Outflows, the alpha parameter and GRMHD

based on Narayan, Sądowski, Penna, Kulkarni 2012, MNRAS, in press and Penna, Sadowski, Kulkarni, Narayan 2012, MNRAS, submitted in collaboration with Grzegorz Mazur

Aleksander Sądowski Harvard-Smithsonian Center for Astrophysics

Warsaw, 2012

Outline

GRMHD
 Outflows
 Alpha

GRMHD simulations of ADAFs

* 3D conservative relativistic magnetohydrodynamic code HARM * MPI parallelized * 256 x 128 x 64 resolution * Kerr-Schild coordinates * no cooling, no radiation * two modes of accretion: standard (SANE) and magnetically arrested (MAD) * $t=200k \text{ GM/c}^3 \sim two months on 512 cores$

Initial state for the SANE run

multiple poloidal magnetic loops to ensure small flux through the BH horizon

Initial state for the MAD run

single poloidal magnetic loop results in accumulating flux on the BH horizon leading to the Magnetically Arrested Disk

a=0, SANE, colors denote density, proper ray-tracing neglected credit: Grzegorz Mazur

Turbulent flow

Averaged disk structure (t, phi, theta refl.)

Why do we care?

credit: Priyamvada Natarajan's webpage

BH Feedback

* solves the overcooling problem in galaxy evolution* leads to M-sigma relation

- * Soltan's argument gives eta=~10%
 * SPH simulations give constraints
 * BH physics under-resolved
- 2 modes of feedback:

*

- * quasar mode high mdot
- * <u>maintenance mode</u> low mdot

Outflows in the maintenance mode **SANE MAD**

$$\mu = \frac{\langle T_t^p \rangle}{\langle \rho u^p \rangle} - 1$$

Outflows in the maintenance mode - conclusions

* The outflows are weak inside r=100M

* The mass outflow rate becomes comparable to the net inflow rate at $r\sim 90M$ (SANE) and $r\sim 160M$ (MAD)

* due to unsatisfactory convergence these radii should be considered lower limits

* radial profile of outflows at larger radii cannot be estimated (other studies give Mdot ~ $r^{(0.5)}$, Yuan+12)

* large fraction of Bondi accretion rate expected to reach BH:
Mdot_BH = 10^-1.5 = = 3% Mdot_Bondi

* the effect of BH spin is being investigated

The alpha

$$T_{\hat{r}\hat{\phi}}=\alpha p$$

$$\label{eq:alpha} \alpha = \frac{T^{(\mathrm{rey})}_{\hat{r}\hat{\phi}} + T^{(\mathrm{mag})}_{\hat{r}\hat{\phi}}}{p + b^2/2}.$$

$$T_{\mu\nu}^{(\text{rey})} = (\rho + u)u_{\mu}u_{\nu} + ph_{\mu\nu},$$

$$T_{\mu\nu}^{(\text{mag})} = \frac{1}{2} \left(b^2 u_{\mu}u_{\nu} + b^2 h_{\mu\nu} - 2b_{\mu}b_{\nu} \right),$$

Spatial distributions of alpha

Time variability of alpha in ADAF (a=o, SANE, eq. plane)

local (fixed lab. coord.)

phi-averaged

Thin disk (a=0, h/r=0.1, eq. plane, cooling function)

local (fixed lab. coord.)

Power spectrum of alpha variability

GRMHD

shearing box thin disk, rad.dominated (Hirose+08)

Radial profile of alpha

* dots - GRMHD thin disk, h/r=0.1 * lines - analytical model of Penna, Sądowski+12

Radial profile of alpha

turbulent flow: MRI saturation level depends on the local shearing rate q (Abramowicz+96, Pessah+08)

 $\alpha \propto q^n$

$$q = -2\sigma_{\hat{r}\hat{\phi}}/\Omega = -\gamma^2 \mathcal{A} \frac{d\log\Omega}{d\log r}$$

laminar flow within ISCO:

Radial profile of alpha

$$\alpha(r) = \alpha_0 \left[\frac{q(r)}{3/2} \right]^n - \alpha_1 \frac{b_{\hat{r}}(r)b_{\hat{\phi}}(r)}{\rho(r)^{\Gamma}}, \quad (q > 0).$$

Simulation	M/M_{\odot}	a/M	$\dot{M}/\dot{M}_{\rm edd}$	r	$lpha_0$	α_1	n	r _B
A	10	0	0.5	0.6	0.025	100	6	r _{ISCO}
С В	10 10	0.7	0.2	3 6	0.025	10	6 6	$r_{\rm ISCO}$ $r_{\rm ISCO}$
D	10	0	1	5	0.025	0.5	6	30M
E	10	0.7	1	10	0.025	0.5	6	30M
F	10	0	1	30	0.025	0.1	6	30M

Conclusions

- * GRMHD simulations can consistently produce magnetically driven outflows
- * simulations converge only up to ~100M
- * larger scales available through hydro only (e.g., Yuan+12)
- * radiatively driven winds require radiative transfer - so far not done for GR

* GRMHD generates stresses self-consistently
* The alpha parameter varies with time
* Its averaged radial profile may be fitted by two-component analytical model
* Still, radiative transfer required for the proper treatment of thin disks

