. You can
download it from my orange
webpage:
http://web.tiara.sinica.edu.tw/~miki/
PostPrez/KKOOmikiversion.pdf



Kluzniak-Kita solution

« We will go through the process of deriving asymptotic matched solutions in, again
sometimes painful, detail. It is a very instructive example, and it could be of use for other
similar work.

« Motivation of KKOO paper is to find the solutions which would show that the backflow,
which appeared also in other solutions except Urpin and Regev, is not of a thermal
origin. Urpin included thermal effects but made the simplification of zero net angular
momentum flow in the disk (equivalently, his self-similar solution is valid asymptotically
for large radii). KK chose the opposite route—neglect thermal effects, but include the
inner boundary condition. They were able to find a global solution. They show how the
backflow is fed by the inflowing fluid.

* An interesting note: Narayan & Yi (1995) went beyond the one-dimensional solutions by

numerically constructing axisymmetric ADF solutions which factorize the three-dimensional
equations, i.e., solutions of the type f (r, 0) = R(r)®(0). Solutions in KKO0O are not factorizable.



Magnetic Kluzniak-Kita disk solution (MKK)

* Not to repeat the lengthy derivations twice, we will do the magnetic version, and outline
the HD solutions by setting B=0. It is interesting that both are non-published work,
present only in arXiv, referees did not appreciate the contributions, yet. KKOO paper has

a decent following and garnered 60-some citations until now...more than many
“published” papers, so it will stay in arXiv domain. The more recent magnetic
generalization is still in push for publication.

« HD solutions can be obtained since the set of HD equations is closed. For the magnetic
case it is not the case, and only some general conditions can be obtained. I verify, with
help of numerical simulations-which you are already familiar with-both the HD and non-
ideal MHD solutions.



Magnetic Kluzniak-Kita disk solution (MKK)

irner disk middie disk outer|disk
0.1 AU 1AU 10 AU

Fig. 1. Illustration of the reach of the inner, middle and outer
disk regions in the case of Young Stellar Objects. In the inner-
most disk region the disk is in the ideal MHD regime. Further
away from the star, in the middle disk region, the Ohmic resis-
tivity adds to the viscous dissipation. In the outer disk, which
we do not analyze here, other resistive terms prevail in the in-
duction equation. Radial extension of the physical domain in our
simulations is indicated with the horizontal thick black solid line.

We search for the quasi-stationary state
solutions, assuming that all the heating is
radiated away from the disk. This is why the
dissipative viscous and resistive terms are not
present in the energy equation, nor are the
cooling terms. We still solve the equations in
the non-ideal MHD regime, because of the
viscous terms in the momentum equation, and
the Ohmic resistive term in the induction
equation. We are solving viscous and resistive
MHD equations (in the cgs units):

V-B=0, (1)

2‘§+V-(ﬁ\f)=0= (2)

%]?+V><(B><v+nm.f)20: (3)
8§:+v.{pw+<P+B8;TB)I—%—T}=p9= (4)
%erV-KE%—P%—BS;TB)V—%]:PQ'V: (5)

where p, P, v and B are the density, pressure, velocity and
magnetic field, respectively. The symbols 7, and 7T rep-
resent the Ohmic resistivity and the viscous stress tensor,
respectively, with 7 = 5T, where 1 is the dynamic viscosity
and T is the strain tensor.

The gravity acceleration is g = —V®,, with the grav-
itational potential of the star with mass M, equal to
®, = —GM,/R. The total energy density £ = P/(vy —
1)+ p(v-v)/2, and the electric current is given by the Am-
pere’s law J = V x B/4w. We assume the ideal gas with
an adiabatic index v = 5/3 and polytropic index n = 3/2,
(y=141/n).



Magnetic Kluzniak-Kita disk solution (MKK)

To compare the magnitude of the different terms in the equations, they have to be written in
normalized units. We will repeat what was done in Regev (1983): all the variables are written in the
Taylor expansion, with the coefficient of expansion given by the characteristic ratio of disk height
to the radius, €= H/R<< 1. For a variable X we have then X=X +eX +&’X +&’X +... and we can

compare the terms of the same order in € for each variable.

In the case of a viscous HD disk (B = 0), the equations can be solved inside the disk (KK00). One
can assume that the disk density decreases smoothly to zero towards the disk surface, which greatly
simplifies the solution. In the case with a stellar magnetic field, the disk solution is connected with
the magnetosphere of a star-disk system, through the coronal magnetic field. Reconnection and
outflows complicate the solution in the magnetosphere, together with a back-reaction from the disk.

In a magnetic case, we can obtain only the most general conditions for the disk magnetic field from
the equations.

We will be searching for the rotationally invariant stationary solutions, so that stationarity, 0/0t = 0,
and axial symmetry d/0¢ = 0 both hold. [In some cases we write 0/0x=0_for simplification.]
Another assumption is that the structure of the disk is symmetric under reflection about the z=0
midplane. From this follows that physical quantities such as Q, p, P, n, u=v, and c_ are even
functions of z, while v=v_is odd under reflections through the equatorial plane. When we expand an
even/odd function (e.g. Q) in powers of €< 1, we require each term in the expansion (e.g. Q. ;i =
0, 1, 2,...) to be independently even/odd. This means that e.g. for Q=0 +£Q +£°Q +€’Q _+..., when
we have Q=even, all the terms [including € in (¢ )] should be even=> £Q =0= =0 and so on
for all the odd terms. This is generalized in Rebusco et al. (2009).



Magnetic Kluzniak-Kita disk solution (MKK)

*  We work in the cylindrical coordinates (r, @, z). The normalization is defined with the following
equations: e= & /(RQ) = H/R < 1, so that & = eR(), and then

¢l = cs/¢s = ¢ /(eRSY). Twiddles denote characteristic val-
ues of the variables, and primes the scaled variables. Fur-

ther, O = Q/Q, Q = Qg = \/GM,/R3, ' = r/R, 2/ =
z/(eR), vl = v,/ = v,./(eRQ), v\ = v,/é = v./(eRQ),
v, = v,/ (R2). The magnetic field we normalize with the

Alfvén speed vy = é/m as a characteristic speed, and
p' = p/p. Then we have B’ = B/B = B/(t%+\/47p), and B
is the normalization for all the magnetic field components:
B, = B,/B, B, = B./B, B,,= B,/B.

