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» Astrophysical media stretch use of codes:
multicomponent, large gradients, viscosity,
resistivity, chemistry included

* Few exact solutions, numerical solutions
dependent on: numerical approximations,
choice of I1.c. and b.c. (initial conditions and
boundary conditions)
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e Observations, more |
and more detailed,
on various scales,
put severe
constraints to
models and -

. . Jets from Young Stars
S muI ations. et i 1 Rorsk SRR ek

 M-87, black hole
powered et of
el ectrons and sub-
atomic particles
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Global B-field Current

 Laboratory
.
experiments also
.
Illustrate how
unusual, compared
d Upon arrival at the axis. the kinetic energy is transformed to thermal energy resulting in a plasma of very high
to a/a‘y W temperature (~lkeV) and density t~]x]l]2ui0nsf’cn13), The X-ray production in such plasmas is enormous,
experiments at Sandia National Laboratory produce ~2ZMJ of X-rays with peak powers of ~290 TW. These
1 X-ray pulses are used to energise hohlraums both for inertial confinement fusion experiments and as a testbed
exwrl mce, for experiments investigating the opacity of stellar material, the instabiiltiies of exploding supernovae and the
h . al equation of state of strongly coupled plasmas.
plasmas are.

e Here Z-pinch wire
array, most
powerful lab X-ray
source.

Figure 1. Soft x-ray image of a laboratory jet interacting with an Argon gas background and forming a
bow shock.
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 PRECISE
observations, and
more precise to
come

e HST: HH30
observations
1995-2000
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 \What we can

simulate today?

 New codes, more
powerful machines,
we do our best!

 Machines versus
codes:
-faster machines, full
3D, larger comp.
boxes
-new numerica
methods, “ brutal
force” in computing
AND innovations
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SuperHiperMegaGiga
computer (“D
Thought” ref.:Douglas
Adams“The
Hitchhiker's Guide to
the Galaxy”) or shared
computing (your

Stellar Disk a dJ M HH30 HST - WFPC2
NASA

PRC95-24b - 5T S¢l OPO

work/home desktop? S
Laptop?) / Bl /
dedicated linux = —
cluster
Grid technology
(smilar to SETI

|dea)



Software 1

Codes part 1

ZEUS (ZEUS3D) [LCA, NCSA David Clarke,
Michael Norman, Robert Fiedler] MHD 3D +
Molecular

3DAthena-NASA [Stephen 0'Sullivan] MHD 3D
AMRAthena (Zeus Team) [Tom Gardiner] MHD 3D
AMRVAC [Rony Keppens] MHD 3D

AMRAstroBear [Adam Frank + Peguy Varnieres]
3DMHD SPH [E. Gouveia del Pino]

AMR [Andrew Lim]

Nirvana [Udo Ziegler]

TD code [Turlough Downes]

Hydra [Turlough Downes, Stephen O0'Sullivan]
Multi-Fluid MHD code

Flash [Chicago]




Software 2

Codes part 2

Gorgon (Resistive MHD, on a fixed 3D eulerian
grid,2 Temp + Q, LTE<Z> +Px), 2nd order hydro

Yguazu [Dublin, Raga + De Collel]

HyRas 3D hydro rad, cart/cyl/sph. euler,
implicit solver

RAMSES, AMR HD multi-material gravity chemistry
(CEA) (AMR + hydro + multi-Z EO0OS+ Chemistry)

Astrolabe 1D Radiative, multi-fluid, chemistry,
gravity (CEA) (1D, hydro.rad, ALE multi-fluid (2
specles and 2 temp.)

