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Introduction to reconnection
-The first mentioning of reconnection: in the solar physics context by Giovanelli (1946).
He considered chromospheric solar flares as a phenomenon arising from a slow build-up
of energy stored in the magnetic field, which 1s then suddenly released into thermal and
kinetic energy. There is still no definitive description, but there are (too) many
developments (=papers).

What is re-connecting?

Magnetic field lines, when they have time to do it before the fluid moves them away
from each other. In the ideal MHD approximation, the Reynolds magnetic number
Rm=VL/n >>1, there 1s no reconnection, magnetic field is “frozen in” in the fluid.
[note: the Lundquist number RL=S is equal to Rm with V=V Alfven]. But, what happens
when the lines are twisted? Does the topology of the lines change? Our understanding
of the cosmic magnetic field depends on the answer, €.g. contemporary dynamo theories
rely on the positive answer. Further discussion 1s based on this assumption.



“Classical” reconnection

-Sweet-Parker (1958,1957): Reconnection rate in the two-dimensional case can be
estimated in the different ways, depending on the dominating
physical properties in the system. The first such estimate was
given by Parker,'*'® with the Alfvén Mach number
Mgsp = V;/Va = S~Y2, The Lundquist number S = Tojm/

larger length L=>slower reconnection, Vrec=(Va 1)/L)"72
-too slow to describe observations =Va/NS
-obtained in simulations (Biskamp et al.).

L

— — Tady = LVa /1 is the ratio of the advective over the resistive
term in the Eq. (3). In an astrophysical case, the length scale
B, vo Yo B, 1s so large that the obtained reconnection rate is way too
+ B, + small, when compared to the observed reconnection events

- on the Sun or in the Earth’s magnetosphere.

Y Vs e \ U, 0 . 17

- To improve the model, Petschek™’ assumed that the
+ B, + \ plasma can also be accelerated by slow shocks. Then, the
i o v reconnection rate is Mp = 7/(81nS). For the current sheet in
Figure 26: The Sweet-Parker magnetic reconnection scenario. a small region, the Petschek model gives orders of magni-

tude faster reconnection than the Sweet-Parker model, up to
0.1. The reason is that in the Petschek model the reconnec-
tion rate 1s not strongly dependent on the Lundquist number.
For the current sheet extending to the whole reconnection
area, both models give the same reconnection rate.

The reconnection rate can also be estimated from the
turbulent motions.'” For the case of only Ohmic resistivity,
we can estimate the distance to which a magnetic field can
diffuse in time tp as £ ~ (ntp)"/*. This means that two lines
can merge only if their distance is of the order of A = £/+/S.
In combination with mass conservation, one obtains the
reconnection rate Msp.

(from Cemelji¢ & Huang, 2014; sp An
Eq.31s inductioneq. ar  * * (V “B- T’”) =0
We confirmed that in 3D, reconnection rate increases by a factor v2).

-Petschek (1964): Vrec=Va/In(S)

shorter length L ~ d =>faster reconnection
-controversial; never obtained in simulations without
enhanced resistivity.

Figure 27: The Petschek magnetic reconnection scenario.



Spitzer resistivity

apitzer” showed that to obtam an accurate theoretical
value of classical resistvity two effects have to be taken mto
account. Frrst of all, the electron disinbution funchon gets
distorted from a simple shifted Maxwelhan because electrons
with larger velocites experience fewer collsions with 1ons,
as the Coulomb collision frequency 1s inversely proporiional
to the third power of velocity (v~ 1/v7), and are thus ac-
celerated more. Secondly, electron-electron collisions pro-
vide friction drag on the high velocity taul of the distributon
functon, leading to its Maxwelhzabon. After meorporating
these effects, the resistivity my along the magnetic field or in
the unmagnetzed plasma can be represented m the form:>

(1)

where T, 15 the electron temperature, £ 15 the effective
ionic charge, In ﬁ:]n[]’f‘rzh'm?ﬂjnm} is the Coulomb loga-
rithm, and F(Z_4) is approximated by:

1 +1.198Z7 + 0.22272

= - 2
F(z) 1 +2.966Z + 0.75372 (2)
Thus, m the important case of Z. equal to 1,
In A
qs'"“ Ohm ¥ m]=0.53 % 1cr" 3

Smce binary colhsions leading to a large angle scattermg are
neglected in the Sprzer calculation, the final result has the
uncertainty of 1/In A.*

The man assumptions of the unmagnetized Sptzer cal-
culation are the following: (1) steady-state, (2) energy gained
by an electron due to acceleration in the electric field be-
tween colhsions 15 neghgible compared to the electron ther-
mal energy (eEhy,<= kT), which means that the electron dis-
tmbution  function does pot strongly deviate from
Maxwellian, and (3) plasma is completely ionized, so colli-
sions with neutrals are neghgible.