The beta plasma parameter [ = Fyas/Pmag =
STTPgaS/BQ. With P = F,.s we can write 2 = yP/p =

5

vBB? /(87p) = v Bv3 /2, so that 93 /é2 = 2/(73).
The viscosity scales with the sound speed as a char-
acteristic velocity and the height of the disk H, so that

the normalization for the kinetic viscosity is vy, = ¢sH =
e2R?Q, and then 7 = pin, = pe2R2Q. Then 1’ = n/n =
n/(pe>R?QY). For the resistivity we choose the normaliza-
tion with the Alfvén speed as a characteristic speed, so that

hn = UaH = eRva. Then 77, = /T = T/ (eR0A) =
Thn A‘(‘B/z /(&,FR) — Tlm AI:B/Q /({:EREQ)



MKK-continuity equation example

We illustrate the asymptotic approximation method in detail by deriving all the terms through the
second order in the continuity equation. Other equations are derived by following the same method.

The continuity equation is:

dp B
E—FV{;}V)—O. (7)

In the stationary case dyp = 0. With the condition of axial

symmetry J,(pv) = 0:

1 :
;(‘)T_(-rpfur) + 0.(pv,) = 0. (8)

The normalized equation, with the terms in the order of a
small parameter e:

I 1, ~ ~ =~ 1 . -~
i Ec’)rr (r'Rpp'eQRv.) + Ec‘)‘zr (ppeQRv) = 0. (9)

Dividing through pf) and removing the primes, we can
write:

€. |
;c’)r(-rp?)r) + 0, (pv,) = 0. (10)
With the expansion in € in each quantity:

€. ‘ ‘
;d?.[-r(pg +epi+€Elpr+ ... )(vro + €vpp + epy + ... )]

+0,[(po + €pr + € pa+ .. ) (Va0 + €U,y + €40 +...)] = 0. (11)

Now we can write the terms in the different orders in e.

Order €

d
% (Povz0) =0 = v,0 =0, (12)

Since pg is an even function, and v, is odd with respect to
z, at the disk equatorial plane this product is pgv.o = 0.
Since it does not depend on z, and py # 0, we conclude
that v,o = 0 throughout the disk.

Order €!:

In the first order in € it is:

10 e,

—— (rpovrg) + = v,1) =0 = v, =0. 13

- E)-r( PoVr0) 02 (Pov21) 1 (13)
. See the next slide for this. i

Since v, = 0 (KKO00), we have 9,(pov.1) = 0 = pov. =

const along z. Since v, is odd with respect to z, following

the same argumentation as above in the zeroth order term

in €, we conclude that v.; = 0 everywhere.

Order €2

In the second order in e:

ldi (rpove1) + ; (pov=2) = 0. (14)

ror A

Finding the solution for v,; will give us the vertical depen-
dence of v,».

The same procedure is carried in each of the following
equations.



MKK-radial momentum

In HD case, from vertical symmetry and also
parity consideration from the bottom of slide

Radial momentum: Order El: 94, le()’ and here we obtain u():VrO:O'
. . ~3/2 | | |
5 Oy Ov,. 9 1 [ z 2] 2 1 JB,¢ 1 0 v,
€EVp— +ev,— — Qr = 1+ ( ) 200 = 00— + —— [ no— 21
or 0z 2 r R0 3 00 " 0z * po 0z "o 0z (21)
£ i 2
2, dc + il 2B, dB”" e ;{B"" _ 52& Since v, = 0, from the vertical symmetry €2; = 0 follows,
ar I p or 0z r as shown in KKO00 for the HD disk, see also Appendix A
21082 & 9 P ¢ o . in Rebusco et al. (2009) for a more formal derivation. ***If
—— 4 — (277}“ r) + —- ("7 . T) (19) this is maintained in the MHD case, we can write, with
y3p Or  pr or ar poz \ " 0z oo = O:
+EQ 9, ( E)?)z) J2nv,. 20| 10 ( ) -
—— | n= Sy — ——(rv, .
p 0z T or pre  3p ar |'r or an( P ° —0. (22)
262 0 ( v, )
3por Yoz ) Order €%
For an ideal gas with the polytropic index n, if adiabatic 5 - ) _
index v = 5/3, we have n = 3/2. 2rpolo§ls = 3po 27 + npo dfsn . :_d - Jur
2 rd or 0z 0z
Order €°: 2 OB, 0B, 0B, B?
o ——= Bo—; ’ + B.o—— ! + B.1—; v (23)
Qo =132 (20) v or 0z 0z r
1 0B2
ﬁf-'lJé 6?" '

***In Rebusco et al. (2009) is given a non-axisymmetric solution. It is obtained with help of Gegenbauer (or hyper-
spherical) equation and its solutions are known in terms of combinations of the associated Legendre functions (also known as
Gegenbauer polynomials), with use of Wolfram Mathematica 6 software. As mentioned above, there is also given a general
discussion of egs.for the first order in angular velocity, I copy it in the next slide:



Rebusco et al.(2009), Appendix A

In the previous order the explicit form of the viscosity 1 was not needed, but now the situation is not as comfortable.

