# Optimal transient growth in keplerian discs via variational technique 

V．Zhuravlev ${ }^{1} \quad$ D．Razdoburdin ${ }^{2}$<br>${ }^{1}$ Sternberg Astronomical Institute，Moscow<br>${ }^{2}$ Physics Department of Moscow State University


(1) Non-modal analysis for astrophysical discs

- Basic ideas
- One application to keplerian flow
(2) An optimization problem: common technique
- The essence of method
- One example: the thin ring
(3) An optimization through the variational formulation
- An augmented Lagrangian and it's variation
- Iterative scheme
- Some preliminary results

4 Conclusions and remarks

## Modal analysis

## The linear theory of perturbation dynamics - wave and oscillations in discs, stability and transition.

The basic and traditional framework

- make an assumption of an exponential time dependence
- initial-value problem transforms to an eigenvalue problem for underlying linear dynamical operator
- usually is referred to as a modal approach or as the spectral problem assosiated with the corresponding basic flow
- gives adequate description of perturbation dynamics in case of normal operators only when eigenfuctions are orthogonal to each other
- otherwise, only describes the asymptotic $(t \rightarrow \infty)$ fate of perturbations


## Modal analysis

## The linear theory of perturbation dynamics - wave and oscillations in discs, stability and transition.

The basic and traditional framework

- make an assumption of an exponential time dependence
- initial-value problem transforms to an eigenvalue problem for underlying linear dynamical operator
- usually is referred to as a modal approach or as the spectral problem assosiated with the corresponding basic flow
- gives adequate description of perturbation dynamics in case of normal operators only when eigenfuctions are orthogonal to each other
- otherwise, only describes the asymptotic $(t \rightarrow \infty)$ fate of perturbations

$$
\mathbf{A} \mathbf{A}^{\dagger}=\mathbf{A}^{\dagger} \mathbf{A}, \quad \mathbf{A} \mathbf{x}=\lambda \mathbf{x}
$$

## Non-modal analysis

The existence of a non-zero shear in the flow makes dynamical operator non-normal and eigenfuctions become non-orthogonal making possible the transient growth of perturbations at finite time intervals.

## Schmid (2007)



## Basic ideas

One application to keplerian flow

## Non-modal analysis

The existence of a non-zero shear in the flow makes dynamical operator non-normal and eigenfuctions become non-orthogonal making possible the transient growth of perturbations at finite time intervals.

## Schmid (2007)

$$
\begin{gathered}
\mathbf{A A}^{\dagger} \neq \mathbf{A}^{\dagger} \mathbf{A} \\
\mathbf{A} \mathbf{v}=\sigma \mathbf{u}, \quad \mathbf{A}^{\dagger} \mathbf{u}=\sigma \mathbf{v}
\end{gathered}
$$

$\operatorname{Max}\left\{\sigma_{i}\right\}$ is a maximum stretch that $\mathbf{A}$ can give


Non-modal analysis for astrophysical discs
An optimization problem: common technique An optimization through the variational formulation Conclusions and remarks

## Basic ideas

One application to keplerian flow

## Non-modal analysis

An example: the plane Poiseuille flow
Schmid (2007)


## Basic ideas

One application to keplerian flow

## Non-modal analysis

An example: the plane Poiseuille flow
Schmid (2007)
$\mathbf{A}^{\dagger} \mathbf{A} \mathbf{v}=\sigma^{2} \mathbf{v}$
$\mathbf{A A}^{\dagger} \mathbf{u}=\sigma^{2} \mathbf{u}$

The singular values of $\mathbf{A}$ are the eigenvalues of $\mathbf{A A}^{\dagger}$ and $\mathbf{A}^{\dagger} \mathbf{A}$


## Non-modal analysis

Modal analysis

Non-modal analysis
arrange eigenmodes according to their eigenvalues // timespan independent
arrange singular vectors according to their singular values // for each timespan

## Non-modal analysis

Modal analysis

Non-modal analysis
arrange eigenmodes according to their eigenvalues // timespan independent
arrange singular vectors according to their singular values // for each timespan

> The system of singular vectors of non-normal operator is orthogonal and complete just like the system of eigen-vectors of the hermitian operator

To find optimal perturbations means to find the highest singular value and corresponding singular vector.