MULTI at Obspm

HR, 1 to 3D Eulerian cartesian (can be
cylindrical or spheric),

grey (Rosseland) eulerian, implicit solver for
R-T, gray with moments

Belenos (Sebastien Leygnac) 3D stationary
Radiative Transfer (Exact 3D solution of
radiative transfer equation DIAS-Cosmogrid




| ntroduction-Numerical solutions

o Set of equations

p (density)
pu (Momentum)

pe (energy)
B (magnetic field)
p (pressure)Numerical schemes (discretizations)

Numerical schemes differ in addressing the contact
and shock discontinuities in the flow

overall accuracy depends on the way these problems
are solved

finite differences, finite volume and finite elements
method



| ntroduction-Finite differences method

Use of neighbouring points:
approximation of the derivative of an
unknown quantity U at a grid point by the
ratio of the difference in U at two adjacent
points to the distance between the grid
points.

mostly on regular mesh



| ntroduction-Finite volume method

The variables are approximated by their
average values in each volume, and the
changes through the surfaces of each
volume are approximated as a function of
the variables in neighbouring volumes.

on both regular and irregular mesh



| ntroduction-Finite el ements method

Also splits up the spaces into small pieces
(called elements) as In finite volume

method. But now a grid point exchanges
the information with all the other grid

points with which it shares an element.
no advantage of regular mesh

All this possible in AMR (adaptive
mesh refinement) approach



JETSET collaboration tests

 Marie Curie RTN (Research and Training
Network)

e December 2006, Dublin, initial workshop
o January 2007, final list of tests

« Up to end of 2007, webpage with posted
tests and conditions for passing it



Test suites

o Example of “test suite’: problems which test a code
thoroughly, all of the terms in equations. Each problem
tests different MHD phenomenon, e.g. Stone et al. (1992).

« 1)Eulerian advection: tests advection of magnetic fluid

 2)MHD Riemann problem:propagation of nonlinear
compressive waves (shocks) and contact discontinuities

« 3)propagation of Alfven waves. propagation of
noncompressive transverse waves

e 4)1.5D evolution of a stationary flow: overall dynamics

o 5)fully 2.5D dynamical problem with shocks: overall
dynamics



Test suites: Eulerian advection

Advection of a sguare pulse of transverse mag. field originally
50 zones wide a distance of 5 times its width. Donor cell, van
Leer and PPA interpolation methods. Analytic locations of field
discontinuity are at 0.4 and 0.6
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Test suites: Eulerian advection

Current density for the square field pulse
computations. Analytic

solution is delta function at x=0.4. PPA,
van Leer and donor cell

give increasingly broader solutions.

Error for advection test, as a function of
gpatial location x. PPA, van Leer and
donor cell give increasingly larger error.

Carrznl




Test suites: MHD Riemann problem-shock capturing methods

Classical
linear numerical dissipation terms
the same dissipation at all grid points
for smooth and weak-shock solutions
symmetric or central discretization
no info used about wave propagation

and modern method
non-linear numerical dissipation
feedback for adjusting of dissipation
every cell ad] usted Fia. 2. Eremples of numerical discretizations
based on “upwind differences’ (PDEs solutions dependent
on velocity sign)

| nter medi ate method

linear numerical dissipation terms, non-linear switch
functions

analiical selulivn First-vrder M ethoed

Second-Order Method Shuck-Capturing Methud



Test suites: MHD Riemann problem

In HD-the ssimplest initial value *~ P ,

oroblem B .
discontinuous data S S
two separated constant states * x
breakup of discontinuity i{; © @1 ©
two types of waves: B E— =
shocks and rarefactions R
contact discontinuity hoad D e shok
(moving) .




Test suites: MHD Riemann problem-Godunov type schemes
Godunov (1959) exact Riemann
solver

-solving of a separate Riemann <\ /

problems \7 A / N

-solving at each cell boundary |
Three steps (U=1,v,e):

reconstruction of pU(x) from f
cell pU-es

solving of Riemann problems
for At

computing the fluxes across
cell boundaries and averaging
of pU(X)-es to obtain pU-
es

Useful method, but in original
formtoo diffusive




Test suites: Riemann problem-Riemann solvers

What is usually used is combination of Godunov's concept with high-order
reconstruction (solution averaging):

Van Leer (1979): MUSCL (Monotone Upwind Schemes for
Scalar Conservation Laws)-linear reconstruction:
approximation of piecewise-linear Riemann problems by
piecewise-constant Riemann problems including slope-
limiter, solution of the Lagrange equations and Eulerian
remapping.