Following Shakura and Sunyaevlg], we posit the following form of the (¢, r) viscous stress tensor component 1 0 Aug
— 2ryy = —— (73 ) (17)
|Tor| = aPy, (25) po Oz Oz
where a is an adimensional parameter. This gives ug 8 (rzgn) - LE (73 a0, ) (15
d€l 2 4 53 2 ar po Oz 9z
— | =aF — = aar‘ Po (26)
tion is vertically dependent, i.e., the vertical distribution of stress is ;.SSllllled to follow
We now substitute this 7 together with the polytropic relation, 2 = r 5/2 and use
ion [I2)) in equations (IZILS). which become, after some straightforward algebra
2 3 4 02w 2 O, i,
gapﬁ“r“ a;;' - T?z [;Z" +(2r) = 0 (27) APPENDIX A: THE VANISHING OF Q1 AND uqg
Q:T“pg/xrg 62(3;?1) _ 2:_;123(25?1) —p — O (28)
Rewriting the first order equations (27) and (28) with the definitions U = ug and V = 2r(2; gives
200\ 4 /3] OPU 2\ U
=)0 == - (5 ) +V =0 (A1)
3 6z 3 0z
2
2o 3 2/3 @ Vv 200 @V B A
)t ey — (S ) 25— U =0 (A2)
3 0z 3 0z
. . . 2/3 - .
Substituting now the zeroth order solution p /3 — (2 - 22 5r3) and rearranging leads to
: Po g
e
Dz 1) .
Ui = 5 Vst g V = O (A3)
4
0z [
Vis— e Vimr— U = 0, (A4)

where the subscripts z denote here the differentiation with respect to z and a = 15/(2a) is a constant.
Using now Q(z) = (h? — 22)®/2 as an integrating factor for the first two terms in both of the above equations, we see

that

(Q%) _ _a(hZ _ 22)3/2 v (;‘315)
(Q%—Z) = a(h® - 2?)3? U, (A6)

Multiplying the first equation by U, the second by V, adding and integrating over the domain [—h, hl, gives, after

h
/—h
Because Q(z) # 0, except at z = +h and the functions U,V are bound, they must be equal to constants. Thus, it

follows from equations (A3[A4), that U = V = 0, except perhaps at z = +h. However, since they are bound and
constant in all the domain, they (and hence uy and £2,) must be zero identically.

dropping the integrated parts,

(%): (%)2 Q(z)dz = 0. (A7)



MKK-azimuthal momentum

Azimuthal momentum:

P D a0 00 €D (L 0\ 0 (o0
g ) Frugs = mat(rigs )+ (ng;

21 (ezBr 9B; | p,%Pe +ezB"aB’”)
vBT dr 0z T
(24)
Order ¢
e, )y
_9 25
0 dz (7?0 dz ) (25)
consistent with Eq. (20).
Order €':
Polro d 2 - i oLy il DB@U
r2 or ( QU) 0z (T?U 0z * f:,,-ﬁ ?‘BZU 0z (26)
Since v,.g = £2; = 0, we obtain that:
B, 220 _ (27)
0z
Order €2:
Potr1 d 9 2 (‘)B@U (‘)Btpl BrfJBtpU
Q) = — | B- B.,—
. o ( U) B ( 0o, + Do - + .

V19 (a 9N 9 (9
2o \" M ) Tz \h e )

Vertical momentum:

v, v, z g f2\2 —3/2
Uy —— p,— = —— |1+ € | —
“ or T 0z rd |: te (?) ]
o0 : z ; 2
. n:‘)c5 N 2ﬁ 1 (r_ B, (HZBZ . B. c)‘Bz) B lﬁ 1 (%B
dz  ~@p ar 0z ~Ep Oz

+E (_3' v L €2 - Jv- 5
p oz U 0z pr (}r (}r (29)

2¢ 0 |ndy 2 dv.
3pdz [? aor (? ! 1')] Sp 0z ( )

£ € (}i -
pr (}? (}z

Order ¢":
e 1 1 9B
[}:—i_!—nfpbﬂ— _f 0 (3[})

T Oz r}rf} po Oz

From Egs. (16), (22) and (27), with B.o = f(r) it fol-
lows that B,, = f(r) and B,, = f(r). With B2 =
B2, + B2, + B2 it gives 0. B3 = 0 = 0.By. For a disk in
the vertical equilibrium, components of the magnetic field
do not contribute in the zeroth order in e to the vertical
gradient of the magnetic field.

We remain with the vertical hydrostatic equilibrium
equation identical to the purely HD case:
z e,
— = —-n—. 31
- dz (31)
This is consistent with the demand that, for a quasi-
stationary disk, the lowest order in € of the magnetic field
components does not contribute to the solution:

B,gs = B.g = Btp(} =0 = By=010. (32)



MKK-HD solutions

1. . . . . .
Order ¢ We review already obtained results with the vanishing com-
2 OB, 2 e 1 ,
v {B r}a—zl - ( 0 1)] 3 B2 { 3y (rvn ] ponents of B, when magnetic field influences the solution
'L : (33) : : :
1 ;3 (.,.m.,. f);fl) 0. only in the higher orders in . Then Egs. (14), (23) and (28)
ror oz
With B.o — By — 0 we obtain: become the same as in a HD case:
) ) 3 c) ( di.r.,.l) , .
— In U, noT ) 34 1 ¢ i
iz { “or ( 1)] 0z (34) — {?‘pf}i,-'-,.l} + ,— {pf}i,-'zg} =10
r o
2, 300 22 Oc? f) du,
Order ¢?: 2rpoflpfly = o — T npo 0 (?Ff} y . )
0 p. 0B g 0B o 0B, 0B 2 7 or 0z 0z
0~ 1= 20— — 21— —
o o porns O 2oy L9 (0 90 D (00
59: (B} + 2By Bs) + 5% [?i—l (; (rv r1)] (35) r or 0 2 9r o or 0z o dz |
) 2_ L2090 ( dva) 10 ( o (38)
(mv2) +35: (08 ) " ror\™ 8z )

In the disk solution in Hoshi (1977) and KKO00, those equa-
tions were solved by assuming that the disk density de-
creases towards the surface, pg — 0. If, instead, we supply
at the disk surface a value at the boundary with the coronal
density peq, we obtain:

If now we use Eq. (17) with B, = 0, giving

0B .1

9z 0, (36)

we obtain:

: gy 3/2
3po 2° i, : de2, 1 OB} 23 h?—2?
=2 CanCs - - =\ p. —_— : 3!
- 7 g —— 9 (Centan) + 1o 3 + 5 02 0 Peq T E.3 ; ( (})
) 2 ¢ m d . 20 dv.q ‘ . o
—25- 3 (ov=2) + 3 39 | 7 o (ros )| + 557 [ 0 9 where A 1s the disk semi-thickness. The pressure and sound

speed now become:

2 21 /2 r 2 2
(37) _ (3 o Lo 3 23 AT 2"
Pﬂ = | Pea + 5?_3 » Cs0) = - 3 Ped + 5?_3 .