## Transient activity of keplerian accretion flow

## Optimal global perturbations.

Ioannou \& Kakouris (2001) - studied 2D rotating flow with a keplerian rotation constructed of a viscous incompressible fluid. Calculated initial optimal perturbations and the statistical steady state of the flow under an external stochastic forcing.

Optimal vortical perturbations


## Transient activity of keplerian accretion flow

## Optimal global perturbations.

## Ioannou \& Kakouris (2001)

The shape of optimal perturbation


The shape of the leading component of the flow response to an external stochastic forcing


## Transient activity of keplerian accretion flow

Optimal global perturbations.

But what will get if consider an almost keplerian hypersonic thin disc?

What will be the picture when involve a sonic wave-like perturbations?

## Transient activity of keplerian accretion flow

Optimal global perturbations.

But what will get if consider an almost keplerian hypersonic thin disc?

What will be the picture when involve a sonic wave-like perturbations?

The determination of optimal perturbation in such a complex flow can be addressed using two different mathematical descriptions

## Optimization: using the spectral solutions

with the basis

## Henningson \& Schmid (2001)

Consider a linear subspace $S_{N}$ of the solutions

$$
q=\sum_{n=1}^{N} \kappa_{n} \tilde{q}_{n}
$$

$$
\tilde{q}_{n}=\left\{\bar{v}_{r}, \bar{v}_{\varphi}, \bar{h}\right\}_{n} \times e^{i m \varphi}=\left\{\tilde{q}^{1}, \tilde{q}^{2}, \tilde{q}^{3}\right\}_{n} \times e^{i m \varphi}
$$

where

$$
\left\{\bar{v}_{r}, \bar{v}_{\varphi}, \bar{h}\right\}_{n}
$$

are the profiles constituting the Fourier-amplitudes of $n$ eigen-mode.
(We assume the baratropic case)

$$
\boldsymbol{\kappa}=e^{\boldsymbol{\Lambda} t} \boldsymbol{\kappa}^{0}
$$

In that way the coordinates of $q$ in

$$
S_{N} \text { are }
$$

$$
\kappa_{n}(t)=\kappa_{n}^{0} e^{-i \omega_{n} t}
$$

$\qquad$


## Optimization: using the spectral solutions

## The Metrics

- Let us measure perturbation by its total acoustic energy

$$
E_{a}=\frac{1}{2} \int \rho\left(\delta v_{r}^{2}+\delta v_{\varphi}^{2}+n \frac{\delta h^{2}}{h_{e q}}\right) r d r d z d \varphi
$$

- So introduce the inner product in the following way

$$
(f, g)=\pi \int_{r_{1}}^{r_{2}} \rho\left[f^{*} g^{1}+f^{2^{*}} g^{2}+\frac{n}{h_{e q}} f^{3^{*}} g^{3}\right] r d r d z
$$

- And the norm of the arbitrary perturbation is

$$
(q, q)=E_{a}=\|\boldsymbol{\kappa}\|^{2}=\sum_{i, j=1}^{N} \kappa_{i}^{*} \kappa_{j} M_{i j}=\boldsymbol{\kappa}^{\dagger} \mathbf{M} \boldsymbol{\kappa}
$$

with metrics in $S_{N}$ defined as

$$
M_{i j}=\left(\tilde{q}_{i}, \tilde{q}_{j}\right)
$$

## Optimization: using the spectral solutions

## The optimal growth

- The growth factor is

$$
g(t)=\frac{\|\boldsymbol{\kappa}(t)\|^{2}}{\left\|\boldsymbol{\kappa}^{0}\right\|^{2}}=\frac{\left\|e^{\boldsymbol{\Lambda} t} \boldsymbol{\kappa}^{0}\right\|^{2}}{\left\|\boldsymbol{\kappa}^{0}\right\|^{2}}
$$

- The optimal growth is

$$
G(T)=\max _{\boldsymbol{\kappa}^{0} \neq 0} g(T) \equiv\left\|e^{\boldsymbol{\Lambda} T}\right\|^{2}=\left\|\mathbf{F} e^{\boldsymbol{\Lambda} T} \mathbf{F}^{-1}\right\|_{2}^{2}=\sigma_{1}^{2}\left(\mathbf{F} e^{\boldsymbol{\Lambda} T} \mathbf{F}^{-1}\right)
$$

where $\mathbf{M}=\mathbf{F}^{\dagger} \mathbf{F}$ is Cholesky decomposition and
$\sigma_{1}$ is the first singular value of the corresponding matrix