Spitzer also demonstrated that for the case when a strong
uniform magnetic field (p, <A ) is applied perpendicular to
the direction of electric field and plasma current, the cross-
field or ransverse resistivity 15 approximately twice as large
as the parallel resistivity for Zg=1:

= 1.96 X g2, (4)

For larger Z, 4 the ratio #, / 7 increases (see Table 1 of Ref.



Turbulent reconnection

-Both Sweet-Parker and Petchek models use the normal, Spitzer resistivity and result in reconnection rates much below
what is observed. In the actual solar flare or other astronomical case, the resistivity could be greatly enhanced, leading to
a much faster energy release.

We can divide schemes for fast reconnection into those that a) alter the microscopic resistivity, broadening the current
sheet by some physical process, and b) those that change global geometry of the model, reducing the boundary layer
length Lx (the 1* example being Petchek’s model). In a mixed approach, Lazarian & Vishniac (1999) introduced the
concept of turbulent reconnection.
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ABSTRACT

We examine the effect of weak, small-scale magnetic field structure on the rate of reconnection in a
strongly magnetized plasma. This affects the rate of reconnection by reducing the transverse scale for
reconnection flows and by allowing many independent flux reconnection events to occur simultaneously.
Allowing only for the first effect and using Goldreich & Sridhar’s model of strong turbulence in a
magnetized plasma with negligible intermittency, we find a lower limit for the reconnection speed
~V, R > #**, where V, is the Alfvén speed, #, is the Lundquist number, and .# is the large-scale
magnetic Mach number of the turbulence. We derive an upper limit of ~ ¥V, .#? by invoking both effects.
We argue that generic reconnection in turbulent plasmas will normally occur at close to this upper limit.
The fraction of magnetic energy that goes directly into electron heating scales as %; %/° .#%°, and the
thickness of the current sheet scales as 2 ¥/° .# 2. A significant fraction of the magnetic energy goes
into high-frequency Alfvén waves. The angle between adjacent field lines on the same side of the recon-
nection layer is ~2; > .#°> on the scale of the current sheet thickness. We claim that the qualitative
sense of these conclusions, that reconnection is fast even though current sheets are narrow, is almost
independent of the local physics of reconnection and the nature of the turbulent cascade. As the conse-
quence of this the Galactic and solar dynamos are generically fast, i.e., do not depend on the plasma
resistivity.

Subject headings: galaxies: magnetic fields — MHD



Turbulent reconnection

-The geometry of the model is changed in LV99- turbulence sets the scale:

b) . A -

i }LL/R—\_/—/_/—\_\\\

FiG. 2—{a) Structure of the reconnection region when the field is turb-
ulent. Local reconnection events happen on the small-scale 4 rather than
L_ and this accelerates reconnection. The plasma is redistributed along the
field lines in a layer of thickness {y*>'/?, which is much thicker than the
region ~A, from which the ejection of the magnetic field takes place.
(b) Local structure of magnetic field lines.

In the presence of a stochastic field component, magnetic
reconnection dissipates field lines not over their entire
length ~L, but only over a scale 4, < L, (see Fig. 2b),
which is the scale over which the magnetic field line deviates
from its original direction by the thickness of the Ohmic
diffusion layer A1 ~ 1/V,.. 1ocar- If the angle ¢ of field devi-
ation does not depend on the scale, the local reconnection
velocity would be ~ V, ¢ and would not depend on resis-
tivity. We claim in § 3 that ¢ does depend on scale. There-
fore, the local reconnection rate V., .., 18 given by the
usual Sweet-Parker formulae but with 4, instead of L,,
Vieo,tocat = Va(Va 4 /m)~ V2. It is obvious fmm Figure 2a that
~ L,/ magnetlc field lines will undergo reconnection
simultaneously (compared with a one-by-one line reconnec-
tion process for the Sweet-Parker scheme). Therefore, the
overall reconnection rate may be as large as V. global ~
VA(L/A XVaAy/m)~ "2, which means that the reconnection
efficiency critically depends on the value of A,. More
realistically, we will find that there are other gln al con-
straints that end up determining the actual global reconnec-
tion speed.

