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Introduction

Outflows & jets 1n different scales, objects

Eddington limit exceeded => mag. fields

Protostellar jet launching problem: mechanism?

Resistive vs. other dissipative processes

February 1994 . Gas Disk in Nucleus of
% Active Galaxy M87

January 1995

Hla3 & Spdt
e VidaFadFlaretay Tam
Relative Size of
Solar System

Stellar Disk and Jet Motion - HH30 HST - WFPC2

PRC95-24b - ST Scl OPO - June 6, 1995 - C. Burrows (ST Scl), NASA




Resistive MHD

» Time-dependent
resistive MH
equations.

Lo oo

Induction eq. p=Kp', e= 51 T




Resistive MHD estimates

Microscopic diffusivity insufficient: From induction
eq.=>magnetic Reynolds number Rm=UL/n.

ch c2/(41t0)~rec(uth/c)™(-3), Rm~107(15) for uth=
(kBT/me)™(1/2) for electron thermal speed and for
T=10"4 K as typlcal protostellar case L=100AU.

In astronomy L is LARGE=>Rm also large, no effect.

We need anomalous diffusivity: parametrization as
Shakura/Sunyaev “alpha”: N.=UL, where now
U=UAlfven. UA=BPp/(4TTp).

With ~0.1 = Rm~10.

In terms of timescales we define local Rm on a grid with
scale L, then Rm=tdift/tdyn=min(L"2/n)/min(L/UA)




Numerical simulations

» Semi-analytical 1.c.: self-similar models

» 2.5D Simulations: disk as a boundary

e 2.5D simulations: disk included
e Full 3D




Self-similar initial solutions as i.c.

-Physical variables expressed as a power law of spherical or
cylindrical radius along a given direction
-Semi-analytical solution taken as initial & boundary condition
-Initial conditions modified to fill the computational box
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Simulations with NIRVANA code

-Density 1socontours during one million Courant time-steps

-Relaxation process, towards some new stationary state, similar to 1.c.
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Simulations with NIRVANA code

-Effects of resolution and numerical diffusivity: Left panel, eta=0.
-Physical effects of magnetic diffusivity? Right panel: Black line is high
resolution (512x1024) eta=0 run. Brown, blue, green and magenta are
128x256 runs for eta=0,0.1,0.5,1. There 1s a clear trend.
eta=0,0.1,0.5,1 ZOOM
eta=0




Simulations with NIRVANA code

Integrals along some chosen magnetic field lines show the effects of the

numerical (RxZ=64x128,128x256,256x512,512x1024 1n
magenta,brown,blue,green. Black 1s 1.c. in 512x1024) and physical
diffusivity (for 128x256, eta=0,0.1,0.5,1 in brown,blue,green,magenta)
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Simulations with NIRVANA code

-Effects of resolution and numerical diffusivity on the MHD integrals
-Effects of physical diffusivity on the MHD integrals

-Total and kinetic energy, enthalpy and Poynting flux, top to bottom,
integrals along the chosen lines from previous slide. There is a trend.




Simulations with disk as a boundary

Diffusive jets have less substructure, bow shock advances
slower. T=400 for all three plots. ZEUS code simulations.

eta=

0 0.01 0.1




Simulations with disk as a boundary

- Poloidal velocities, toroidal magnetic fields versus diffusivity. Slices in
the direction of propagation at R=15 (of 40).

-+ Velocity increase and magnetic field decrease for increasing diffusivity
=> axial mass flux decreases for diffusive jet

- Lorentz force-accelerates and collimates  -o.c001 f————————
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Simulations with the disk included-model

* Disk included in
computational box

 Interaction of
stellar
magnetosphere &
disk

 Stellar surface as a
boundary




Simulations with the disk included-b.c.&i.c.

» Hydrostatic co-rotating
corona above the disk in
hydrostatic and magnetic
forces balance

» Resistive disk, corona
effectively ideal-MH
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The disk included-stellar dipole field only

 Interaction of the stellar magnetosphere and the disk
e Funnel onto the star.
e Here 1s shown 1nitial stage of the funnel buildup

T=007




The disk included-stellar dipole field only

e Larger view, when g
funnel 1s present. So e :
close to the star 4 !
outflow will probably )
not be driven, but - :
further out, flow could 3 -
be collimated and s ;

accelerated by Lorentz
force. Here 1s T<10

solution.




The disk included-stellar dipole field only

* Larger e
computational box,
after T=40.

 Stellar dipole
B*~1kG




Full 3D, why do we need it?
Ouyed et al., 2003

Disk as a b.c., left side.
Instability-but “backbone” of
he jet preserved => single
helix, ”corkscrew™ jet

Kato et al., 2004 — magnetic tower



Full 3D, why do we need it?

-Approximations in 2D

DEMSITY
TIME=25.001

|
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-Numerical schemes

-Intrinsic 3D instabilities
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Kuwabara et al., 2005



Overview

* Magnetic diffusivity - anomalous

* Numerical simulations: analytical 1.c., disk as a
boundary, disk included — in 2.5D

 Close vicinity of the star-there 1s “machine”
e Full 3D simulations. STABILITY