- SVD decomposition gives $\sigma_{1} \& \mathbf{v}_{1}$
$\kappa^{0}=\mathbf{F}^{-1} \mathbf{v}_{1}$ is the initial unit vector that corresponds to perturbation that attains the largest possible energy growth $G$ at the moment $T$


## Approach discs: the thin ring

- Let us take the baratropic torus constructed of perfect fluid rotating with a $\Omega \sim r^{-q}$ in an external Newtonian potential.
- This model case was extensively studied in 1980's as a subject to Papaloizou-Pringle instability.
- Consider the case $q \rightarrow 3 / 2$, i.e. the thin quasi-keplerian torus with $\delta=H / r \ll 1$.
- Take the most trivial part of the spectrum using WKBJ method calculate modes $\sim \exp (-i \omega t+i m \varphi)$,
(i) with no dependence on $z$,
(ii) with corotation radius beyond the outer boundary of torus.



## The result of optimization

Optimal growth curves for the linear combination of neutral acoustic modes with dimension $N=20$ and parameters $x_{d}=1.0, m=25, n=3 / 2$.

Left panel
$\delta=0.002$,
growth factors for optimal combinations at $t=250,290,390$

Right panel
$\delta=0.001,0.002,0.003$



- Sonic time scale $t_{s} \sim\left(\delta \Omega_{0}\right)^{-1}$
- Magnitude of $G \sim \delta^{-(\ldots)}$


## The result of optimization

Evolution of the particular optimal combination of neutral acoustic modes.

Left panel
The instant angular momentum flux density alternating with time

Right panel
The growth of the total acoustic energy


An augmented Lagrangian and it's variation Iterative scheme
Some preliminary results

## Optimization: method of Lagrange multipliers

- The goal is to determine the maximum of the following cost Lagrangian

$$
\mathcal{J}=\frac{\|\mathbf{q}(\tau)\|^{2}}{\|\mathbf{q}(0)\|^{2}}
$$

- Method of Lagrange multipliers gives an augmented Lagrangian (the Lagrange multipliers here - $\tilde{\mathrm{q}}$ and $\tilde{\mathrm{q}}_{0}$ which are the adjoint variables)

$$
\mathcal{L}\left(\mathbf{q}, \tilde{\mathbf{q}}, \mathbf{q}_{0}, \tilde{\mathbf{q}}_{0}\right)=\mathcal{J}-\int_{0}^{\tau}(\tilde{\mathbf{q}}, \dot{\mathbf{q}}-\mathbf{A q}) d t-\left(\tilde{\mathbf{q}}_{0}, \mathbf{q}(\mathbf{0})-\mathbf{q}_{0}\right)
$$

- The zero variations of $\mathcal{L}$ over the corresponding quantities give

1) over the $\mathbf{q} \longmapsto$ the direct dynamical equations
2) over the $\tilde{\mathbf{q}} \longmapsto$ the adjoint equations
3) over the $\mathbf{q}_{0} \longmapsto$ the relationship between $\mathbf{q}(\tau)$ and $\tilde{\mathbf{q}}(\tau)$
4) over the $\tilde{\mathbf{q}}_{0} \longmapsto$ the relationship between $\mathbf{q}(0)$ and $\tilde{\mathbf{q}}(0)$

An augmented Lagrangian and it's variation Iterative scheme
Some preliminary results