The relevant values of A; and {y?>'/? depend critically
on the magnetic field statistics. Therefore, in the next
section we will briefly explore the expected properties of

magnetic turbulence.



Magnetic turbulence

-First simple model of incompressible MHD turbulence was proposed independently by
Iroshnikov (1963) and Kraichnan (1965) based on the interactions of triads of waves.

Triads of waves:

-A good explanation of the principal of nonlinear wave-wave interactions is provided by
Holthuijsen[ref.14 in Simon P. Neill, M. Reza Hashemi, “Fundamentals of Ocean Renewable Energy”,
2018]: Two wave paddles, generating waves of different frequencies and directions, are placed in two
corners along one side of a tank of constant water depth. The resulting waves create a diamond
pattern of crests and troughs, which has its own wave length, speed, and direction. This diamond
pattern would interact with a third-wave component, if this third wave had the same wave
length, speed, and direction as the diamond pattern. This is the triad wave-wave interaction,
which redistributes wave energy within the spectrum due to resonance. Although each of the
individual wave components can gain or lose energy, the sum of the energy at each point in the
tank would remain constant. In deep water, it is not possible to meet these resonant conditions
(i.e. matching of wave speed, length, and direction), and so triad wave-wave interactions cannot
occur in deep water. However, in deep water it is possible for a pair of wave components to
interact with another pair of wave components in a quadruplet wave-wave interaction.

Quadruplets transfer wave energy in deep water from the peak frequency to lower frequencies,
whereas triads transfer energy from lower to higher frequencies, and transform single-peaked
spectra into multiple-peaked spectra as they approach the shore. Both are included as source
terms in third-generation wave models, and it is noted that both are computationally expensive.
Triads, in particular, are often omitted in wave model simulations, whereas quadruplets are often
included.



Magnetic turbulence

Sridhar & Goldreich (1995, 1995,1997) criticized Iroshnikov-Kraichnan, in which
they obtained the energy transfer rate as:

(kvy)? A1

a
Wy

_1~
nl ~~

where k is the magnitude of a wavevector, v, is the rms fluid velocity contributed from power on the scale k™, w, = k V, is
the Alfvén wave frequency, k| is the wavevector component parallel to the magnetic field direction, and V, is the Alfvén
velocity. In the original picture the power was assumed to spread isotropically in wavevector space. As long as v, < V, this

arguing that the diffusion of power toward larger values of k|| is strongly suppressed.

This claim, that three wave interactions are completely suppressed has been strongly
criticized (Montgomery & Matthaeus 1995 ; Ng & Bhattacharjee 1996), but in
Goldreich & Sridhar (1997) it was shown convincingly that the effect of residual three
wave couplings is consistent with a picture in which the basic nonlinear timescale 1s set
by equation (A1), but with an anisotropic spectrum in which virtually all of the transfer

of power between modes moves energy toward larger KL while leaving kjj unchanged.

They proposed calling this regime “intermediate turbulence” since while the
nonlinear decay rate is identical to the usual expression for weak turbulence among
dispersive waves, in this case the higher order mode couplings are all comparably
important. Lazarian and Vishniac approach is based on this model.



Magnetic turbulence

If we invoke the constancy of the local energy through the cascade as a function of scale, then
from equation (Al) we see that in this regime

v, oc k71?2, (A2)

where we have assumed thatk, > k.
As the power cascades to larger values of k, the magnetic field becomes progressively less important in the mode dynamics.
Eventually we have

ky Vi < kv, - (A3)

In this limit the motions are no longer wavelike, the magnetic field exerts only a weak influence on the dynamics, and the fluid
motions resemble ordinary hydrodynamical turbulence with a nonlinear timescale ~ kuv,. Since k| is no longer privileged, the
cascade of power is in the direction of increasing isotropy. Since k; > k| this implies an increase in k.