Colella& Woodward (1984): PPM (Piecewise Parabolic
Method): piecewise parabolic reconstruction via primitive
functions, contact steepening.

Approximate (linearized) Riemann solvers may serve as well
In splitting the flow into waves with different characteristic
velocities and upwind directions.



Test suites: MHD Riemann problem-alternatives

(Approximate) Riemann solvers account for upwinding and shock
capturing but:

Involved computations, costly in CPU time
Alternatives-ssmpler-make use of:

von Neumann-Richtmyer viscosity

Runge-Kutta steps

operator-splitting of advection and pressure terms
Other Riemann solver's:

Approximate Riemann Solver of Roe (1981)-solves exactly a
linearised problem (by an algorithm by Roe), instead of
looking for an iterative solution of the exact original Riemann
problem

Harten-Lax-van Leer-Einfeldt (or HLLE) scheme (1988)-the
energy of aflow is highly kinetic



Test suites: MHD Riemann problem

1D fully dynamical problem. Typeof it is
often referred “ shock tube problem”, Sod
(1978), which is “standard” test in HD. In
MHD: Brio & Wu (1988) magnetic
Riemann problem, demonstrates
nonconvexity of the MHD egs.
It tests the ability of num.
scheme tosolve shocks,
rarefactions and waves in

MHD flows.

Here is pressure profile,
magnetic field issimilar.




Test suites. Propagation of Alfven waves

These waves are unigue to MHD. I 7 Y @ ]
As atest: comparison with analytical } .
solutions for the magnetic braking of an | '
aligned rotator (Mouschovias & &

Pal eologou, 1980) * -{!

Physically: time evolution of arotating cylinder e i
of dense gas, embedded in a homogeneous % e e ales
ambient medium and threaded by a uniform axial ’

magnetic field. The shear at the disk surface E T T
generates A. waves which propagate along the
meg. field lines into the amb. medium 1,

(accelerating it) and disk (decelerating it). ‘%
Rotational velocity v ¢ and B_¢ are compared Tawp X ~
with analytical solution.

'
r - =
T
-0




Test suites: 1.5D evolution of stationary flow

Steady 1D magnetized wind solution; \Weber
& Davis (1967) [assumes B_p geometry
purely radial]. 2D solutions by Sakurai

(1985).
Solution can be exploited
multiple ways.

1)set complete analytical solution

in the grid and compare
evolution of it with the

initial state=direct measure

of the truncation error.

Single timestep is enough!
Also, setup of inflow b.c.

and its evolution to stationary
state, and then comparison with
analytical solution, is possible.

-
13- &
1

lllll




Test suites: 2.5D evolution of flow with shocks

Solar coronal transients (Low, 1984) - °
-violent expulsion of hot magnetized
bubble into a spherically symmetric
nonmagnetic ambient.

Run of analytic (time dependent)
solution is set, and evolution followed. | wd
Direct comparison is used to compute T

errors. These are then showed, and | T
analyzed.

Top panel are density isocontours
(solid) and poloidal mag. field lines
(dashed), bottom panel are isocontours |
of B_¢. Times shown are 0.874,1,75 | I'a
and 2.62 x10"4 sec.




Test suites: 2.5D evolution of flow with shocks

Error analysis. Relative errorsin
the density (0.98%), radial
velocity (0.98%), radial magnetic
field (2.6%) and toroidal
magnetic field (2.1%).