## Direct and adjoint system of equations

$$
\begin{gathered}
\mathbf{q}=\left\{\delta v_{r}, \delta v_{\varphi}, \delta v_{z}, \delta p\right\} \\
\dot{\mathbf{q}}=\mathbf{A} \mathbf{q} \\
\dot{\tilde{\mathbf{q}}}=-\mathbf{A}^{\dagger} \tilde{\mathbf{q}} \\
\mathbf{A}=\left(\begin{array}{cccc} 
\\
-i m \Omega & 2 \Omega & 0 & \frac{1}{\rho}\left(\frac{\rho, r}{\rho}-\frac{\partial}{\partial r}\right) \\
-\frac{\kappa^{2}}{2 \Omega} & -i m \Omega & 0 & -\frac{i m}{r \rho} \\
0 & 0 & -i m \Omega & \frac{1}{\rho}\left(\frac{\rho, z}{\rho}-\frac{\partial}{\partial z}\right) \\
-\rho a^{2}\left(\frac{1}{r}+\frac{\rho, r}{\rho}+\frac{\partial}{\partial r}\right) & -\frac{i m}{r} \rho a^{2} & -\rho a^{2}\left(\frac{\rho, z}{\rho}+\frac{\partial}{\partial z}\right) & -i m \Omega
\end{array}\right) \\
\mathbf{A}^{\dagger}=\left(\begin{array}{cccc}
i m \Omega & -\frac{\kappa^{2}}{2 \Omega} & 0 & -\frac{1}{\rho}\left(\frac{\rho, r}{\rho}-\frac{\partial}{\partial r}\right) \\
2 \Omega & i m \Omega & 0 & \frac{i m}{r \rho} \\
0 & 0 & i m \Omega & -\frac{1}{\rho}\left(\frac{\rho, z}{\rho}-\frac{\partial}{\partial z}\right) \\
\rho a^{2}\left(\frac{1}{r}+\frac{\rho, r}{\rho}+\frac{\partial}{\partial r}\right) & \frac{i m}{r} \rho a^{2} & \rho a^{2}\left(\frac{\rho, z}{\rho}+\frac{\partial}{\partial z}\right) & i m \Omega
\end{array}\right)
\end{gathered}
$$

## Iterative scheme

The straightforward way to find the solution to variational problem described above is the following iterative scheme


## Iterative scheme

The straightforward way to find the solution to variational problem described above is the following iterative scheme


The iterative scheme above is equivalent to iteration $\mathbf{q}_{n+1}=\mathbf{U} \cdot \mathbf{q}_{n}$, where $\mathbf{U}=e^{\left(\mathbf{A}^{\dagger}+\mathbf{A}\right) t}$ is a hermitian positive operator.

An augmented Lagrangian and it's variation
Iterative scheme
Some preliminary results

## Convergence of iterative scheme

Conversion of two different arbirary initial perturbations into the unique optimal initial perturbation corresponding to a particular timespan.

$$
\mathrm{m}=2 \quad \delta=0.1 \quad \mathrm{n}=1.6 \quad \mathrm{~T}_{\mathrm{opl}}=5
$$

Perturbation profile
Left panel
The instant shapes
Right panel
The instant values of energy growth


An augmented Lagrangian and it's variation

## Evolution of optimal perturbation

Comparative evolution of any arbitrary initial profile and optimal initial profile seen on the previous slide

Left panel
The instant shapes
Right panel
The instant values of energy growth.
Blue curve represents the optimal growth which is the highest possible energy enhancement at each point.

$$
\mathrm{m}=2 \quad \delta=0.1 \quad \mathrm{n}=1.6 \quad \mathrm{~T}_{\mathrm{opl}}=5
$$

Evolution of optimal profile


Growth of perturbations


## Variational technique: the advantages

- Don't need spectral solutions anymore (no issues with corotational and Lindblad resonances of modes, continuous spectra, unbounded flows etc)
- Don't need any kind of matrix representation for dynamical operator (profit in numerical resourses)
- Viscous and other additional terms can be straightforwardly added into the underlying cauchy problem
- The determination of optimal perturbations can be easily extended to the non-stationary flows (i.e. transient dynamics in the non-stationary accretion discs)
- Finally, the variational technique can be employed in the domain of the non-linear perturbations


## Conclusions

- A global non-modal approach to a hypersonic polytropic flow with free boundaries and a nearly keplerian rotation was attempted
- Two different methods of optimization were employed,
i) the one involving the decomposition of perturbations over the spectral solutions (i.e. over the modes)
ii) the one with variational formulation that requires the advance of direct and adjoint cauchy problems
- The advantages of the latter method were discussed briefly
- It was revealed that in quasikeplerian tori the certain (optimal) combinations of the neutral sonic modes with corotation radius beyond the outer boundary can exhibit a considerable transient growth at the sonic timescale.
- Keplerian disc also has a potential to drive a global transient dynamics.


## Possible developments

- Include the vertical motions in the perturbed flow.
- Include the viscosity and consider the accreting flows.
- Solve the problem of the stochastic forcing of thin accretion disc.


## Thank you for your attention

What astrophysical applications could it have?..