If energy is injected on some scale /, with v, < V,, then we expect the cascade to transfer energy to larger k, until the
condition expressed in equation (A3) is satisfied. At this point the turbulence is no longer wavelike (since ;' ~ k; V).
However, since turbulence tends toward isotropy when the magnetic field is completely negligible, we expect k|, and k; to
increase in tandem so that equation (A3) is just marginally satisfied. This is the regime of strong turbulence described in GS95.
At all smaller parallel wavelengths fluid motions bend magnetic field lines easily. Consequently, we expect most of the power
in energy spectrum to be centered around wavenumbers such that

ky ~ky % (Ad)

We approximate the energy transfer rate for the turbulent cascade, &, for v, < V, as

oy

& ~——
v,

(AS)

if v, < V, on the scale I. The usual hydrodynamic choice & ~ (v}/]) is valid otherwise, although not relevant for our present
discussion. When the magnetic field is weak and the largest scales in the turbulent cascade are essentially hydrodynamic then
we can identify I with the scale of equipartition so that v7 ~ V3.

This kind of hand-waving arguments are extensively used, but LV99 claim and show, using different
models that: “the qualitative nature of our results, that a weak stochastic component to the field structure
can have a dramatic effect on reconnection rates, is not sensitive to the details of the model we adopt™.



Magnetic turbulence, equations

If energy is injected on some scale [, with v, < V,, then 2 2
GS95 pre%ibirct thajt e ™ ~ S , (4)
43 dx j.”
ky ~ 17k, I}Zﬁ(%) ’ (1)  where 4! =k, k is the parallel wavevector chosen so
A that the corresponding vertical wavelength, k,(k,), is
~{y*>1? and x is the distance along an axis parallel to the
-1 U (k l)m( v )” 3 ) mean magnetic field. Therefore, using equation (1) one gets
nl I 1 VA » d<y2> N I(<y2>)2f3(ﬂ)4f3 (5)
while the rms fluid velocity is given by dx 2 A ’
~ ok -3 2t 13 3y Where we have substituted < y*> 12 for k, . This expression
o~ ok, ]) A ‘ 3) for the diffusion coefficient will only apply when y is small

enough for us to use the strong turbulence scaling relations,
or in other words when {y*> < I*(v,/V,)*. Larger bundles
will diffuse at a maximum rate of l(v,/V,)*. For small {y*)
equation (5) implies that a given field line will wander per-
pendicular to the mean field line direction by an average

amount
3 3fn2 2
o =807 (1) ©

in a distance x. The fact that the rms perpendicular dis-
placement grows faster than x is significant. It implies that if
we consider a reconnection zone, a given magnetic flux

element that wanders out of the zone has only a small prob-
ability of wandering back into it.



Turbulent reconnection
4.1. Constraints on Reconnection Rate

Outflow of matter from the reconnection layer constrains
the achievable reconnection rates. In the presence of turbu-
lence the thickness of the outflow layer increases with L,
according to equation (6):

L::: 1/2 U, 2
G ~ LE(T) (F) , U

when [ > L, and

YPOME ~ (L)Y z(ﬂ) , (&)

when L, > . Therefore, the upper limit on ¥
large-scale field line diffusion 1s

1/2 1/2 v, 2
| (57 () L) o

This limit on the reconnection speed is fast, both in the
sense that it does not depend on the resistivity and in the

sense that it represents a large fraction of the Alfven speed.
Eq. 9 is not only an upper limit on the global reconnection
speed but often a reasonable estimate for its actual value.

imposed by

eC



Turbulent reconnection

The minimal estimate of Vrec given in the previous subsection is based on the
assumption that reconnection proceeds sequentially, that 1s, the reconnection speed is
simply the speed with which reconnection propagates through a single flux element.
This 1s not obviously correct, since the reconnection zone contains many independent
reconnection events at any one time. We need to define a global reconnection speed,
Vrg, which describes the rate at which flux 1s reconnected throughout the reconnection
zone.

In order to arrive at a reasonable estimate of this speed, we have to determine which
aspect of reconnection sets a limit on its efficiency. There are four possibilities:

-the mass flow from the reconnection zone itself

-the speed with which reconnected flux elements move across the reconnection zone
and of the edge

-the ejection of the flux associated with the shared magnetic field component,

-the mass flow from the contact volume (roughly everything within a distance L of the
reconnection zone).

In the case of Sweet-Parker reconnection, the first process provides the critical
constraint (and the third and fourth are not separate constraints).