MKK-HD and MHD solutions

The Hoshi (1977) solution is recovered by setting p.q = 0,
for the boundary at the disk maximal height.

In our case, since i o r, we can write, with the pro-
portionality constant A’, h = h'r. Assuming the corona at
the surface of the disk to be in the hydrostatic equilibrium,
with peg o (ﬁ'cr}f?‘)m we can write:

lng B E pﬁjf'ﬂ _I_ h.’QTZ - .32 B E k:ppc[_} + h-"ﬁ B z'.Z
0™ g |\ Fed B3 3 r 5  5rd

(41)

with (2 = 1/(5k,peo + h'?), where k, is the proportionality
constant, and p.y ~ 0.0l 1s the ratio between the initial
corona and disk density.

Now we can continue with the rest of equations.

Magnetic field solenoidality (V -B = 0):

Order ¢

Sfj =0 = B,y = f(r) or B, =0.
Order €'

3 (el + S5 =0

Order €2:

ror rBa)+ 52 =0



Radial induction equation:

du, JB. Jv- JB,
B ’I"f' a8 T o ’I‘Z i
0= 0z o dz Oz 0z
+ (.)T} Ir (.)B'f' (.)T}Ill (.}BZ
— —€
v ,3 0z 0z dz Or
. 2 [9°B, 2B.
— —€ :
T\ 25\ 022 “Gron
Order €°:
anmﬂ E}Br'ﬂ (.}2 B.o

ml = 5 — 0
9z 0z | m0TH

MKK-MHD solutions

Order €2
v, v, 0B, O
0= Bap =2 4 Byt 4 vy o2t~ Byt
9z dz 0z 0z
—y ‘:—}Bv'[’} + f}nm[’} E)B'F'Q lf:jh"/._-'ml E}Br'l
(42) 20, r}r;} dz 0Oz dz 0Oz
f}'fi‘mz E)Bv'['} - anml E)Bzﬂ' - lf}"/._-'mﬂ E}le
0z 0=z or  or dz  ar (48)
N 2 9?B, N 9?B,1 J°B
"}ffj? Mo (.')le Ml (.'}2,'2 N0 } (}.Z
(43) 9’ B

If we multiply this with B.j, the first term equals zero
because of Eq. (22), and we remain with the second term:

9B,

FEE

T:"mﬂBzﬂ

If all the zeroth-order magnetic field components are zero,

B,y = 0 and we remain with

0=0.
Order €!:
v, 2 [ Inwa OB, M1 OB,
BZD(’.T]_ ~ f?:] [’)f. 1+(T}'1(. 0
0z ~g\ 0z Oz dz 0z
a'v’?m(} (.}Bz(} 2 (.’}EB,-]_ (.’}ZB,-(]
T o + B L e ml™ o5
dz O ~B 0z 0z

drdz

0’ B.
—7?1;10.7.0) = 0.

Tl s S Ordz ) '

Without the components of By, we remain with:

(44) . . . . .
f)”r' 1 2 07}'1]10 ()BY'E f}T]III 1 f}Br' 1
[} - B 11— — ; 7 + ; ‘
Jz ~3\ 0z 0Oz dz Oz
(45) - anmf} E)le (.}QBY'Q + (}I Bv 1 - E)BZQ
f}z E_)?_ im0 32?2 Mnl—F & ) 2 Mo (:'}?'327 .
(46)

With the components of By, vanishing, we remain with:

d ()B,l -0
(} M0~ — (}Z == U.

(47)



MKK-MHD solutions

Azimuthal induction equation:

0=erB, (,}n r?ﬂ(}B +ef)B, +rB.— 0%t Q(},Bz
dr ar }z dz

» OB, oB, 5 Ov v,
—e2u, Pl SR - A - Y
CUrThr T e T e, T Pep;
2 (CEB@:‘ O 300 OB, | O 0B, )

8 r or | or or 0z 0z

N r 0B, c”B ° L 3 02 B, 0 . E}QBQ,
1 : ; c E— .
g y .3 T or r2 Jr? )z2

Order ¢":
0B 0B
?‘Q(}(.z“:[}:}(.zr}:ﬂj
0z 0z

in agreement with Eq. (16).

Order ¢':
<) 0B, 1B,
?Br(].( 0 ?ﬂ(}( D-I-?‘ﬂ(}(.—l
ar dr 0z
(}nmf} ()B‘Pﬂ' lf} ‘B‘F‘ﬂ'
= + mi ™ 5 5 = D:
~8 ( dz Oz 0 0z2
which, with vanishing components of By, becomes:
?'n(].():BZI = 0
dz

This confirms Eq. (36).

(50)

(51)

(52)

(53)

Order ¢2:
0=r fl.B,.l c}.ﬂg s c}:Br.l ., Bzﬂc}ﬂg e (}:BZQ
dr  Or dr dz dz
2 l‘:'}nnll B‘B‘Pﬂ f}nmf} (}B‘Pl ("}2 B‘P]-
:-}rlfj} ( dz 0Oz * dz dz + Timo 0z2 (54)
2B
11 (}ZQ )
Without the vanishing components of By it becomes:
1B, d01 B, B
?‘( ; L (, 0 +?‘Q(}(, L +?‘ﬂ(}( ; 2
dr  Or ar Jz
2 ("}T?qu} E}B‘F‘l (}2 —0. {55)
B\ 0z 0z @ M7z -
Vertical induction equation:
1. B, B ., B, B,
0= : - : +Br'i_vr'(. 1"z‘:.—
r T ar ar ar
B dv, 2 [ OnwmOB. Ony, 0B,
= e —_
Or ~G\ T or or  or 0z (56)

ordz  Or?