JETSET tests

* Advection of acurrent-carrying cylinder

e Orszag-Tang Vortex

« MHD Keévin-Helmholtz Instability

o Under-expanded Jet

e Double Mach Reflection of a Strong Shock
e Oscillatory Instability of Radiative Shocks
« -Magnetic Blast Wave propagation

e -Cloud-Shock Interaction

 Magnetic diffusion



Advection of a current-carrying

cylinder
 introduced by deVore 1991, tests
divB=0
o 2D, cartesian, (x,y)=(200,100)pts
* Initial setup: i md st A g

e Evauation:
-exact solution known
-Images




Advection ...

. . Y, | o ; Fipare 3 Density enrerent J at the initial (lower panel} and Goal (apper
Figure 2 Magnetic pressure at the initial {lower pavel) and linal {(upper ot : \ b WU

g panel} time
panel) time !



2D compressible MHD vortex of

Orszag & Tang

— by O&T 1979, test if code can
handle shocks In two
dimensions, also divB=0 test.

— Initial conditionsvary in
literature, here we Set:

— no analytical solution,
gualitative comparison of 2D
plots and 1D cuts of density,
vorticity (rot v) , compressibility
(div v), divB, temperature,
thermal and magnetic pressure,
with other solutions. Different
divB=0 schemes produce
dightly different results.
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Orszag & Tang




Orszag & Tang




MHD Kevin-Helmholtz
instability

— based on Miura & Pritchett
(1982) results, introduced by

KeppenS et al. (1999), test ty, = 0.5 - M - tanh{y fa)
verifies the general behavior of

p=1 p=1/n

B

L

&

KH instability in a magnetized oy = 0.01 - sin(2rz) - f~_;,-p(i)'

plasma, and checks if code can
reproduce correctly the linear
phase of instability.

— Initial conditions. Bx=Bo,
By=0, take care of b.c., take c:
about “outflow” b.c.

— Evaluation: N D R

-growth rates -
=
. are the saturation level E Max and the corresponding time ¢ Max. The growth rate of the
ger]aal ber]a/l Or instability is obtained from the linear ft in the interval [0.25t Max, (.4t Max], represented
w the dashed line.

InE_y
1

Fi&,ul't' 1: Logarithmic plot of the total kinetic energy along the v direction. Also shown



Evoation of E_kin y—dimction
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Flg‘l.‘lm 2 Tatal energy evalution nthe case of Alfeén Mach number = 1.

Evgplition of E_kim y—direction

Figure 3 Total energy evalrtion in the case of Alfen Mach mmmber = 3.

Evolution of E_kin y—direction
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Figure 4: Tatal evihution in the al Alfivén Mach number = 1
R Aot - == I Figite 0 Totl gy ovohton i the e of Atvée Mk e = 10, wing
eight waves method for the divergence of B.
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Fl;,guraﬁ: Tatal energy evohilion in the case of Alhen Mach number = 4.
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Figure 7: Left. Velocity along x direction in the case of Alfvén Mach numlbser
= 11), at the end of the simulation: cut slong a vertical line x=0.5. Eight
waves method was used to treat divergence of B. Right. Saime ss the Left

image, but using FluxCT methad.
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Firure 5: Left. Velocity along x direction in the case of Alfvén Mach munber
= 1{), at the end of the simulation. Eight waves method was used to treat
divergence of B. Right. Sane as the Left image, but using FluxCT method



Under-expanded |et

— Mignone, 2007; comparison

with laboratory
experiment

—Injecting gasatp O
through a nozzle
Into chamber
under low
pressurep c

(shock!)
— empirical
expression:

=134 T*E, (1)

with r* the effective sonic nozzle radius. Furthermore, Knuth (1964) obtained
for the Mach number My, on the jet axis the following empirical expression:

My % (22) [T(T - 1)] —F (%) N (%)H . (2)