Turbulent reconnection

Final conclusions of the LV turbulent reconnection:

- The rate of magnetic reconnection is increased dramatically in the presence of a
stochastic component to the magnetic field. This component arises naturally whenever
turbulence 1s present. Even when the turbulent cascade 1s weak the resulting
reconnection speed 1s independent of the Ohmic resistivity.

-The second parameter 1n determining the reconnection speed is not some aspect of the
microphysics, but the level of field stochasticity (or the large-scale kinetic energy
feeding the turbulent cascade). As reconnection proceeds the local turbulent cascade
will grow stronger and the 1nitial level of stochasticity will matter less and less. On the
contrary, microphysical processes widely believed to speed up reconnection, i.e.,
anomalous resistivity, fail in interstellar conditions.

-There exists a minimal reconnection speed, Vi=VAS”(-3/16), much faster than the
Sweet-Parker estimate, but still unrealistically slow.



Reconnection diffusion

Now to the article which I am reviewing.

Authors consider as a proven fact that turbulence in astrophysical media induces fast
magnetic reconnection, which consequently leads to large-scale magnetic flux diffusion
at a rate independent of the plasma micro-physics. The concept is still debated, but they
argue that there is substantial body of positive theoretical results and numerical tests in
Kowal, et al. (2009, 2017, 2020) — a thorough review is given in the book by Lazarian
(2020).

Highlight from the abstract:

-for the first time are shown simulations of compressible MHD turbulence with the
suppression of the cascade 1n the direction parallel to the mean magnetic field, which 1s
consistent with incompressible weak turbulence theory.

-authors also verified that the energy cascading time 1n their simulations does not follow
the scaling with Alfven Mach number predicted for the weak turbulence regime, in
contradiction with the RD theory assumption.



Reconnection diffusion

The process of changing of magnetic field topology in turbulent fluid 1s different in
turbulent versus laminar fluid. The motions in the ionized gas in turbulent gas produce
tangling and wandering of the magnetic field lines which give origin to several micro-
sites of magnetic reconnection. This process i1s independent on how small is the Ohmic
resistivity which 1s always present in any real plasma. Reconnection micro-sites are
continuously formed and spread all over the turbulent plasma volume, so that the field
lines topology can be modified, and large-scale magnetic flux can be transported
through the gas.

Such a result implies that the flux freezing concept is seriously altered.
The speed at which the magnetic flux is transported in such conditions is independent of

the electric resistivity of the plasma, or the degree of its ionization but 1s regulated by
the turbulence parameters.



Reconnection diffusion

The concept of standard turbulent mixing described in LV99 i1s based on the idea that
the field lines are mixed passively by the turbulent eddies, without taking into account
the effects of the magnetic field on the turbulent cascade.

The concept of magnetic diffusion via turbulent reconnection —Reconnection Diffusion
(RD) covers the interesting situation in which the magnetic forces are dynamically
important (e.g. in the late stages of star formation). It relies on the fact that the fast
reconnection induced by the MHD turbulence 1s independent of the value of the electric
resistivity in the plasma. It is also not altered by the effects of ambipolar drift on the
scales where turbulence exists.

RD predicts that the diffusion coefficient 1nrp for large-scale magnetic fluxes (i.e.,
scales larger than the injection or forcing scale of the turbulence) depends on the
turbulence parameters. In the case of super-Alfvénic turbulence, when the Alfvénic
Mach number, MA = Uturb /VA (where Uturb is the turbulent velocity and VA

is the local Alfvén velocity) is larger than one, it coincides with the standard turbulent
mixing coefficient, NRD ~ Lturb Uturb , (the length and the velocity of the turbulence at
the injection scale, respectively). On the other hand, in the regime of sub-Alfvénic
turbulence (MAa < 1), this value 1s reduced by a factor proportional to the third

power of MA: TRD ~ Lturb Uturb Ma3
Therefore, according to the RD theory, the efficiency of the magnetic flux transport
strongly depends on the local turbulence regime.



Reconnection diffusion

In previous work they investigated numerically the removal of magnetic flux from
collapsing turbulent molecular clouds and protostellar disks, considering an “ideal”
MHD approach (i.e., the microscopic magnetic dissipation term was not considered
explicitly in the induction equation, although an effective value is always present due to
the numerical discretization of the equations). They found that the magnetic flux
removal by RD is efficient in these systems, and helps the gravitational collapse of the
structures.