2 {edB. 10B, O*°B, 0°B.
+7:-'n1 = T =TT - + -
~B\ T Or r or



Order -

SBI‘"D 82 Brﬂ lrEhri'mﬂl SBPD
ml :ﬂ.
” “(r o T oraz | T Tor o2

giving, with B = 0:

+
r dr Or

(Bzﬂl aBzﬂl
Ur1

v
) + B X

_ l'::h':"nll'i aBzﬂl _ lELBJ“I _ l'E;'j";"nﬂ l91}5‘}1’*[}!
VN As| or Or 0z or Oz

Hmo (aBzD 3_8,-1) aZB 1
+ = Hml

r

ar ar
aBrl’! 4+ l’e':}z-BJ'"l'll
RGN r rd z

With vanishing components of By:

d ( B, )
Hmo +

ar 0z

Hmo aBrl

= ().
r or

ordz

MKK-MHD solutions

(57)

(58)

(59)

(60)

Order €2:

1 3: 2 SB 0
_(T-".ZZBTD — Url le - "-"TZBZD) + Brﬂ - + "-’ZZ—T
r ar ar

aT-"rZ aBzﬂl a?—"r 1 lE;'JB:Z 1
- Bz — tUvp——— | — Bz — t U —/
( “ar Ty ) ( Yar T oy

_ i l"-:)]rirmﬂl aBrZ lE}-le +3T31111 aB}"l
A Aa o \ 0z or or \ 0z

_aBzﬂ 4+ annﬂ r‘:}-Br"ﬂl n jr."'111[') aBrZ _ r‘:}-le {ﬁl)
or ar Oz r dr or
11 aB]‘" aBz 111 aBl"‘ 82 B]"‘
+n ! ! - 0 + T2 ﬂl Thuﬂl 2
r or ar ro dr ordz
+ 0°B,, 3’ B, & B., 9?B.,
j";"1111 ?rr?z ??1112 3?32 ??1110 j 3 j";"1111 arz
which with vanishing components of By becomes:
1 - B.
0= —vB:1 — B.r1— Ou ! - "'--111"2u
r ar ar
. i anmﬂ aBrZ _ ale
-\ ~B| or 0z r
(62)

r or ar dr 0z

111 l,:—)-B‘]"' 'E;'Bz a 111 aBT
+?’? n( 2 1) + 1 1

nnll lE}-Brl azBPZ azBrl aZle
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MKK-MHD solutions

Energy equation:

. 2 2 w2 /2
E4R2522np'ur%? .3R2£!2np'uzé;j; 0020, 3;;
Jua o2 /2
2 ~2 A 2 ~2
FEPUL U —— ar + epiiv, 3~ +e"priuy ar
. . L\ 2]73/2
+[ pﬂlzﬁ'z + 022l } |+ €2 ( ”
: (63)
2,
_ %B- (20, B, + eQrB,)
T

+-ﬁia—i (€20, B2 + €20, B.B, + eQrB,B,)

Vi 2 (BB + B4 OB, B.)

Order ¢:

8 aBzD aB"D
= 03 —(QrB,oB.o) = B B.g—= =0,
LA‘@ (QorBoB:0) v + Dz 92
which, with the first term vanishing by Eq. (16), confirms

the Eq. (27).

Order ¢':
Bpn Brﬂ + aBrﬂl + é}-le + an a-Bg.:l
2y or 0z dz (64)
OB . B .
B, £ B.,—/—& =0.
+ 5o By + 92 0

With Eq. 17, we can write:

B, B, B, B,
Brﬂ(a guﬁ__quﬂ)_'_ana el +lea L :U {65)

ar 2r i)z iz

Order €2:

9
= [rﬂn (BroBo1 + B Boo }}

0 _
+—|vr1 BroBzo + 1 (| BaBoo + BB
0z

E-EDBJFDBQGI +

+B.0Bya ) + 10 BBy | =0,

which with d, B,y = 0 can be recast into:

dr .
—_— [TEED I[BrnB[p[ + Brchpﬂ}}

QBB
080 c,,l—I—aT

d : :
+B.o—- [-uﬂBrn + r(sznﬂw2 + szzgﬁm)} —0,

0z

(66)

(67)

In all three orders in e, with By = 0 with i = (r, @, z) we
obtain identities 0—0, confirming that our assumptions and

results are in agreement with the energy equation.



MKK-MHD solutions

» We list now the solutions. Far away from the star, where we expect a small effect of the magnetic field, solutions in
the simulations should not differ much from the HD solutions. Closer to the star, the magnetic field influence
increases and the change in results will be larger. Higher order terms in the MHD solution may differ from those in
KKOO0.

® Uy = Up = U = () = ¢y = pp = 0, as found in HD
case.

we readily obtain Qy = r—%/2. This solution is valid equally
in the HD and MHD cases.

e By = 0 and also By = 0, with ¢ = (r, p, z). Magnetic
field influences the disk only in the higher orders in a small
parameter e.

e J.B.; = 0, vertical dependence of the leading component
of the magnetic field in the vertical direction is f(r) only.

e Vertical hydrostatic equilibrium condition gives the same
solutions for the lowest order in e for the density (see
Eq. 39), pressure and the sound speed as in the HD solu-
tion. The difference from KKO0 is that now the disk surface
boundary condition is not vacuum, but a corona with the
density peq(r) at the disk interface. The zeroth order profile
of density, pressure, and the sound speed are:

3’2
973 e
po(r,z) = [ﬂ.:'d )+ —=—

Pu(r2) = |20 +

5} 2/3 h? — 22
csolr, z) = \/E [;}Ea (r) + 3 | (68)

Clearly, po(r, h) = peal(r).