We have carried out 2D numerical simulations in cylindrical coordinates on
a uniform grid r € [0,40), z € [0, 80] with 20 zones per beam radius. The grid
has been further extended in both directions (up to r = 80 and z = 160) by
adding a second patch of geometrically stretched zones (100 and 200 zones in
r and z, respectively) in order to avoid spurious reflections at the boundaries.
Free outflow is set at the outer boundaries and reflective conditions are imposed
on the axis r = () and for r > 1 at 2 = 0. Considering the actual nozzle as the
injection zone at z = 0, r < 1, we have obtained the values of the pressure p*
and density p* by employing the isentropic laws for a perfect gas (Shames 1983)
for a converging nozzle with stagnation pressure py and density py:

W 2 rg{ L 2 1-1_[
P—Pu(r—_l_l) ;P —Pﬂ(r—_l_l) , (3)



Under-expanded |et

AUSM+ /Lin/M—H

HLL /CENO3/RK3

20 40 60

Figure 1: Density logarithms for the under-expanded jet at ¢ = 240, for the linear Muscl-
Haneock CTU with the AUSM+ solver (top) and the RK3 with HLL solver and third-order
CENO interpolation (bottom]).



AUSM+ /Lin/M—H

Figure 2: Axial Mach numbers plotted at ¢ = 60,120,230 (for Muscl Hancock) and at
L= 60,120, 245 (for RK3) using dotied, dashed and dash-dotted lines, respectively. Because
of the small-amplitude ceeillations around the equilibrium position, the last time I8 not the
same. The solid line gives the empirical relation (2) for 0 < # < zm where 2 is given by Eq.
1)




Double Mach reflection of a
strong shock

— Woodward & Colella(1984),
test for reflection  'mmms— i —i— i
of aplanar shock
under an angle
with a re
wall.

a9 0.5 i9 15 0 25 0.9 a5 ig 15 20 5

Figure 1: Density maps for the double Mach reflection test at # = 0.2, Each panel shows
results obtained with the different combinations of schemes listed in table 1. The mesh size
(1/Ar = 1/Ay = 480) and Courant number {7, = (.8) are the same for all cases. For the
sake of clarity only the region [0, 3] x [0, 1] is shown.



Oscillatory instability in radiative
— %%Qe, 05; steady state

solution used asinitial condition,
and boundary-induced
oscillations perturb the shock.
Test for the energy budget of the
system-reproducing the expected .. . | L |
oscillations of the shock. S i e

— 1D cartesian grid, HD equations
+cooling. Nontrivial post-shock
state. Also some compromisesin
the setup, for simplicity.

— Evaluation: 1)position of the R .
shock, 2)pOwer SPECtrUM OF te ot e oin e i e
shock with peak at fundamental i = i s S S
mode




Oscillatory instability...
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Figure 5: Left: Normalised power spectrum of the time series of the shock position from
a stmulation with a resolution of 1600z, and with normal reflective boundary conditions
Right:  The power spectrum for a simulation with a fized condition for the flow variables
at the wall. In both cases the fundamental (w = 0.305) and first (w = 0.889) modes are
indicated by the dashed lines



Magnetic diffusion test

Disk as a boundary condition
— ldeal MHD, Ouyed & Pudritz,
1997
Time-dependent resistive

MHD simulations-ZEUS347,
open field threading the disk,

Fendt & Ceméljic, 2002
Test setup:
ZxR=(500x200)grid
cells=(80x20)R |

Slower propagation of
resistive jet




Equations of resistive MHD

P B



With polytropic approximation

= T

15 F

» Result: Slower propagation of resistive jet

o But: Irreversible processes forbidden in polytropic approach = shock
forming prevented



Energy equation solved

E[] I I LY | I I:
15 Pl
K10 =4
Kb -
I:I ] ] | || I:

VR
3R T=50

Slower propagation of resistive jet

Caveat: some features might be boundary-condition dependent
RESULTS:

1) Threshold of numerical resistivity n=0.001

2) Difference in the jet front shock position: AZ=2.5 Z/R_|






Physics or “art”




Prospects

Webpage with the test setups and descriptions
Test results
 |Information about results obtained by each code

» Referees of the papers on new codes demand the
particular tests to be performed