Previous works focused mostly on the super and trans-Alfvénic regimes of the
turbulence where the reconnection diffusion coefficient is controlled by

NRD ~ Lturb Uturb. The aim of this work 1s to test quantitatively the prediction of the
second equation, T)RD ~ Lturb Uturb Ma3, by using 3D MHD simulations.

It 1s also the first attempt to generate simulations of stationary weak MHD turbulence
(the cenario invoked by the RD theory) in the presence of finite compressibility,
which 1s more realistic for astrophysical environments.



Reconnection diffusion

In situations where the energy cascading time at the
injection scale is larger than the molecular or numerical vis-
cous time (implying a low effective Reynold’s number), the
decorrelation time of the velocity, Tqec, can be more closely
related to the dissipation time, Tgijss ~ £ Ef 1/, where v is the
molecular viscosity. The magnetic field diffusion driven by
turbulence in this case will depend on the microscopic dif-
fusion and, if Tgec ~ Taiss. then the diffusivity becomes de-
pendent on the molecular viscosity, 1.

In our discussion we considered only one component of
MHD turbulence, namely, Alfvén modes and disregarded the
slow and fast modes (see Cho & Lazarian 2003). This is due
to the fact that Alfvén modes are the most important in
mixing the medium.

used the PENCIL CoDE ? for numerically solving the set of
compressible, isothermal, MHD equations:

Dlnp

W = —v~ 'I_'[? {8)
Du - — Evluerl.]x{Bu +B) +v3Vou +f, (9)
Dt P

94 _ 4% (Bo+B) +mV°A, (10)

ot

where D/Dt = 8/0t + u- V is the lagrangian derivative,
A is the magnetic potential vector, B =V x A is the mag-
netic field generated by the internal currents, J =V x B/ uq
is the current density, pp is the magnetic permeability, 13
and na are, respectively, the coefficients of hyper-viscosity
and magnetic hyper-diffusivity, c. is the isothermal sound
speed, u is the velocity, p is the density, and f represents
the force responsible for the turbulence injection. We use
the hyper-viscosity and magnetic hyper-diffusivity schemes
with the aim of obtaining a turbulent spectra with an ex-
tension as large as possible for each considered resolution
(Borue & Orszag 1995; Haugen & Brandenburg 2004). The
value of the coefficients were minimized such that numerical
stability is guaranteed.



Table 1. Runs parameters

Reconnection diffusion

runs set LyxLy res.  w/cs  wo/vao  Urmsfvo  forcing  kyL/2r  kiL/2n  [to,1]* i, 3P
16L-Ms0.32-A 16Lx1L  2048,1282 0.32 0.8, 0.57, 1.10, 1.18, A [0, 4] 3,4  [3,8) 2.1 x 102
04,02 118,122
0.1 1.33
16L-Ms0.08 16Lx1L  2048,1282  0.08 08,04, 109, 1.17, A [0, 4] 13,4  [3,8],[4,9] 2.1 x 10—9
0.28,0.2 111, 1.10 [7,12], [7,12]
0.1 1.11 [9,14]
16L-Ms0.02-A 16Lx1L  2048,1282  0.02 08,04, 108, 1.17, A [0, 4] 13,4  [3,8],[4,9] 2.1 x 102
0.2, 0.1 1.04, 1.04 [13,18)], [15,20)
8L-Ms0.02-A 8Lx1L  1024,128%2 0.02 0.8, 04,  1.00, 1.17, A [0, 4] 3,4  [3,8],[4,9] 2.1 x 102
0.2,01  0.99, 101 [13,18], [15,20]
41-Ms0.02-A 4Lx1L  512,1282  0.02 0.8, 04, 110, 1.19, A [0, 4] 3,4  [3,8],[4,9] 2.1 x 102
0.2,01  0.94, 1.01 [13,18], [15,20)
1L-Ms0.02-A 1ILx1L  128,1282  0.02 0.8, 04, 1.22, 1.19, A [0, 4] 3,4  [3,8],[4,9] 2.1 x 102
0.2, 0.1 1.04, 1.11 [7,12], [7,12)
8L-Ms0.02-Ab S8Lx1L  1024,128%2 0.02 0.8, 04, 107,110, Ab — [4,5]  [3,8],[4,9] 2.1 x 102
0.2, 0.1 1.09, 0.93 [10,15], [15,20)
8L-Ms0.02-1 S8Lx1L  1024,128%2  0.02 0.8, 04, 107, 1.11, I — 3,4  [3,8],[4,9] 2.1 x 102
0.2, 0.1 1.19, 1.19 [4,9], [4,9]
16L-Ms0.02-low-A  16Lx1L  1024,642 0.02 0.8, 04,  1.02, 1.12, A [0, 4] (3,4 [11,15] 2.6 x 107
0.2,0.14, 1.31,1.43
0.1 1.44