MKK-HD and MHD numerical solutions
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MKK- analytical expressions from the numerical solutions

We can write the results in our simulations as simple
functions obtained in KKO00, with coefficients of propor-
tionality we find from our simulations:

ey ., 273/2
e = 1= )] ®

ka i -
o (r2) = =73 [1 n ((._,24}2} , (70)
Z Z N >
va(r,2) = Z0,(r,2) = ka s |14 (G2)°
k - "o k
;1@(;13}:%1 Ez:;_"u: __{?2,
r y e

Magnetic field components are proportional to r =2, as
expected for the dipole stellar field, and depend linearly on

height above the disk midplane:

ks kg kq -
B.(r, z) = F—%ﬂ«: B.(r z) = F—{ﬂc B,(r,z) = r—{g (71)

In the case of B,., the linear dependence is a consequence
of the boundary condition at the disk equatorial plane,
where the magnetic field components are reflected, with the
change in sign of the component tangential to the bound-
ary. This means that the radial magnetic field component
B, — 0 at the equatorial plane, and is slowly increasing
above (and below) that plane, in the densest parts of the

disk. ] = @ {1 ) (@%)Q]z: (72)
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Fig. A.1. Difference between our numerical solutions and ana-
lytical expressions, in percentage of the value in the simulations.
Our analytical solution is mostly inside the 10% margin every-
where inside the thin disk region, below the thick white solid line
demarcating h = 0.1r dependence, where h is the disk height.
Close to the star and aceretion column footpoint, our simula-
tions are in the ideal MHD regime, so the analytical expressions
fail there. It is also failing close to the outer boundary, where
the material is fed into the disk by the amount based on the
analytical solution in purely HD approach.
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ABSTRACT

The purpose of this paper is to explore the steady state and dynamical behavior of thin, axisymmetric, viscous accretion disks. To facilitate an
analytical treatment we replace the energy equation with a general polytropic assumption. The asymptotic expansion of KluZniak & Kita (2000,
Three-dimensional structure of an alpha accretion disk [arXiv:astro-ph/0006266]), which extended the method of Regev (1983, A&A, 126,
146) to a full steady polytropic disk (with n = 3/2), is further developed and implemented for both the steady (for any polytropic index) and
time-dependent problems. The spatial form and temporal behavior of selected dynamical disturbances are studied in detail. It is shown that the
transient dynamics resulting from initial perturbations on the linearly stable steady state gives rise to substantial growth of perturbations. We
identify the initial perturbation space which leads to such transient growth and provide analytical solutions which manifest this behavior three
terms (physical causes) responsible for the appearance of transient dynamics are identified. Two depend explicitly on the viscosity while the
third one is relevant also for inviscid disks. The main conclusion we draw is that transient dynamics and, in particular, significant perturbation
energy amplification occurs in disks on a global scale. We speculate on the possible implications of these findings to accretion disk theory.



Umurhan generalized Yy solutions

Our starting point are the general Navier-Stokes equations

av

po-+p(V-V)V = -VP+pb+ V.0, (1)
a
£+V-(pV):O, 2)

where V is the three dimensional velocity vector, p is the den-
sity, P is the pressure and b is the body force per unit mass.

Also, the disk matter’s self gravity is neglected and therefore
the body force derives from the gravitational potential of a

central accreting object, whose mass is M, say. Thus we have
b = -VO® with

D = __GM (4)

V2 + 72

Regarding the viscosity of the accretion disk flow, we shall as-
sume that the situation 1s such that the viscosity coeflicient is
greatly enhanced relatively to the microscopic one (see above
in the Introduction). We will thus use one of the standard
a-prescriptions (see below). If this effective viscosity enhance-

» Here we shall not assume a steady flow: we
retain the time derivative terms. This will
enable us to analyze the dynamical evolution
of deviations from the steady KK solution. --
we are not to go into this, we were interested
in the steady disk only-so we will take only
the generalization in y

We assume throughout this work that the disk equation of
state is polytropic — both in steady and dynamical states. This
means that we can assume that the pressure and density always
obey the relationship P = P(p) = Kp''*!'/" where n is the
(constant) polytropic index and K is a constant. It follows that
the typical scale of the pressure is P = P(p). Also, we choose

the typical sound speed to be & = +/P/p. The assumption that

Thus the Keplerian angular velocity and the polytropic rela-
tions for the pressure and sound speeds are

= _ M+l/n
= 32 P=p ",
(_,»;_-': —_— :(l +_)_ :(1 +_)pl;’}i (6)

To be consistent with previous works (e.g. KK) we make use
of the non-dimensional sound speed ¢, as the dependent vari-
able instead of the pressure P. Consequently, we replace the
pressure gradient terms in the equations in the following way:
LopP dc?

—_ 7 s
p or ar

1oP  ac

——=n
p 0z 0z

(7)

The standard @ model of Shakura & Sunyaev (1973) is based
on the assumption that the only non vanishing viscous stress
component is o4 and it is proportional to the pressure.
Following KK, we adopt this assumption and derive from it
the form of viscosity coefficient, but include in the dynami-
cal equations all the components of the stress tensor. In lowest
order in € the angular velocity of a disk is Keplerian and we
get (with the dynamic viscosity coeflicient scaled by & H) the
nondimensional relation (see also RG)

2 aP _

1=35 - ®)

2
3

where « is the viscosity parameter.



Umurhan generalized Yy solutions

Here u=v, and V=V,

the equations appear as they do in KK and RG except that

here we allow for
time-dependence (the time unit is 1/Q). Consequently time-
derivatives are included and all the dependant variables are
functions of r,z and ¢ —

Ee—+euUu— +ev— —Q°r=
ot or 0z
2177 eo ( au)
- = 1+€“—,, + =——|n—
re re poz\ oz
L2 dc? LLofdv) 1a (20
_n_ — — — — — — — —
ar  paz\"ar] par\"36z
e |-y 1O (5 0n) O (2RI
pr>  pror dar] pdr\3r Or
aQ  pud(r’Q) 2
Por "2 ar P87 T
o\ L1480 ;00
— =]+ E€== [ = 10
P (”' r')z)+€ 7 or (”’r (')‘r) (10)
0O
ot u()‘r Uo‘z_
2 Nt SR e LA1a( a
— — — —n_ — — — —
73 2 9z 3paz\loz
1[1 o[ ou\ 20 (ndtru) , 1 8 ( v
te—|——|pr—|- === + & ——|pr—|, (11
€ rr')r(nrf)z) 30:,(;» ar ) Eprf)r(nrf')r)’( )
(')_p N E(')(rpu) N d(pv) -0 (12)

at  r Or dz

where the gravitational potential of the central star has been
expanded only up to second order in €.

