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Modal analysis

The linear theory of perturbation dynamics — wave and oscillations in
discs, stability and transition.

The basic and traditional framework

make an assumption of an exponential time dependence

initial-value problem transforms to an eigenvalue problem for underlying
linear dynamical operator

usually is referred to as a modal approach or as the spectral problem
assosiated with the corresponding basic flow

gives adequate description of perturbation dynamics in case of normal
operators only when eigenfuctions are orthogonal to each other

otherwise, only describes the asymptotic (t →∞) fate of perturbations

AA† = A†A, Ax = λx
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Non-modal analysis

The existence of a non-zero shear in the flow makes dynamical operator
non-normal and eigenfuctions become non-orthogonal making possible the
transient growth of perturbations at finite time intervals.

Schmid (2007)

AA† 6= A†A,

Av = σu, A†u = σv

Max{σi} is a maximum
stretch that A can give
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Non-modal analysis

An example: the plane Poiseuille flow

Schmid (2007)

A†A v = σ2 v

AA† u = σ2 u

The singular values of A
are

the eigenvalues of AA† and A†A
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Modal analysis

Non-modal analysis

=⇒

=⇒

arrange eigenmodes according to their
eigenvalues // timespan independent

arrange singular vectors according to their
singular values // for each timespan

The system of singular vectors of non-normal operator
is orthogonal and complete

just like the system of eigen-vectors of the hermitian operator

To find optimal perturbations means to find the highest singular value and
corresponding singular vector.
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Transient activity of keplerian accretion flow

Optimal global perturbations.

Ioannou & Kakouris (2001) — studied 2D rotating flow with a keplerian rotation
constructed of a viscous incompressible fluid. Calculated initial optimal perturbations
and the statistical steady state of the flow under an external stochastic forcing.

Optimal vortical
perturbations
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Transient activity of keplerian accretion flow

Optimal global perturbations.

Ioannou & Kakouris (2001)

The shape of optimal perturbation The shape of the leading component of the
flow response to an external stochastic
forcing
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Transient activity of keplerian accretion flow

Optimal global perturbations.

But what will get if consider an almost keplerian hypersonic thin disc?

What will be the picture when involve a sonic wave-like perturbations?

The determination of optimal perturbation in such a complex flow can be addressed
using two different mathematical descriptions
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Optimization: using the spectral solutions

Henningson & Schmid (2001)

Consider a linear subspace SN of
the solutions

q =
N∑

n=1

κnq̃n

In that way the coordinates of q in
SN are

κn(t) = κ0
ne−iωn t

=⇒

=⇒

with the basis

q̃n = {v̄r , v̄ϕ, h̄}n × eimϕ = {q̃1, q̃2, q̃3}n × eimϕ

where

{v̄r , v̄ϕ, h̄}n

are the profiles constituting the Fourier-amplitudes
of n eigen-mode.

(We assume the baratropic case)

κ = eΛtκ0

κ0 = (κ0
1, κ

0
2, ..., κ

0
N )T

κ = (κ1, κ2, ..., κN )T

Λ = diag{−iω1,−iω2, ...,−iωN}
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Optimization: using the spectral solutions

The Metrics

Let us measure perturbation by its total acoustic energy

Ea =
1
2

∫
ρ

(
δv2

r + δv2
ϕ + n

δh2

heq

)
rdr dz dϕ

So introduce the inner product in the following way

(f , g) = π

r2∫
r1

ρ

[
f 1∗g1 + f 2∗g2 +

n
heq

f 3∗g3
]

rdr dz

And the norm of the arbitrary perturbation is

(q, q) = Ea = ‖κ‖2 =
N∑

i,j=1

κ∗i κj Mij = κ†Mκ

with metrics in SN defined as Mij = (q̃i , q̃j )
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Optimization: using the spectral solutions

The optimal growth

The growth factor is

g(t) =
‖κ(t)‖2

‖κ0‖2
=
‖eΛtκ0‖2

‖κ0‖2

The optimal growth is

G(T ) = max
κ0 6=0

g(T ) ≡ ‖eΛT ‖2 = ‖FeΛT F−1‖2
2 = σ2

1

(
FeΛT F−1

)
where M = F†F is Cholesky decomposition and
σ1 is the first singular value of the corresponding matrix

SVD decomposition gives σ1 & v1

κ0 = F−1v1 is the initial unit vector that corresponds to perturbation that attains
the largest possible energy growth G at the moment T
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Approach discs: the thin ring

Let us take the baratropic torus constructed of perfect fluid rotating with a
Ω ∼ r−q in an external Newtonian potential.

This model case was extensively studied in 1980’s as a subject to
Papaloizou-Pringle instability.

Consider the case q → 3/2, i.e. the thin quasi-keplerian torus with δ = H/r � 1.