& [fg, 1] is the time interval used for the averages in time, in units of L/vg.

b i, fi3 are the hyper-viscosity and hyper-resistivity in units of L%vg.



Reconnection diffusion
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Figure 1. Central slice (xy-plane) showing the velocity modulus distribution at the final time of the simulations. Models with identical
parameters but different forcing distributions in the k-space are compared. From top to bottom: A-forcing, Ab-forcing, and I-forcing. All
simulations have the same Alfvénic Mach number M4 = vy ,.-’*u,a_,ﬂ = 0.4 and sonic Mach number Mg = 0.02. See Table 1 for the complete
description of the simulations parameters.



Reconnection diffusion
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The RD theory assumes that the inertial range scale
laws of the weak turbulence theory can be extended to
the injection scales, leading to a diffusion coefficient n pro-
portional to the hydrodynamical value multiplied by the
third power of Ma, when Ma < 1. We found no clear evi-
dence of the development of the weak turbulence regime in
our numerical simulations. In particular, the cascading time
X Mil from the weak turbulence theory at the injection
scale is not observed in any of our model sets. Due to limited
resolution and the fast increase of the cascading time with
the increase of the magnetic field intensity, our simulations
do not show appreciable inertial range to allow a robust de-
termination of the power law index of the power spectrum.
Nonetheless, the diffusion coefficients we obtain seem to be
consistent with the RD prediction 17 oc M3 when the domain
size parallel to the uniform magnetic field is large enough to
avoid the finite box size effects (see Nazarenko 2007 in the
framework of reduced MHD) and the sonic Mach number
small enough (Ms = 0.02). For smaller boxes and bigger
values of Mg, we observed a dependence of n more consis-
tent with M3, which could be the expected dependency in
the strong cascading regime.



A historic lesson: Lars Onsager on turbulence
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Lars Onsager, a giant of twentieth-century science and the 1968 Nobel Laureate in Chemistry,
made deep contributions to several areas of physics and chemistry. Perhaps less well known is
his ground-breaking work and lifelong interest in the subject of hydrodynamic turbulence. He wrote
two papers on the subject in the 1940s, one of them just a short abstract. Unbeknownst to Onsager,
one of his major results was derived a few years earlier by A. N. Kolmogorov, but Onsager’s work
contains many gems and shows characteristic originality and deep understanding. His only full-length
article on the subject in 1949 introduced two novel ideas—negative-temperature equilibria for
two-dimensional ideal flnids and an enerov-dissination anomalv for sineular Enler solutions—that
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Onsager: turbulence with large Reynolds number
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(Dated: April 16, 2018)

In his famous undergraduate physics lectures, Richard Feynman remarked about the problem of
fluid turbulence: “Nobody in physics has really been able to analyze it mathematically satisfactorily
in spite of its importance to the sister sciences” m This statement was already false when Feyn-
man made it. Unbeknownst to him, Lars Onsager decades earlier had made an exact mathematical
analysis of the high Reynolds-number limit of incompressible fluid turbulence, using a method that
would now be described as a non-perturbative renormalization group analysis and discovering the
first “conservation-law anomaly” in theoretical physics. Onsager’s results were only cryptically an-
nounced in 1949 and he never published any of his detailed calculations. Onsager’s analysis was
finally rescued from oblivion and reproduced by this author in 1992. The ideas have subsequently
been intensively developed in the mathematical PDE community, where deep connections emerged
with John Nash’s work on isometric embeddings. Furthermore, Onsapger's method has more re-
cently been successfully applied to new physics problems, such as compressible fluid turbulence
and relativistic fluid turbulence, yielding many nowvel testable predictions. This note will explain
Onsager’s exact analysis of incompressible turbulence using modern ideas on renormalization group
and conservation-law anomalies, and it will also very briefly review subsequent developments.