It has been shown before (see R, KK, RG) that in steady
state the lowest order nonzero components of the meridional
velocities are # and v> and, in addition, the choice Q; = p; =0
(and thus also ¢5; = 0) can be consistently made. Guided by
these results (see also below) we retain in the expansions for €2,
¢2, p and v only even powers of € (in the case of v starting
from v;), while for the u expansions only odd powers are kept,
starting with u,

Q(r,z,0) = Qo(r,2) + € [Qa(r, 2)

+Q4(r,z, 0] + €' [Qy + Q4(r 2, D] + -+ (14)
u(r,z,t) = eluy(r,2) +uy(r,z, 0]

+€ [us(r,2) + Ui (rz.0)| + - (15)
v(r.z,1) = € [v(r.z) + v (rz. 1))

+et [va(ry2) + vy(rz. O] + - (16)

r
Cs(r'! <s f) = L‘E{}(rv Z) + EE lcsz(rv Z) + CEE (r'! Zs f)l
+e* lcfjr(r, 2)+ cy(rz, f)l +

p(r,z,1) = po(r,2) + € [pa(r,2) + pi(r, 2, 1)
+e* [pa(r.2) + pi(r.z, O] + - - -

Time dependence has been introduced into the expansions at O(Ez)

for the functions Q, p, c* and v while it appears at O (&) for u. At all

orders in which time dependence is introduced we split the solutions
up into a sum of a steady solution and a dynamical one, denoted by a
prime, and this is true for all high orders as well. from now and on
all the terms of the dependent variables expansions that are
dependent on time are denoted by a prime, while those without
prime are just space dependent. The time-dependent part is a
perturbation (not necessarily infinitesimal!) on the steady state.



Umurhan generalized Yy solutions

3. Steady state
3.1.0(1)

Neither the techniques nor the qualitative implications of this
section differ from the results of KK. All that is substantively
different is that the steady solutions are here derived in terms
of an arbitrary polytropic index n.

The lowest order equations are straightforwardly solved to
yield solutions quite well-known in the literature (see, e.g.,
Hoshi 1977). These are,

5 ) -7
cs[)(r, 7) = W’ Qp =0 = 32
e |
po(r,z) = \“—,J - (19)
1+ 0

Atz = h(r), LHU po = 0, thus h(r) 1s explicitly determined
when solving the next order steady state equations. For values
of |z = h, cfﬂ,pn and all other associated quantities remain zero.
Additionally the relationships between the sound speed, pres-
sure and density, as well as their vertical gradients, are given by,

B_ S % 250 _ 2 (20)
po 1+ po 0z 0z r

It useful to note that we shall use in the equations to all or-
ders only the zeroth order value of the viscosity coefficient,
that is, will not actually consider it as an expandable function,

but rather as a prescribed function which is based on the zeroth
order of the pressure. Thus

2 5
n=no= nguF*’“. 1)
3.2.0 (62 )
The steady-state equations at the next non-trivial order of € are,
dc’, 372 1 8 ( ou
50) |
- == =20 r + —— |n— 22
o 2rt % r+p{]6' ( 6‘7)’ (22)
. 3l a9 TP’"B@ uj[ A Q) L OQa (23)
rpg Or or re  dr 2o ('}‘ ('Jz
1 o d
0= ——(?’P{)Ml) + aj@{)vz), (24)
37 fj"t“;q 41 9 ('}uz
O==-—-n -
25 dz 3 o 02 (3"
1 {1ad du, 20 [nd(ruy)
—|-= - —— 25
M po | ror (nr 0z ) 30z (r ar (25)

These equations have solutions exhibiting a steady meridional
flow, something which we will formalize below.



Umurhan generalized Y solutions-time dependence

Finally, it is an interesting result that in the expression for
the disk height for arbitrary polytropic index (see Eq. (A.5)) the
disk flares for n > 3/2, namely A(r) ~ ¥ with m > 1.

The form of A(r) given in KK is recovered by substituting
n = 3/2 into the general expressions (see Eq. (A.5)) given in
Appendix A and reads as follows,

h(r) = @A) (Vr= Vi)',
M, T&) (52
a [(5/2) 3#32(11/2)

=i

A (26)

The height of the disk at the fiducial radius r = 1 1s denoted by
h and is

;=

h = (2A)% (1-vr)". (27)

Time dependence: for the dynamical evolution they
allow for time dependence and include in all equations
at successive orders of € and subject them to
appropriate initial conditions.

For the radial boundary conditions, the problems posed
by them are avoided by considering only the portion of
the disk with an inner radius . and an outer radiusr__,

as in the steady-state case in KK disk.

The “surface” of the disk, in the time-dependent case,
is taken to consist of the last fluid parcel which, in a
steady disk, is at z = h(r). This is where the boundary
conditions are imposed.

We are not interested here in this discussion, as we
were interested in steady disks, so we stop here.



Python code for thin disk: Repeating slide 108: MKK- analytical expressions from numerical solutions

Idea here is that I give you some pieces of code which can be useful as a template for work with other models, too.

We will install and run two which I already briefly presented to you during the PLUTO lectures: comparison of analytical and

numerical model and DUSTER code for post-processing.