Take the most trivial part of the
spectrum —
using WKBJ method calculate modes
∼ exp(−iωt + imϕ),
(i) with no dependence on z,
(ii) with corotation radius beyond the
outer boundary of torus.
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The result of optimization

Optimal growth curves for the linear combination of neutral acoustic modes
with dimension N = 20 and parameters xd = 1.0, m = 25, n = 3/2.

Left panel
δ = 0.002,
growth factors for
optimal combinations at
t = 250, 290, 390

Right panel
δ = 0.001, 0.002, 0.003
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The result of optimization

Evolution of the particular optimal combination of neutral acoustic modes.

Left panel
The instant angular
momentum flux density
alternating with time

Right panel
The growth of the total
acoustic energy
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Optimization: method of Lagrange multipliers

The goal is to determine the maximum of the following cost Lagrangian

J =
‖q(τ)‖2

‖q(0)‖2

Method of Lagrange multipliers gives an augmented Lagrangian
(the Lagrange multipliers here — q̃ and q̃0 which are the adjoint variables)

L(q, q̃,q0, q̃0) = J −
τ∫

0

( q̃ , q̇− Aq ) dt − ( q̃0 ,q(0)− q0 )

The zero variations of L over the corresponding quantities give
1) over the q 7−→ the direct dynamical equations
2) over the q̃ 7−→ the adjoint equations
3) over the q0 7−→ the relationship between q(τ) and q̃(τ)
4) over the q̃0 7−→ the relationship between q(0) and q̃(0)
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Direct and adjoint system of equations

q = { δvr , δvϕ, δvz , δp }

q̇ = A q
˙̃q = −A† q̃

A =


−imΩ 2Ω 0 1

ρ

(
ρ,r
ρ − ∂

∂r

)
−κ2

2Ω −imΩ 0 − im
rρ

0 0 −imΩ 1
ρ

(
ρ,z
ρ − ∂

∂z

)
−ρa2

(
1
r +

ρ,r
ρ + ∂

∂r

)
− im

r ρa2 −ρa2
(
ρ,z
ρ + ∂

∂z

)
−imΩ



A† =


imΩ −κ2

2Ω 0 − 1
ρ

(
ρ,r
ρ − ∂

∂r

)
2Ω imΩ 0 im

rρ

0 0 imΩ − 1
ρ

(
ρ,z
ρ − ∂

∂z

)
ρa2
(

1
r +

ρ,r
ρ + ∂

∂r

)
im
r ρa2 ρa2

(
ρ,z
ρ + ∂

∂z

)
imΩ


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Iterative scheme

The straightforward way to find the solution to variational problem described above is
the following iterative scheme

q0(0)

q̃n(T) = 2
qn(T)

||qn(0)||2

qn+1(0) =
1
2
||qn(0)||4

||qn(T)||2
q̃n(0)

qn(T) = eATqn(0)

q̃n(0) = eA†T q̃n(T)

The iterative scheme above is equivalent to iteration qn+1 = U · qn,
where U = e (A†+ A) t is a hermitian positive operator.
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Convergence of iterative scheme

Conversion of two different arbirary initial perturbations into the unique
optimal initial perturbation corresponding to a particular timespan.

Left panel
The instant shapes

Right panel
The instant values of
energy growth
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Evolution of optimal perturbation

Comparative evolution of any arbitrary initial profile and optimal initial profile
seen on the previous slide

Left panel
The instant shapes

Right panel
The instant values of
energy growth.
Blue curve represents the
optimal growth which is the
highest possible energy
enhancement at each
point.
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Variational technique: the advantages

Don’t need spectral solutions anymore (no issues with corotational and Lindblad
resonances of modes, continuous spectra, unbounded flows etc)

Don’t need any kind of matrix representation for dynamical operator (profit in
numerical resourses)

Viscous and other additional terms can be straightforwardly added into the
underlying cauchy problem

The determination of optimal perturbations can be easily extended to the
non-stationary flows (i.e. transient dynamics in the non-stationary accretion discs)

Finally, the variational technique can be employed in the domain of the non-linear
perturbations
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Conclusions

A global non-modal approach to a hypersonic polytropic flow with free boundaries
and a nearly keplerian rotation was attempted

Two different methods of optimization were employed,
i) the one involving the decomposition of perturbations over the spectral solutions
(i.e. over the modes)
ii) the one with variational formulation that requires the advance of direct and
adjoint cauchy problems

The advantages of the latter method were discussed briefly

It was revealed that in quasikeplerian tori the certain (optimal) combinations of the
neutral sonic modes with corotation radius beyond the outer boundary can exhibit
a considerable transient growth at the sonic timescale.

Keplerian disc also has a potential to drive a global transient dynamics.
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Possible developments

Include the vertical motions in the perturbed flow.

Include the viscosity and consider the accreting flows.

Solve the problem of the stochastic forcing of thin accretion disc.
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Thank you for your attention

What astrophysical applications could it have?..
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