L. INTRODUCTION

the Nawvier-Stokes equation assume the similarity form

Onsager’s several contributions to the theory of turbu-
lence have already been reviewed from a history of science
point of view Eﬂ This note is instead intended to give a
busy, working physicist a concise, accurate and painless
explanation of Onsager’s theory of “ideal turbulence” for
a low Mach-number fluid, described by the incompress-
ible Navier-Stokes equation

du+ (u-Veu=—-Vyp+rviu, WVeu=0  (L1)

For previous physics explanations of the Onsager theory,

=" Y q '.'i'l'li"] 'Fn'r' =TI l’"\""l’"‘l‘li"‘ll"d"‘l T\l’"a"]'.\dnff':-""'.\] nwwmi“.ﬂ';nn

. - . 1 - -
Gt +(@V)a=-Vp+ -Aa, V=0 (I12)
[

with Re = UL /1 = 1/& the Reynolds number. Hereafter

we omit the hats (-) and understand that the limit v — 0

is really to be i reted as the limit Re — oo. Labora-

tory experiments and mumerical simulations

both confirm that the kinetic energy dissipation rate
g(x, 1) == v|Vyu(x, t)? (11.3)

has space-average converging in the limit as v — 0 and
not vanishing: {(=(¢)) — (=,(t)) = 0. It is furthermore
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Onsager again

Magnetic stochasticity and diffusion
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We develop a quantitative relationship between magnetic diffusion and the level of randomness,
or stochasticity, of the diffusing magnetic field in a magnetized medinm. A general mathematical
formulation of magnetic stochasticity in turbulence has been developed in previous work in terms
of the £y-norm Sp(t) = |1 — B.. BL||,:. pth order magnetic stochasticity of the stochastic field
Bix.t), hased on the coarse-grained fields, By and By, at different scales, [ # L. For laminar flows,
stochasticity level becomes the level of field self- entanglement or spatial {LOI‘III.‘.IIE}':It}-. In this paper.
we establish a connection between magnetic stochasticity S,(t) and magnetic diffusion in magneto-
hydrodynamic (MHD) turbulence and use a homogeneous, incompressible MHD simulation to test
this prediction. Owr results agree with the well-known fact that magnetic diffusion in turbulent
media follows the super-linear Richardson dispersion scheme. This is intimately related to stochas-
tic magnetic reconnection in which super-linear Richardson diffusion broadens the matter outflow

width and accelerates the reconnection process.

I. INTRODUCTION

In the early 1940s, Onsager pointed out, but never
published, the remarkable fact that the velocity field in a

turbulent fluid becomes Holder singular' in the limit of

vanishing viscosity; v — 0 ([1]; [2]; [¥]). This approach
was based on an exact mathematical analysis of the
high Reynolds-number regime of incompressible hydro-
dynamic turbulence. Such an analysis can be called, us-
ing a slightly more modern language, a non-perturbative
renormalization group analysis [2]. Both laboratory ex-

In a magnetized fluid, the magnetic diffusivity (resis-
tivity) and viscosity may be small but finite. In the
limit of vanishing magnetic diffusivity, the magnetic field
seems to be frozen into the fluid. This magnetic flux-
freezing principle is widely applied as an estimate to
MHD equations in the laboratory and astrophysical sys-
tems with the presumption that ideal MHD holds to a
good accuracy. With turbulence, ubiquitous in astro-
physical and laboratory systems (see e.g., [6]; [7]: [5]: [Y]
and references therein), the velocity and magnetic fields
become singular in the limit v, — 0 and ideal MHD

T £ T csmemdind Tl dsndk asan saa e ndkdin Fosad scaloaddad



Takeaway points

-Turbulent reconnection theory matured during the last 20 years. It 1s still not
mainstream theory of reconnection, but only an aspiring one.

-Variety of developed methods starts to be organized and divided, according to
applicability in different physical situations.

-It 1s less and less hand-waving. Numerical simulations are becoming most
important for its development, as various concepts can be tested.

-New (and old) theoretical concepts are included recently. Stay tuned.



Thank you.

My destination after Shanghai.

Miljenko Cemelji¢, SHAO Journal Club, Aug 05, 2020
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