We can write the results in our simulations as simple
functions obtained in KKO00, with coefficients of propor-
tionality we find from our simulations:

ky L\ 273/2
;‘72 . bl
;T(F'“fjl: 'F'l-"';z |:1+(f323}2:| ’ (Iﬂ}
v (r, z) = %;, (r,z) = JliJ.F ;}.2 [1 + [Q,:,z}z} :
ky U kg
vo(r, z) = F, 0= F—"’ =3

Magnetic field components are proportional to r 2, as
expected for the dipole stellar field, and depend linearly on
height above the disk midplane:

ks ke k -
B.(r, z) = 3 B.(r.z)= —:4 By(r,z) = =z, (71)

=

In the case of B,, the linear dependence is a consequence
of the boundary condition at the disk equatorial plane,
where the magnetic field components are reflected, with the
change in sign of the component tangential to the bound-
ary. This means that the radial magnetic field component
B, — 0 at the equatorial plane, and is slowly increasing
above (and below) that plane, in the densest parts of the
disk. It is catching-up with more dramatic changes only

n(rz) = 22 [1- (@5)2]2: (72)

2
1/2

Heai (75 2) = Konfr [1 N (ng)z]
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Fig. A.1l. Difference between our numerical solutions and ana-
lytical expressions, in percentage of the value in the simulations.
Our analytical solution is mostly inside the 10% margin every-
where inside the thin disk region, below the thick white solid line
demarcating h = (.1r dependence, where h is the disk height.
Close to the star and accretion column footpoint, our simula-
tions are in the ideal MHD regime, so the analytical expressions
fail there. It is also failing close to the outer boundary, where
the material is fed into the disk by the amount based on the
analytical solution in purely HD approach.



MKK- analytical expressions from the numerical solutions

Table 1. The proportionality coefficients in our simulations with

B.=0.5 kG and 1 kG.

B(kG) 0.5 1
coef. R—=6|R=15 R—=6 | R=15
k1ilk1o 0.9 1.210.29
koilkao -0.01 | -0.006 +1.2 x 10~%/—2.9 x 10~?
k3 —265x 107%  —4.4x1073-3.6 x 107°
k4 0.255 0.255
ksilkso  -0.69 | -0.41 -1.25
keilkeo  -0.35 | -0.15 -0.29 | -0.19
kzilkzo  -2.8]-1.1 -8.2|-1.18
ks 5.8 x 1073 8. x 1073
ko 0.01 0.01
C1 J. 5.
G2 0.5 0.5
C8 D. 6.8
G 6. 4.5

Using this table, we can “prescribe” the disk-it will fairly well describe the disk, as we saw in the
previous slide.

*  We could plug in any other disk model and compare with simulations or other computation result
* We write such a script, for comparison of solutions.

* I supply a template in mc_razlikaANnum.py, it can easily be modified. We test it with one of the results
from simulations.



Python tool DUSTER for post-processing of our disk results

Transport of dust grain particles in the
accretion disk

Robert Jaros!, Miljenko Cemeljiéz'g, Wiodek Kluzniak?,
Dejan Vinkovié* and Cezary Turski®

A

Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun, Poland

Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences, Bartycka 18, 00-716 Warsaw, Poland
Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 106, Taiwan

Science and Society Synergy Institute, Bana Josipa Jela&i¢a 22,HR-40000, Cakovec, Croatia

Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland

Entrainment of dust particles in the flow inside and outside of the proto-planetary
disk has implications for the disk evolution and composition of planets. Using
quasi-stationary solutions in our star-disk simulations as a background, we add
dust particles of different radii in post-processing of the results, using our Python
tool DUSTER. The distribution and motion of particles in the disk is followed in
the cases with and without the backflow in the disk. We also compare the results
with and without the radiation pressure included in the computation.



Python tool DUSTER for post-processing of our disk results

used as input density and velocity for DUSTER code computation. Equation of

motion solved by DUSTER is (Vinkovi¢, 2009, 2012):

ln'ir* s P gas

F= -G

r3 Pgr

We use the DUSTER tool to follow
the dust under predefined forces. It is
completely Newtonian, deterministic
task, since we have all the needed
data from simulation or numerical
model.

« DUSTER can be used as a template
for adding other forces, or modifying
the existing equations.

7 — == E(T — Ugas) + BG

M,
w2

(1)

t=912.50 days

Fig. 1: Particles and their trajectories in a case without backflow in the disk (top panel)
and with backflow in the disk (bottom panel). Radiation pressure is included in both cases,
with a fully transparent disk. Paths of particles which melted after approaching the star to
the critical distance of 4.5 stellar radii were erased, shown are only particles pushed away
from the star, or those which remained inside the disk.

t=912.50 days t=912.50 days
100 10.0
[ ! = 5
£ 15 = 75
(=" i1 By
S50l | = 50
Z ] ‘ 2
£ 25 | _ AL E 25
Z | '\ / y \ \ Z . \
0.0y 5 0 is 20 35 005 5 10 5 70 %5
R, R

Fig. 2: The number of particles at different distances from the star. In the left panel
is shown a case without backflow and in the right panel a case with backflow. Colors
correspond to the particles in Fig. 1, with white particles shown in black color line.



Summary of the Part III

-Height-averaged solutions: Urpin (1984)
-Regev (1983) solution

- Kluzniak-Kita global solution for thin HD disk and its magnetic
generalization

- Umurhan (2006) generalized Yy solutions

- Python code for thin disk model
- Python tool DUSTER



Lectures summary & Concluding remarks

In 9 lectures, we went through a story of thin accretion disk.

- From spherical (Bondi) accretion, we went to
- accretion disk with viscosity.
We run a python code for Bondi accretion

Next we set the stage for steady disk solutions, with

- perturbative solutions,

- Shakura-Sunyaev solutions

We initialized the Python code for Shakura-Sunyaev disk

In the last block, we detailed general solutions for a thin disk:

- Urpin’s and Regev’s solutions as precursors, and then to

- Kluzniak-Kita 3D global solution for thin disk, with its magnetic generalization
We used those solutions in the Python code for thin disk and a tool DUSTER.

Miljenko Cemelji¢, Thin accretion disk, Feb & March 2022, Silesian University, Opava



Thank you and let the Disk be
. with you!

Miljenko Cemeljié, Thin accretion disk, Feb & March 2022, Silesian University, Opava
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